Skip to main content
Log in

Mass Spectrometry-Compatible Enantiomeric Separations of 100 Pesticides Using Core–Shell Chiral Stationary Phases and Evaluation of Iterative Curve Fitting Models for Overlapping Peaks

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Pesticides are often chiral, and their isomers have different activity, toxicity, metabolism, and degradation properties. Perhaps, the most complex are the synthetic pyrethroid insecticides that have up to 8 stereoisomers, but not all are active. Pyrethroids are toxic to aquatic invertebrates and non-targeted species like honey bees since they persist in the environment. Extensive biological studies of the pyrethroid enantiomers are limited. Possibly, this is because liquid chromatography enantiomeric methods for these studies often have limitations with mass spectrometry (MS) compatibility. In this study, an effective methodology was developed with MS compatible solvents to evaluate several core–shell (superficially porous particle, SPP) chiral stationary phases (CSPs) for the enantiomeric separation of several classes of chiral pesticides. The CSP with the broadest selectivity or spectrum amongst all pesticide classes was the hydroxypropyl-β-cyclodextrin. The other CSPs (cyclofructan, macrocyclic glycopeptide, and quinine-based selectors) had more selective applications including separations of the pesticides with amine or acid functionalities. Overall, 74 of 100 pesticides were baseline-separated. Most of the remaining ones had multiple stereogenic centers and had only one overlapping pair. Such cases were evaluated with a convenient peak area extraction protocol by iterative curve fitting. This approach will lead to more facile enantiomeric analyses where MS is needed to overcome complex matrices and reduce extensive method optimization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IUPAC (1997) Compendium of Chemical Terminology, 2nd edn. (the “Gold Book”). Blackwell Scientific Publications, Oxford

    Google Scholar 

  2. Matell M (1953) Ark Kemi 6:365–373

    CAS  Google Scholar 

  3. Schneiderheinze JM, Armstrong DW, Berthod A (1999) Chirality 11:330–337

    Article  CAS  PubMed  Google Scholar 

  4. Burden RS, Carter GA, Clark T, Cooke DT, Croker SJ, Deas AHB, Hedden P, James CS, Lenton JR (1987) Pestic Sci 21:253–267

    Article  CAS  Google Scholar 

  5. Calcaterra A, D’Acquarica I (2018) J Pharm Biomed Anal 147:323–340

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong DW, Chang CD, Li WY (1990) J Agric Food Chem 38:1674–1677

    Article  CAS  Google Scholar 

  7. Armstrong DW, Reid GL III, Hilton ML, Chang CD (1993) Environ Pollut 79:51–58

    Article  CAS  PubMed  Google Scholar 

  8. Liu W, Gan J, Schlenk D, Jury WA (2005) Proc Natl Acad Sci USA 102:701–706

    Google Scholar 

  9. Ye J, Zhao M, Liu J, Liu W (2010) Environ Pollut 158:2371–2383

    Article  CAS  PubMed  Google Scholar 

  10. Perez de Albuquerque NC, Carrão DB, Habenschus MD, Moraes de Oliveira AR (2018) J Pharm Biomed Anal 147:89–109

    Article  CAS  Google Scholar 

  11. Schleier JJ III, Peterson RKD (2011) Pyrethrins and pyrethroid insecticides. In: Lopez Ó, Fernández-Bolaños JG (eds) Green Trends in Insect Control, RSC Green Chemistry, No. 11. RSC Publishing, Cambridge, pp 94–131

    Chapter  Google Scholar 

  12. Miyamoto J (1976) Environ Health Perspect 14:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma Y, Chen L, Lu X, Chu H, Xu C, Liu W (2009) Ecotoxicol Environ Saf 72:1913–1918

    Article  CAS  PubMed  Google Scholar 

  14. Oberhauser KS, Brinda SJ, Weaver S, Moon RD, Manweiler SA, Read N (2006) Environ Entomol 35:1626–1634

    Article  CAS  Google Scholar 

  15. Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Apidologie 441:312–331

    Article  CAS  Google Scholar 

  16. Vontas J, Grigoraki L, Morgan J, Tsakireli D, Fuseini G, Segura L, Niemczura de Carvalho J, Nguema R, Weetman D, Slotman MA, Hemingway J (2018) Proc Natl Acad Sci USA 115(18):4619–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen ZM, Wang YH (1996) J Chromatogr A 754:367–395

    Article  CAS  PubMed  Google Scholar 

  18. Alder L, Greulich K, Kempe G, Vieth B (2006) Mass Spectrom Rev 25:838–865

    Article  CAS  PubMed  Google Scholar 

  19. Ye J, Wu J, Liu W (2009) Trends Anal Chem 28:1148–1163

    Article  CAS  Google Scholar 

  20. Okamoto M (2012) Direct chiral separation of pyrethroid isomers by HPLC with chiral stationary phases In: Knaak JB, Timchalk C, Tornero-Velez R (eds) Parameters for Pesticide QSAR and PBPK/PD Models for Human Risk Assessment, ACS Symposium Series, vol 1099, pp 31–40

  21. Ȏi N, Kitahara H, Kira R (1990) J Chromatogr A 515:441–450

    Article  Google Scholar 

  22. Lisseter SG, Hambling SG (1991) J Chromatogr A 539:207–210

    Article  CAS  Google Scholar 

  23. Armstrong DW, Chang CD, Lee SH (1991) J Chromatogr A 539:83–90

    Article  CAS  Google Scholar 

  24. Kutter JP, Class TJ (1992) Chromatographia 33:103–112

    Article  CAS  Google Scholar 

  25. Zhang H, Qian M, Wang X, Wang X, Xu H, Wang Q, Wang M (2012) J Sep Sci 35:773–781

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Liang X, Zheng Y (2012) J Chrom A 1224:51–60

    Article  CAS  Google Scholar 

  27. Patel DC, Wahab MF, Armstrong DW, Breitbach ZS (2016) J Chromatogr A 1467:2–18

    Article  CAS  PubMed  Google Scholar 

  28. Hellinghausen G, Lee JT, Weatherly CA, Lopez DA, Armstrong DW (2017) Drug Test Anal 9:944–948

    Article  CAS  PubMed  Google Scholar 

  29. Hellinghausen G, Roy D, Wang Y, Lee JT, Lopez DA, Weatherly CA, Armstrong DW (2017) Talanta 181:132–141

    Article  CAS  PubMed  Google Scholar 

  30. Barhate CL, Lopez DA, Makarov AA, Bu X, Morris WJ, Lekhal A, Hartman R, Armstrong DW, Regalado EL (2018) J Chrom A 1539:87–92

    Article  CAS  Google Scholar 

  31. Hellinghausen G, Roy D, Lee JT, Wang Y, Weatherly CA, Lopez DA, Nguyen KA, Armstrong JD, Armstrong DW (2018) J Pharm Biomed Anal 155:70–81

    Article  CAS  PubMed  Google Scholar 

  32. Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW (2017) Anal Chim Acta 963:164–174

    Article  CAS  PubMed  Google Scholar 

  33. Gritti F, Guiochon G (2012) LC GC N Am 30:586–595

    CAS  Google Scholar 

  34. Broeckhoven K, Cabooter D, Desmet G (2013) J Pharm Anal 3:313–323

    Article  CAS  PubMed  Google Scholar 

  35. DeStefano JJ, Schuster SA, Lawhorn JM, Kirkland JJ (2012) J Chromatogr A 1258:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kotoni D, Ciogli A, Molinaro C, D’Acquarica I, Kocergin J, Szczerba T, Ritchie H, Villani C, Gasparrini F (2012) Anal Chem 84:6805–6813

    Article  CAS  PubMed  Google Scholar 

  37. Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F (2018) J Sep Sci 41:1307–1318

    Article  CAS  PubMed  Google Scholar 

  38. Xu C, Armstrong DW (2013) Anal Chim Acta 792:1–9

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong DW, Liu Y, Ekborg-Ott KH (1995) Chirality 7:474–497

    Article  CAS  Google Scholar 

  40. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  41. Sun P, Wang C, Breitbach ZS, Zhang Y, Armstrong DW (2009) Anal Chem 81:10215–10226

    Article  CAS  PubMed  Google Scholar 

  42. Bicking MKL (2006) LC GC N Am 24:605–616

    Google Scholar 

  43. Chesler SN, Cram SP (1973) Anal Chem 45:1354–1359

    Article  CAS  Google Scholar 

  44. Anderson AH, Gibb TC, Littlewood AB (1970) Anal Chem 42:434–440

    Article  CAS  Google Scholar 

  45. Amigo JM, Skov T, Bro R (2010) Chem Rev 110:4582–4605

    Article  CAS  PubMed  Google Scholar 

  46. Kemmer G, Keller S (2010) Nat Protoc 5:267–281

    Article  CAS  PubMed  Google Scholar 

  47. Asher BJ, D’Agostino LA, Way JD, Wong CS, Harynuk JJ (2009) Chemosphere 75:1042–1048

    Article  CAS  PubMed  Google Scholar 

  48. Wahab MF, Wimalasinghe RM, Wang Y, Barhate CL, Patel DC, Armstrong DW (2016) Anal Chem 88:8821–8826

    Article  CAS  PubMed  Google Scholar 

  49. Patel DC, Wahab MF, O’Haver TC, Armstrong DW (2018) Anal Chem 90:3349–3356

    Article  CAS  PubMed  Google Scholar 

  50. Kraehmer H, Laber B, Rosinger C, Schulz A (2014) Plant Physiol 166:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boehm RE, Martire DE, Armstrong DW (1988) Anal Chem 60:522–528

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank AZYP, LLC, for their technical support for HPLC chiral column technology. We also thank Siqi Du for her MS expertise. This work was supported by the Robert A. Welch Foundation (Y0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of Interest

The authors J.T. Lee, D.A. Lopez, and D.W. Armstrong declare the following competing financial interest(s): CDShell-RSP, NicoShell, LarihcShell-P, Q-Shell, TeicoShell, and VancoShell are trademarked products of AZYP, LLC.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in Chromatographia's 50th Anniversary Commemorative Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellinghausen, G., Readel, E.R., Wahab, M.F. et al. Mass Spectrometry-Compatible Enantiomeric Separations of 100 Pesticides Using Core–Shell Chiral Stationary Phases and Evaluation of Iterative Curve Fitting Models for Overlapping Peaks. Chromatographia 82, 221–233 (2019). https://doi.org/10.1007/s10337-018-3604-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3604-3

Keywords

Navigation