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specific types of tissue, whole organs, or sub-regions of 
organs (e.g., liver or lung segments or muscle groups). In 
patients, areas with pathologies as tumours or inflammation 
can also be relevant for segmentation.

Clinical imaging, with its long tradition of radiogra-
phy, works largely with the eyes and brains of well-trained 
radiologists. On the other hand, quantitative assessment of 
relevant clinical findings is important, as the description is 
thus reader-independent, and allows for reliable assessment 
of disease progression and treatment response in follow-up 
examinations. Thus, the long-standing practice has been 
that lesion dimensions are roughly measured using a ruler, 
and the number of visible lesions are counted manually.

Recent years have witnessed a paradigm change regard-
ing the role of medical imaging in the clinic. Imaging is 
seen not only as a diagnostic tool for revealing diseases in 
a qualitative or semi-quantitative manner; rather, imaging 
techniques can and should be used for quantitative charac-
terization of tissue volume or shape, chemical composition, 
and functional activity, if those data are helpful for answer-
ing clinical questions. Furthermore, studies are investi-
gating imaging-related “biomarkers” that are useful for 
describing the activity of individual diseases [1–3].

The quality and reliability of the results of segmentation 
techniques depends not only on the computational algo-
rithms applied, but also on the imaging modality, the set-
up, and the parameters chosen for data recording. Medical 
image segmentation usually works well in two-dimensional 
or three-dimensional data sets with high contrast between 
the tissue classes to be separated. High spatial resolution is 
helpful for avoiding partial volume effects. The noise level 
in the images should be low, and the grey values of the spe-
cific tissue classes in data sets should be independent of 
their spatial position. Furthermore, artificial signals which 
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The development of post-processing tools for medical 
images is an interdisciplinary research field at the intersec-
tion of medicine, physics, and computer science. Computa-
tional techniques for the automatic assessment of features 
of body parts from image data sets become increasingly 
important when high numbers of large data sets are 
recorded.

Tissue segmentation aims at partitioning an image into 
segments corresponding to different tissue classes. In 
healthy subjects, these classes are biologically defined as 
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are not adequately correlated to structures in the body part 
examined should be absent.

Common imaging modalities useful for recording tomo-
grams or isotropic three-dimensional data in human exami-
nations include computed tomography (CT), magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), and ultrasound (US). PET alone (without congruent 
CT or MR images) provides relatively low spatial resolu-
tion [4], and US images often show strong artefacts that 
may not be adequately handled by automatic segmentation 
software. Some structures, however, such as the faces of 
fetuses, can often be reconstructed well [5]. CT based on 
X-ray absorption provides a favorable basis for automatic 
segmentation of several tissue classes, as grey values are 
given in well-defined Hounsfield units that directly reflect 
X-ray absorption in the tissue [6]. Thus, picture elements 
in CT scans can be attributed to several tissue classes 
(e.g., soft tissue or bone) using relatively simple threshold 
approaches. Angiographic CT data sets (including coronary 
angiography) recorded after intravenous administration 
of contrast media can be successfully reconstructed using 
maximum-intensity projection techniques (MIPs) [7], but 
higher-quality and better visualization of the spatial rela-
tion between blood vessels and other body parts is achieved 
by surface reconstruction after tissue segmentation [8]. 
Related post-processing procedures are available on mod-
ern CT consoles working fully automatically. On the other 
hand, the recording of highly resolved data sets by CT is 
problematic because of inevitable radiation exposure (espe-
cially for multiple scanning sessions in functional studies), 
and soft tissue contrast of CT data is inherently inferior to 
that of MRI.

MRI is clearly the preferred imaging modality for 
most cohort studies with healthy volunteers and for stud-
ies requiring optimal soft tissue contrast. On the one hand, 
MRI, with its multiple forms of contrast weighting and 
its sensitivity to diffusion, perfusion, and chemical com-
position of tissues, is a highly attractive alternative. On 
the other hand, some characteristics of MR images create 
greater difficulty for automatic tissue segmentation than CT 
data sets. First, grey values in MR images are proportional 
to signal intensities recorded by the receiver coils rather 
than the signal intensity generated inside the tissue. Espe-
cially when using surface coils or coil arrays for recording 
sensitive data, one finds clearly variable grey values in the 
same image for a given type of tissue, depending on the 
distance of the tissue site from the receiver coils. A second 
factor (especially for higher field strength) is the occur-
rence of spatially dependent excitation flip angles, leading 
to non-uniform contrast weighting in MR images [9]. Fur-
thermore, although different types of contrast weighting in 
MRI offer many opportunities for differentiating various 
types of tissue, several contrast weighting techniques must 

often be combined to achieve reliable differentiation of all 
desired tissue classes [10].

Distinguishing anatomically defined tissues areas with 
(nearly) equal composition and signal behaviour is an espe-
cially difficult task. Segmentation of different lung lobes or 
liver lobes or the identification of specific muscle groups 
surrounded by other muscles thus requires the inclusion of 
anatomical pre-knowledge in the segmentation algorithms 
[11].

Various methodical approaches have been developed 
and applied over the years for proper segmentation in MR 
images. It began with basic threshold- and clustering-based 
techniques, which were complemented by advanced algo-
rithms incorporating more anatomical a priori information 
into the segmentation task. These developments have led 
to more adaptable and appropriate problem solution, and 
have enabled the analysis of complex image structures in 
two- and three-dimensional data sets. Automatic analysis 
of dynamic and real-time datasets has also become feasible 
[12].

1. The first medical image segmentation approaches 
were  based largely on user-specified signal thresh-
olds. Expansions of these manual threshold-based 
algorithms attempted to automatically determine the 
optimal threshold value by introducing additional 
information, e.g., the intra- and inter-class variance of 
grey values such as in Otsu’s method [13], or by refor-
mulating the segmentation task as a clustering prob-
lem with distance metrics (k-means) or distribution 
models (expectation maximization). However, in MRI, 
all segmentation algorithms must deal with artefacts, 
intensity inhomogeneities, and possible low-contrast 
or noisy images, which can limit the capabilities of the 
algorithms applied.

2. To overcome these challenges and to increase accu-
racy and robustness, a number of techniques directly 
incorporate knowledge regarding the anatomical struc-
ture or other abstract a priori information such as in 
model-based approaches [14]. Clustering improves the 
smoothness of the segmentation result by taking the 
spatial neighborhood into account [15], thereby sup-
pressing the effects of noise. In order to correct inten-
sity inhomogeneities, the bias field of the image can be 
estimated before or even within the segmentation task.

3. In atlas-based segmentation, a few datasets are usually 
labelled by clinical experts to obtain a reference atlas 
dataset, which can be fitted directly or in a warped rep-
resentation to the current unknown MR image by mini-
mization of an energy function or other optimization 
procedures [16, 17]. The information in the reference 
atlases can be consolidated into a single atlas (statisti-
cal atlas) or can be used in a multi-atlas approach with 
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majority voting. One drawback of atlas-based segmen-
tation is the potential for inaccurate reference atlases, 
which might bias the solution. Other shape-based 
methods rely on templates that can be created from 
reference datasets. The template represents the starting 
point of procedures, leading to iterative adjustments to 
the new image in active-shape models or active-appear-
ance models. The combination of various techniques 
results in hybrid methods that avoid the disadvantages 
of individual approaches.

4. In addition to fully automatic segmentation, some tech-
niques enable interactive segmentation of tissues in the 
clinical routine based on a user-provided coarse initial 
segmentation or seed points. With active-contour mod-
els, the boundary of the initial course segmentation 
can be iteratively shifted to the real object boundary, 
resulting in refinement of the solution by minimizing 
error metrics. Seed points provide starting points for a 
region-growing or class-labelling algorithm for classi-
fication of unlabelled image points. A clear advantage 
here is that the segmentation process can be super-
vised by the operating expert. Thus a reliable solution 
is guaranteed, often with an implementation-dependent 
possibility to immediately correct the segmentation 
results [18, 19].

The effective application of tissue segmentation in MRI 
is steadily growing. Quantitative assessment of tissue cross-
sectional data from two-dimensional MRI and volumes of 
anatomical structures in isotropic three-dimensional data 
sets have been shown to be helpful in many areas of medi-
cal research, and results can be used as biomarkers for dis-
eases. For example, metabolic studies have shown high cor-
relations between the individual amount of visceral fat and 
insulin resistance [20]. Examinations in Alzheimer patients 
have revealed that volumetric analysis of the hippocampus 
provides a reliable imaging-based biomarker for character-
izing the disease [21]. A further application of tissue seg-
mentation is the automatic assessment of interesting tis-
sue properties as perfusion or diffusion. For this task, data 
with different (anatomical and functional) contrasts must 
be recorded and registered, especially when body regions 
with physiological motion (breathing or cardiac action) are 
involved [22]. Improved visualization of angiograms or the 
(semi)automatic separation of single arteries or differen-
tiation of arterial and venous vessels can be supported by 
adapted segmentation strategies [23].

This topical issue on tissue segmentation covers review 
papers on both technical aspects of automatic and semi-
automatic tissue segmentation and major current fields of 
application for different organ systems, written by experts 
in their fields. Seven original papers were selected that pro-
vide insight into interesting current research areas.

The work by Wang et al. [24] provides an up-to-date 
overview of the principles and methods commonly applied 
to achieve superior tissue segmentation results in MRI. The 
authors report on the impacts of MR image acquisition on 
segmentation outcome and the principles of selecting and 
exploiting segmentation techniques. Exemplary applica-
tions are visualized for better understanding.

The review article by Helms [25] reports on concepts of 
voxel-based and surface-based segmentation of different 
regions of the brain. Special emphasis is given to the typi-
cal contrast features and morphological constraints of cor-
tical and subcortical grey matter. The paper by De Leener 
et al. [26] reviews the existing methods for spinal cord seg-
mentation, including intensity-based, surface-based, and 
image-based approaches. Recommendations for validating 
spinal cord segmentation techniques are included, as this is 
considered to be especially important in this field.

Cardiac segmentation for computer-aided functional 
analysis of cardiac disease has become popular over the 
past two decades. The review article written by Peng et al. 
[27] illustrates and discusses automatic and semiautomatic 
approaches for delineation of the heart in four-dimensional 
MRI data. The original article contributed by Rusinek et al. 
[28] reports on applications of a semi-automatic procedure 
for the assessment of kidney volumes in ten diabetic and 
ten healthy subjects.

The review article contributed by Pedoia et al. [29] pre-
sents some of the techniques proposed in the recent lit-
erature that have been adopted in clinical studies for joint 
and musculoskeletal tissue analysis, in arthritis patients 
in particular. The authors discuss the MRI sequences and 
image processing algorithms most commonly used to 
address segmentation challenges. Three original papers on 
musculoskeletal applications are included in this special 
issue as well. The work of Sdika et al. [30] is dedicated 
to automatic assessment of individual muscles in the rat 
leg using a multi-atlas segmentation method. Karampatos 
et al. [31] tested the software package “sliceOmatic” in 21 
human subjects to assess the reliability of its application in 
the lower leg. A study by Le Troter et al. [32] reports on 
automated segmentation of human thigh muscles and sub-
sequent quantification of fatty infiltration in these muscles.

Assessment of locations and volumetric assessment of 
white and brown adipose tissue has become very impor-
tant in recent years for metabolically oriented animal and 
human studies. The review article by Hu et al. [33] on seg-
mentation techniques for adipose tissue gives the reader a 
solid basis of understanding regarding recent segmenta-
tion activities in this field of research. The authors discuss 
image post-processing techniques and emerging atlas-
based automated segmentation techniques. The first origi-
nal paper, by Bhanu Prakash et al. [34], reports on auto-
mated segmentation of brown fat in mice at 9.4 Tesla based 
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on image data recorded with multi-point Dixon fat–water 
separation. The second paper [35], from the same group, is  
aimed at the reliable assessment of several different tissue 
types in rats using multi-parametric MRI with assessment 
of fat fraction, T2, and T2* values.

Last but not least is the paper from Ruhlmann et al. [36], 
which deals with proper tissue segmentation based on MRI 
data for PET attenuation correction in clinical oncologic 
MR-PET examinations. The authors reveal the negative 
effects of gadolinium contrast media on tissue segmenta-
tion based on Dixon imaging.

The interdisciplinary field of tissue segmentation might 
be seen as somewhat “exotic” by many “traditional” MR 
physicists and clinicians. However, adaption of segmenta-
tion techniques to the specific peculiarities of MRI and the 
adaptation of MR signal recording to the demands of seg-
mentation algorithms is a truly challenging research field. 
So let us venture into this new field and contribute through 
studies and related work.
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