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Abstract
Objective To explore the possibilities of proton spectroscopic
imaging (1H-MRSI) of the human brain at 7 Tesla with adi-
abatic refocusing pulses.
Materials and methods A combination of conventional slice
selective excitation and two pairs of slice selective adiabatic
refocusing pulses (semi-LASER) results in the formation of
an echo from a localized volume. Depending on the used
radio frequency (rf) coil efficiency and available rf power,
the duration of the adiabatic full passage pulses (AFPs) is
adapted to enable echo times down to 50 ms (head coil) or
30 ms (local surface coil).
Results An AFP duration of 5 ms with a corresponding band-
width of 5.1 kHz resulted in a chemical shift displacement
error of 23% over 3.8 ppm at 7T. Using a local surface coil
and an echo time down to 30 ms, we detected not only the
three main metabolites (NAA, Cr and Cho), but also cou-
pled signals from myo-inositol and glutamate/glutamine in
spectra from 0.14 cc voxels with linewidths down to 10 Hz
in 10 min measurement time.
Conclusions The semi-LASER pulse sequence enables 1H-
MRSI of the human brain at 7T for larger parts of the brain
as well as small localized areas with both a high spectral and
spatial resolution.

Part of this work has been presented at the ISMRM-ESMRMB joint
meeting in 2007 in Berlin, Germany, abstract number 43.
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Introduction

Proton MR spectroscopic imaging (MRSI) [1] is the method
of choice to detect the spatial distribution of metabolites in
the human brain. As both the signal-to-noise ratio (SNR) and
chemical shift dispersion are proportional to the main mag-
netic field strength, the highest available field strength should
be used for best performance. 7 Tesla (T) MR systems for
human applications are becoming available to the scientific
community, with most of the initial research efforts focus-
ing on studies of the brain. Apart from the advantages, some
known limitations of human studies at this field strength need
to be addressed.

First of all, the linear increase in chemical shift dispersion
(in Hz) with field strength forces the bandwidth of excita-
tion and refocusing pulses to increase with field strength,
too, maintaining an acceptable chemical shift displacement
error (CSDE). This CSDE can be defined as the difference in
location of the centre of the excitation or refocusing slices of
two resonances with a different chemical shift, proportional
to their slice thickness. The combination of radio frequency
(rf) power and rf coil-efficiency dictate the duration (and
obviously amplitude) of excitation and refocusing pulses,
and thereby their corresponding bandwidths. Already at 3T,
rf peak powers of up to 35 kW are insufficient to obtain an
acceptably low CSDE for refocusing pulses (like MAO opti-
mized 180 degree pulses [2]) using a body rf coil for trans-
mitting. When assuming an equal rf setup for 7T (which
is not even common), the conventional rf pulse durations
need to increase, leading to smaller instead of larger band-
widths, causing an unacceptably large CSDE. The CSDE of a
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Mao-optimized 180◦ pulse [2] with a hypothetical duration of
10 ms (already challenging duration at 7T) and correspond-
ing bandwidth of 0.52 kHz would be larger than 217% over
3.8 ppm, the spectral range of interest in proton spectroscopy
from water at 4.7 ppm to lipid CH3 at 0.9 ppm.

Secondly, the transmit B1 field is inhomogeneous, lead-
ing to poor slice selection profiles when using conventional
rf pulses. Accurate volume selection using slice selective rf
pulses is a prerequisite for 1H-MRSI of the brain in order
to exclude contamination with large lipid signals from the
skull, or water signals from poorly shimmed regions outside
the selected volume. Conventional slice selective rf pulses
are optimized for the desired flip angles within the slice and
negligible flip angles outside the slice using the non-linear
Bloch equations [3]. Large deviations from the intended flip
angle due to inhomogeneous transmit B1 fields not only cause
signal attenuation, but may also increase the side lobes of the
slice profile, leading to unwanted non-zero flip angles out-
side the selected volume [4,5]. In addition, when strongly
coupled spin systems are observed in spin echo experiments,
the spectral shape of the corresponding signals can vary,
depending on the local flip angle of the refocusing pulses
[6].

Thirdly, rf pulses at higher frequencies deposit more rf
power. All pulse sequences need to be designed in such a way
that the head or body absorbs no more than the correspond-
ing limit in specific absorption rate (SAR) of electromagnetic
energy. This limits both the amount of rf pulses per unit time,
and the amplitudes and durations of these rf pulses.

Two of the afore-mentioned limitations can be handled by
the use of adiabatic pulses. These pulses have relatively high
bandwidths and their flip angles are insensitive to transmit
B1-inhomogeneities. In addition, adiabatic refocusing pulses
have sharp slice selection profiles to produce a localized spin
echo. With the semi-LASER pulse sequence [7]—a hybrid
of conventional excitation and full localization by adiabatic
selective refocusing [8]—the volume of interest (VOI) of the
MRSI experiment is defined with conventional slice-selec-
tive excitation and two orthogonal pairs of slice-selective
adiabatic refocusing pulses. After a sharp definition of the
VOI, accurate localization of metabolite signals is performed
with a combination of elliptical k-space sampling and apo-
dization of k-space before Fourier transformation, reducing
voxel bleed to a minimum, while sensitivity is maintained
[9].

In this work, we explore the possibilities of the semi-
LASER pulse sequence for 3D 1H-MRSI of the human brain
at 7T with a volume head-coil and with a local surface coil.
Localization and excitation profiles of the pulse sequence
were tested with phantoms. By adapting adiabatic rf pulse
durations to an efficient local transmit receive coil, one can
perform 3D 1H-MRSI of a small part of the brain with an echo

time of 30 ms with an acceptable CSDE, remaining within
SAR limits.

Materials and methods

Subjects and instrumental set-up

Two healthy, fully informed and aware volunteers were exam-
ined on a 7T whole body MR system (Siemens Medical Solu-
tions, Erlangen, Germany): one with a transmit receive circu-
larly polarized (CP) head coil (Invivo corporation, Orlando,
USA), and the other with a home-built transmit receive sur-
face coil with a diameter of 6 cm.

Pulse sequence

The rf core of the semi-LASER pulse sequence [7] consists
of slice-selective excitation of the spins with a Shinnar–Le-
Roux optimized 90◦ pulse and perpendicular slice selective
refocusing of the spins by two pairs of adiabatic full passage
(AFP) 180◦ pulses. The amplitude and frequency modula-
tions (γ B1(t) and �ω(t)) of the second-order hyperbolic
secant adiabatic pulses with duration Tp were created with
the following equations using a time bandwidth product of
26 (10):

γ B1(t) = γ Bmax
1 sec h(βτ 2) (1)

�ω(t) = 26π

Tp

∫
sec h2(βτ 2)dτ (2)

with τ = 2t
/

Tp defined in the interval –1 ≤ τ ≤ 1, and
sech(β) = 0.01. When used in pairs the coherent phase evo-
lution during the first adiabatic pulse is exactly restored with
the second pulse, resulting in in-phase refocusing [8]. The
rephasing gradient compensating the dephasing second half
of the slice-selection gradient during excitation is merged
with the third crusher gradient in the corresponding direction.
Positioning the crusher gradients, which suppress spurious
echoes and unwanted FIDs, is done symmetrically around
every AFP in one direction. Around the final AFP pulse
large crusher gradients are applied in all directions. Phase-
encoding gradients in 2 or 3Ds are superimposed on the final
crusher gradient before signal reception (Fig. 1).

The water signal is suppressed by a slightly modified WET
(water suppression enhanced through T 1 effects) scheme
[11]. With the transmit receive surface coil, the maximum
available rf transmit power easily allowed an AFP pulse dura-
tion of 5.0 ms, with a resulting bandwidth of 5.1 kHz and a
minimum pulse sequence echo time of 30 ms. Shorter pulse
durations with corresponding higher amplitudes would cause
large experimental repetition times to remain within SAR
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Fig. 1 The core of the semi-LASER spectroscopic imaging pulse sequence. Crusher gradients are positioned around every adiabatic full passage
(AFP) pulse, with the largest pair around the final AFP pulse. Phase-encoding gradients in 2 or 3Ds are superimposed on the final crusher gradient

limits. The AFP pulse duration for the CP head coil was
10 ms, limited by maximum rf transmit power, resulting in a
bandwidth of 2.5 kHz and an echo time down to 50 ms.

Phantom measurements

A spherical phantom (diameter 17 cm) containing BAYOL-
oil (Siemens Medical Solutions) with a single resonant signal
was measured with the CP head coil. Three perpendicular
localizing gradient echo images (repetition time (TR) 20 ms,
echo time (TE) 5 ms, voxel size 1.1 × 1.1 × 10 mm, field
of view (FOV) 280 × 280 mm) were sufficient to serve as
background images to localize the MRSI matrix. The 2D
semi-LASER experiment had the following parameters: car-
rier frequency at the oil singlet signal, FOV 144 × 144 mm,
matrix size 20 × 20, volume of interest (VOI) 80 × 80 mm,
slice thickness 10 mm (selected with the excitation pulse),
acquisition bandwidth 2,000 Hz, 512 spectral data points, 1
average with an elliptical k-space sampling, TR 1.89 s, TE
51 ms, total measurement time 8 min. After Hamming fil-
tering and zero-filling to a 32 × 32 k-space matrix, Fourier
transformation of spatial and spectral dimensions was done
with the Siemens Syngo software. The oil singlet was fitted
with a Lorentzian line shape.

Volunteer measurements

For an anatomical overview of the brain of the volunteer
we acquired axial high resolution T2-weighted turbo spin
echo (TSE) images (effective TE 89 ms, TR 4.05 s, field of
view FOV 220 × 197 mm, matrix size 448 × 322, resolu-
tion 0.49 × 0.61 mm, 11 slices, thickness 3 mm) with the CP
head coil. Hyperechoes were used to reduce rf power depo-

sition [12]. The subsequent 2D MRSI data set was acquired
with these axial T2-weighted images as background images.
Slice selection of the axial plane was done with the exci-
tation pulse. Parameters for the MRSI experiment: carrier
frequency at 3.0 ppm, TR 1.75 s, TE 50 ms, FOV 192 × 160
mm, matrix size 24 × 20, VOI 90 × 70 mm, slice thickness
8 mm, acquisition bandwidth 2,000 Hz, 1,024 spectral data
points, 1 average with an elliptical k-space sampling, total
measurement time 9 min. An unsuppressed water reference
data set was also acquired to illustrate the CSDE of the water
signal. After an automated map shim of the VOI, the lin-
ear shim values were further adjusted manually towards the
smallest linewidth of the VOI. With the TR of 1.75 s these
measurements were done at the system calculated SAR limit
for the head of 3.2 W/kg.

In the examination of the second volunteer we positioned
a surface coil over a part of the temporal and parietal lobe
of the brain, approximately 5 cm behind and above the left
ear. The volunteer was measured in right lateral position in
the magnet. The examination consisted of a dual echo time
fast spin echo imaging series (TE 11 and 95 ms, TR 2 s), fol-
lowed by 3D MRSI with the semi-LASER sequence with the
following parameters: carrier frequency at 2.7 ppm, TR 2.4 s,
TE 30 ms, FOV 363 mm3, matrix size 103, VOI 203 mm3,
acquisition bandwidth 2,000 Hz, 1,024 spectral data points,
1 average with an elliptical k-space sampling, total measure-
ment time 10:22 min. The 90◦ pulse was chosen to selectively
excite the plane parallel to the coil conductors; the refocus-
ing pulses were slice selective in the other two directions.
Concurrent temperature measurements at the skin closest to
the capacitors of the coil with two fiber-optic thermometers
guaranteed a safe use of this coil. The measured temperature
increase was never more than 0.5◦C.
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Fig. 2 Localization and excitation profile of semi-LASER 1H-MRSI
in an oil phantom at 7T. The white box in a represents the VOI of the
MRSI experiment, the blue box is the size of the FOV. The gradient

echo image is overlaid with a color-coded image of the integral of a
Lorentzian fit to the oil resonance, showing an exact match of excited
signal and VOI

Fig. 3 2D 1H-MRSI of the brain of a healthy volunteer at 7T. In a the
2D FOV of the MRSI matrix is outlined in yellow (VOI in white) and
overlaid on a transverse T2-weighted TSE image. In the sagittal image
inset, the position of this slice in the brain is indicated. The spectra from
voxels inside the blue box are overlaid onto the T2-weighted image in

a spectral map b with range 1.5–4.3 ppm. The spectrum of the centre
voxel of the spectral map (blue voxel) is enlarged in c. Color-coded
overlays of the integral of Lorentzian fits to n-acetylaspartate (NAA),
choline (Cho), creatine/phosphocreatine (Cr) and water are shown in
d to g

From all MRSI measurements the spatial dimensions were
filtered with a Hamming filter and zerofilled to the nearest
power of two before Fourier transformation. Lorentzian line
fitting to either the unsuppressed water signal or metabolite
signals in the spectra was performed with the Siemens Syngo
software.

Results

As the oil phantom did not contain electrolytes, it did not
disturb B1 homogeneity. The accurate localization and slice

selection of the semi-LASER sequence in this situation is
illustrated by an overlay of the integral of the Lorentzian line
fit to the oil resonance of every voxel over the gradient echo
localizer images (Fig. 2b).

The AFP pulse duration attainable with the CP head coil
was 10 ms (corresponding to γ B1 = 650 Hz), the corre-
sponding bandwidth of the pulse was 2.5 kHz, resulting in a
CSDE of 45% over 3.8 ppm. The water signal slice locations
(offset 1.7 ppm from carrier frequency) were displaced by
20% of their thickness (Fig. 3g). Although the non-uniform
reception profile of the coil resulted in increased signal inten-
sities in the centre of the head (Fig. 3b, d, g), the 1 H-range of
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interest from the lactate signal at 1.3 ppm to the myo-inositol
signal at 4.1 ppm was equally excited in 67% of the voxels
in both directions of the 2D matrix (Fig. 3b). The linewidth
at half maximum of the magnitude spectrum of the total VOI
was 29 Hz, phased spectra of individual voxels had varying
linewidths down to approximately 9 Hz (voxels in centre of
the head, Fig. 3c).

Imaging with conventional pulse sequences with the local
surface coil is a challenge. As none of the used rf pulses are
adiabatic, only a narrow band at a specific distance from the
coil conductors of the surface coil experiences the desired
flip angle for the pulses in the used spin echo sequence
(Fig. 4b, c). With this coil, AFP pulse durations of the semi-
LASER spectroscopic imaging sequence could be reduced
to 5 ms (corresponding to γ B1 = 1, 300 Hz), resulting in
bandwidths of 5 kHz, and a CSDE of 23% over 3.8 ppm.
Although excitation with semi-LASER was non-adiabatic,
we still managed to collect spatially resolved spectra from
small voxels down to 3.6 × 3.6 × 3.6 mm3 (before apodi-
zation) from a box close to this coil (Fig. 4d, e). The true
resolution of this measurement including a broadening fac-
tor of 1.78 is best approximated by a sphere with a volume of
0.14 cc. Spectral quality is excellent, common signals from
n-acetylaspartate (NAA), choline (Cho) and creatine/phos-
phocreatine (Cr/PCr) are present throughout the VOI, but
also myo-inositol (Ins) and glutamate/glutamine (Glu/Gln)
signals can be discerned in these small voxels (Fig. 4f). Resid-
ual lipid signals were present in some voxels, but were small
enough not to interfere with the NAA signal at 2.04 ppm.
The linewidth at half maximum of the magnitude spectrum
of the total VOI was 28 Hz, phased spectra of individual
voxels had varying linewidths down to approximately 10 Hz
(Fig. 4f).

Discussion

In this study, we present the first results of 1H-MRSI of the
human brain with adiabatic refocusing pulses at 7T. VOI
selection with the semi-LASER sequence keeps the chemi-
cal shift displacement error to an acceptable size. Due to the
available rf power and increased chemical shift dispersion at
7T, slice selection with conventional rf pulses would cause
enormous CSDEs (>217% over 3.8 ppm). The semi-LASER
sequence produces very useful spectra at an echo time of
50 ms over larger regions of the brain with a CP coil, or from
a small part of the brain at TE 30 ms with a surface coil.
Currently, differences in SNR exist over the VOI due to non-
uniform detection as well as non-adiabatic excitation with an
inhomogeneous transmit B1 field. The available RF power,
but even more so the SAR limit for the head in combination
with the need for an acceptable TR and total acquisition time
dictate AFP pulse durations of 10 ms and thereby a minimal
echo time of 50 ms with the CP head coil. Measurements with

a small surface coil with shorter pulse durations decrease the
CSDE and illustrate that some of the current limitations can
be overcome with excitation with a multi-channel transmit–
receive head coil with small coil elements and normalization
for sensitivity. Having multiple channels available for trans-
mission would open possibilities for B1 shimming, reducing
the amount of deposited rf power for acceptable B1 trans-
mit profiles. The size of the part of the brain that can reli-
ably be measured and quantified currently depends on the
non-adiabatic slice-selective excitation pulse. For full brain
applications adiabatic excitation and 3D adiabatic refocusing
could be considered (LASER [8]), but the addition of another
two adiabatic pulses would have two important implications.
The minimal echo time would be prolonged, in the presented
experiments from 30 to at least 40 ms for the surface coil, and
from 50 to 70 ms or more for the CP head coil. Furthermore,
it would also further increase rf power deposition, prolonging
the TR to remain within SAR limits. If adiabatic excitation is
performed at half the power of a single adiabatic refocusing
pulse (i.e., adiabatic half passage) and another pair of AFP
pulses is added for full 3D localization, the amount of depos-
ited rf power with LASER would exceed semi-LASER by
58%, demanding an increase in TR of 58% to remain within
SAR-limits. RF power deposition of a single adiabatic refo-
cusing pulse is ninefold higher than the conventional slice
selective excitation pulse used in this work.

Signals of glutamate, glutamine and myoinositol were
detected in large parts of the VOI, even at the used voxel size
of 0.14 cc. The spectral pattern of these strongly coupled spin
systems will be different in the semi-LASER sequence com-
pared to conventional PRESS. The four adiabatic RF refo-
cusing pulses can reduce antiphase coherence resulting from
J-coupling and therefore improve the spectral shape of cou-
pled spin systems, which has been shown at 3T [13,14]. As
this spectral shape also depends on refocusing pulse angles,
the observed constant shape throughout most of the VOI of
Glu/Gln and Ins was to be expected, as adiabatic refocus-
ing is insensitive to transmit B1 inhomogeneities. A detailed
analysis of the spectral shape itself of these signals is beyond
the scope of this paper. We showed that these signals can be
locally detected in 0.14 cc voxels of a 3D MRSI matrix with
an acceptable CSDE in approximately 10 min at 7T.

Shimming the main magnetic field in the VOI is extremely
important to achieve a high spectral quality. Although in this
study only first order shim values were manually optimized
after an automatic 3D phase map shim of first and second
order, we were able to reach linewidths down to 9 Hz of
phased spectra from individual voxels. When moving from
1.5 to 3T, average linewidths from signals of different metab-
olites and different voxels in an MRSI experiment have been
reported to increase from 3.5 to 6.1 Hz [15]. Our prelimi-
nary data indicate that this increase in linewidth does not
scale linearly with field strength, which has been suggested
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Fig. 4 MRI and 3D 1H-MRSI of a small part of the brain of a healthy
volunteer with a local surface coil at 7T. In an axial gradient echo local-
izer image (a; r,l,a,p is right, left, anterior, and posterior, respectively)
the plane of the spin echo images parallel to the coil conductors (b,
TE 95 ms and c, TE 11 ms) is indicated with the white line. The VOI
of the 3D MRSI matrix is indicated with the white box in a–c. In two
perpendicular spectral maps of the VOI of the 3D MRSI matrix the
spectra are displayed from 1.8 to 4.3 ppm. In a plane perpendicular to
the coil d the signal decreases with distance to the coil, mainly because

of the B1 reception profile. In a plane almost parallel to the coil e, the
intensities of the different signals in the spectra are more homogeneous
throughout the VOI. Voxels largely overlap, as the true size of a voxel is
approximated by a 3.2 mm-radius sphere. The SNR of a single spectrum
of the 3D dataset (location illustrated in g) still allows the identification
of many different metabolite signals f. Spectral postprocessing existed
of apodization (400 ms Hamming window centered at 0 ms), Fourier
transformation and manual zero-order phase correction
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in literature [15,16]. The available SNR at 7T within accept-
able measurement times enables voxel sizes in MRSI to
decrease, which could result in smaller linewidths. Opti-
mized automatic shim algorithms could further improve, or
at least speed up, the shimming procedure before the MRSI
measurement.

Conclusions

We presented 2D and 3D 1H-MRSI of the human brain at
7T with acceptable chemical shift displacement errors. By
moving to smaller coil elements pulse durations can become
short enough to enable 3D localized 1H-MRSI at an echo time
of 30 ms with multiple adiabatic refocusing pulses. With a
CSDE of 30% over 5 ppm an uncontaminated spatial resolu-
tion of 0.14 cc was attained. This opens up the possibility for
detailed spatial metabolic exploration of the human brain at
this field strength.
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