Skip to main content
Log in

An On-line Admicellar SPE-HPLC System Using CTAB-Modified Zeolite NaY as Sorbent for Determination of Carbamate Pesticides in Water

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Zeolite NaY modified with cetyltrimethylammonium bromide (CTAB) was considered for extraction/preconcentration of carbamate pesticides using an on-line SPE-HPLC system. The simultaneous determination of carbamate pesticides, including aldicarb, carbofuran, carbaryl, isoprocarb, methiocarb and promecarb, was performed by HPLC–UV using a LichroCART RP-18 column with gradient elution of methanol and 0.1 % acetic acid. The sorbent presented admicelles of CTAB on its surfaces and exhibited a sorption capacity of 180–18,600 mg kg−1 sorbent, which could be re-modified for at least five extraction cycles. The quantitative retention of target pesticides on the admicellar sorbent involved hydrophobic and π-cation interaction, while pesticides were eluted from the admicellar SPE column using only 750 μL of methanol. LODs and LOQs of the proposed method were 0.005–140 and 0.02–600 μg L−1, respectively. The analytes were effectively concentrated with the enrichment factors between 5 and 551. The developed on-line admicellar SPE-HPLC system was successfully applied to the determination of carbamate pesticides in ten environmental water samples from different sources. Recoveries of spiked samples at a concentration of 0.1–5 mg L−1 ranged from 77 to 111 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamilton DJ, Ambrus A, Dieterle RM, Felsot AS, Harris CA, Holland PT, Katayama A, Nurihara N, Linders J, Unsworth J, Wong S-S (2003) Pure Appl Chem 75:1123–1155

    Article  CAS  Google Scholar 

  2. Santaladchaiyakit Y, Srijaranai S, Burakham R (2012) J Sep Sci 35:2373–2389

    Article  CAS  Google Scholar 

  3. Vichapong J, Burakham R, Srijaranai S, Grudpan K (2011) J Sep Sci 34:1574–1581

    Article  CAS  Google Scholar 

  4. Vichapong J, Burakham R, Srijaranai S, Grudpan K (2011) Talanta 84:1253–1258

    Article  CAS  Google Scholar 

  5. Song X-Y, Shi Y-P, Chen J (2013) Food Chem 139:246–252

    Article  CAS  Google Scholar 

  6. Guo L, Lee HK (2012) J Chromatogr A 1235:1–9

    Article  CAS  Google Scholar 

  7. Gou Y, Eisert R, Pawliszyn J (2000) J Chromatogr A 873:137–147

    Article  CAS  Google Scholar 

  8. Ma X, Wang J, Wu Q, Wang C, Wang Z (2014) Food Chem 157:119–124

    Article  CAS  Google Scholar 

  9. Vichapong J, Burakham R (2012) Anal Methods 4:2101–2108

    Article  CAS  Google Scholar 

  10. Moral A, Sicilia MD, Rubio S, Pérez-Bendito D (2008) Anal Chim Acta 608:61–72

    Article  CAS  Google Scholar 

  11. Lee J, Lee HK (2011) Anal Chem 83:6856–6861

    Article  CAS  Google Scholar 

  12. Seebunrueng K, Santaladchaiyakit Y, Srijaranai S (2013) Anal Methods 5:6009–6016

    Article  CAS  Google Scholar 

  13. Moreno-González D, Huertas-Pérez JF, García-Campaña AM, Bosque-Sendra JM, Gámiz-Gracia L (2013) J Chromatogr A 1315:1–7

    Article  Google Scholar 

  14. Anumol T, Snyder SA (2015) Talanta 132:77–86

    Article  CAS  Google Scholar 

  15. Garcia-Galan MJ, Diaz-Cruz MS, Barceló D (2010) Talanta 81:355–366

    Article  CAS  Google Scholar 

  16. Jansson C, Kreuger J (2010) J AOAC Int 93:1732–1747

    CAS  Google Scholar 

  17. Zhao X, Cai Y, Wu F, Pan Y, Liao H, Xu B (2011) Microchem J 98:207–214

    Article  CAS  Google Scholar 

  18. Stipičević S, Sekovanić L, Drevenkar V (2014) Appl Clay Sci 88–89:56–62

    Google Scholar 

  19. Xie J, Meng W, Wu D, Zhang Z, Kong H (2012) J Hazard Mater 231–232:57–63

    Article  Google Scholar 

  20. Augusto F, Hantao LW, Mogollón NGS, Braga SCGN (2013) Trends Anal Chem 2013(43):14–23

    Article  Google Scholar 

  21. Saitoh T, Yamaguchi M, Hiraide M (2011) Water Res 45:1879–1889

    Article  CAS  Google Scholar 

  22. Bryleva EY, Vodolazkaya NA, Mchedlov-Petrossyan NO, Samokhina LV, Matveevskaya NA (2006) Funct Mater 13:662–668

    CAS  Google Scholar 

  23. Luque N, Rubio S (2012) J Chromatogr A 1248:74–83

    Article  CAS  Google Scholar 

  24. Liu Q, Shi J, Wang T, Guo F, Liu L, Jiang G (2012) J Chromatogr A 1257:1–8

    Article  CAS  Google Scholar 

  25. Shahbazi A, Gonzalez-Olmos R, Kopinke F-D, Zarabadi-Poor P, Georgi A (2014) Sep Purif Technol 127:1–9

    Article  CAS  Google Scholar 

  26. Karapamagioto HK, Sabatini DA, Bowman RS (2005) Water Res 39:699–709

    Article  Google Scholar 

  27. Li Z, Burt T, Bowman RS (2000) Sci Technol 34:3756–3760

    Article  CAS  Google Scholar 

  28. Li C, Dong Y, Wu D, Peng L, Kong H (2011) Appl Clay Sci 25:353–357

    Article  CAS  Google Scholar 

  29. Patdhanagul N, Srithanratana T, Rangsriwatananon K, Hengrasamee S (2010) Microporous Mesoporous Mater 131:97–102

    Article  CAS  Google Scholar 

  30. Arnnok P, Burakham R (2014) J Braz Chem Soc 25:1720–1729

    CAS  Google Scholar 

  31. Wang J, Hansen EH (2003) Trends Anal Chem 22:836–846

    Article  CAS  Google Scholar 

  32. Gangula S, Suan SY, Conte ED (2010) Microchem J 95:2–4

    Article  CAS  Google Scholar 

  33. Iijima K, Saka M, Odanaka Y, Matan O (1997) J Pesticide Sci 22:17–26

    Article  CAS  Google Scholar 

  34. The Association of Official Analytical Chemists (2012) Guidelines for Standard Method Performance Requirements, Appendix F. AOAC Official Methods of Analysis, Rockville

    Google Scholar 

  35. The United States Environmental Protection Agency (2007) EPA method 8318A, N-methylcarbamates by high performance liquid chromatography (HPLC), Revision 1

  36. The United States Environmental Protection Agency (1996) EPA method 3520C, continuous liquid-liquid extraction, Revision 3

  37. Nogueira JMF, Sandra T, Sandra P (2003) J Chromatogr A 996:133–140

    Article  CAS  Google Scholar 

  38. El Atrache LL, Sghaier RB, Kefi BB, Haldys V, Dachraoui M, Tortajada J (2013) Talanta 117:392–398

    Article  Google Scholar 

  39. García de Llasera MP (2001) Bernal-González M. Water Res 35:1933–1940

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Royal Golden Jubilee (RGJ) Ph.D. program (Grant no. PHD/0082/2554). R. Burakham thanks the Thailand Research Fund (TRF) and Khon Kaen University for supporting the TRF Research Scholar (Grant no. RSA5580004). Materials Chemistry Research Center and the Center for Innovation in Chemistry (PERCH-CIC) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodjana Burakham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnnok, P., Patdhanagul, N. & Burakham, R. An On-line Admicellar SPE-HPLC System Using CTAB-Modified Zeolite NaY as Sorbent for Determination of Carbamate Pesticides in Water. Chromatographia 78, 1327–1337 (2015). https://doi.org/10.1007/s10337-015-2965-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2965-0

Keywords

Navigation