Skip to main content
Log in

Natural products from anaerobes

  • Natural Products - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Natural product discovery in the microbial world has historically been biased toward aerobes. Recent in silico analysis demonstrates that genomes of anaerobes encode unexpected biosynthetic potential for natural products, however, chemical data on natural products from the anaerobic world are extremely limited. Here, we review the current body of work on natural products isolated from strictly anaerobic microbes, including recent genome mining efforts to discover polyketides and non-ribosomal peptides from anaerobes. These known natural products of anaerobes have demonstrated interesting molecular scaffolds, biosynthetic logic, and/or biological activities, making anaerobes a promising reservoir for future natural product discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abken HJ, Tietze M, Brodersen J et al (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103–7118. https://doi.org/10.1128/JB.187.20.7103-7118.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andrianasolo EH, Haramaty L, Rosario-Passapera R et al (2009) Ammonificins A and B, hydroxyethylamine chroman derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. J Nat Prod 72:1216–1219. https://doi.org/10.1021/np800726d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrianasolo EH, Haramaty L, Rosario-Passapera R et al (2012) Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Mar Drugs 10:2300–2311. https://doi.org/10.3390/md10102300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44:573–588. https://doi.org/10.1007/s10295-016-1815-x

    Article  CAS  PubMed  Google Scholar 

  6. Baltz RH (2017) Molecular beacons to identify gifted microbes for genome mining. J Antibiot 70:639–646. https://doi.org/10.1038/ja.2017.1

    Article  CAS  PubMed  Google Scholar 

  7. Baltz RH (2018) Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective. J Ind Microbiol Biotechnol 45:635–649. https://doi.org/10.1007/s10295-017-1999-8

    Article  CAS  PubMed  Google Scholar 

  8. Behnken S, Hertweck C (2012) Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol 96:61–67. https://doi.org/10.1007/s00253-012-4285-8

    Article  CAS  PubMed  Google Scholar 

  9. Behnken S, Lincke T, Kloss F et al (2012) Antiterminator-mediated unveiling of cryptic polythioamides in an anaerobic bacterium. Angew Chemie Int Ed 51:2425–2428. https://doi.org/10.1002/anie.201108214

    Article  CAS  Google Scholar 

  10. Beifuss U, Tietze M (2005) Methanophenazine and other natural biologically active phenazines. In: Mulzer J (ed) Natural products synthesis II. Topics in current chemistry, vol 244. Springer, Berlin, pp 77–113. https://doi.org/10.1007/b96889

  11. Beifuss U, Tietze M, Bäumer S, Deppenmeier U (2000) Methanophenazine: structure, total synthesis, and function of a new cofactor from methanogenic archaea. Angew Chemie Int Ed 39:2470–2472. https://doi.org/10.1002/1521-3773(20000717)39:14%3c2470:AID-ANIE2470%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  12. Blankenfeldt W, Parsons JF (2014) The structural biology of phenazine biosynthesis. Curr Opin Struct Biol 29:26–33. https://doi.org/10.1016/J.SBI.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  13. Blin K, Wolf T, Chevrette MG et al (2017) antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucl Acids Res 45:W36–W41. https://doi.org/10.1093/nar/gkx319

    Article  CAS  PubMed  Google Scholar 

  14. Challinor VL, Bode HB (2015) Bioactive natural products from novel microbial sources. Ann NY Acad Sci 1354:82–97. https://doi.org/10.1111/nyas.12954

    Article  PubMed  Google Scholar 

  15. Chiriac AI, Kloss F, Krämer J et al (2015) Mode of action of closthioamide: the first member of the polythioamide class of bacterial DNA gyrase inhibitors. J Antimicrob Chemother 70:2576–2588. https://doi.org/10.1093/jac/dkv161

    Article  CAS  PubMed  Google Scholar 

  16. Dabard J, Bridonneau C, Phillipe C et al (2001) Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 67:4111–4118. https://doi.org/10.1128/AEM.67.9.4111-4118.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding C, Wu X, Auckloo B et al (2016) An unusual stress metabolite from a hydrothermal vent fungus Aspergillus sp. WU 243 induced by cobalt. Molecules 21:105. https://doi.org/10.3390/molecules21010105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donia MS, Cimermancic P, Schulze CJ et al (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–1414. https://doi.org/10.1016/J.CELL.2014.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dunbar K, Büttner H, Molloy E, Dell M, Kumpfmueller J, Hertweck C (2018) Genome editing reveals novel thiotemplated assembly of polythioamide antibiotics in anaerobic bacteria. Angew Chem Int Ed. https://doi.org/10.1002/anie.201807970

    Article  Google Scholar 

  20. Ezaki M, Muramatsu H, Takase S et al (2008) Naphthalecin, a novel antibiotic produced by the anaerobic bacterium Sporotalea colonica sp. nov. J Antibiot (Tokyo) 61:207–212. https://doi.org/10.1038/ja.2008.30

    Article  CAS  Google Scholar 

  21. Fajardo A, Martínez JL (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11:161–167. https://doi.org/10.1016/j.mib.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez DJ, Lee SW, Hensler ME et al (2010) Clostridiolysin S, a post-translationally modified biotoxin from Clostridium botulinum. J Biol Chem 285:28220–28228. https://doi.org/10.1074/jbc.M110.118554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo C-J, Chang F-Y, Wyche TP et al (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168(517–526):e18. https://doi.org/10.1016/J.CELL.2016.12.021

    Article  Google Scholar 

  24. Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 25:6149–6166. https://doi.org/10.1016/J.BMC.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Hans-Hartwig O, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97:133–172. https://doi.org/10.1021/CR950025U

    Article  CAS  Google Scholar 

  26. Herman NA, Kim SJ, Li JS et al (2017) The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nat Commun 8:1514. https://doi.org/10.1038/s41467-017-01809-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Konno H (2012) Synthesis of bioactive natural products as protein inhibitors. Biosci Biotechnol Biochem 76:1257–1261

    Article  CAS  PubMed  Google Scholar 

  28. Letzel A-C, Pidot SJ, Hertweck C (2013) A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 30:392–428. https://doi.org/10.1039/C2NP20103H

    Article  CAS  PubMed  Google Scholar 

  29. Letzel A-C, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 15:983. https://doi.org/10.1186/1471-2164-15-983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lincke T, Behnken S, Ishida K et al (2010) Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew Chemie 122:2055–2057. https://doi.org/10.1002/ange.200906114

    Article  Google Scholar 

  31. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647. https://doi.org/10.1016/J.COPBIO.2011.01.011

    Article  PubMed  Google Scholar 

  32. Miari VF, Solanki P, Hleba Y et al (2017) In vitro susceptibility to closthioamide among clinical and reference strains of Neisseria gonorrhoeae. Antimicrob Agents Chemother 61:e00929-17. https://doi.org/10.1128/AAC.00929-17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  CAS  PubMed  Google Scholar 

  34. O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22:552–558. https://doi.org/10.1016/J.COPBIO.2011.03.010

    Article  PubMed  Google Scholar 

  35. Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978. https://doi.org/10.1038/nrmicro1288

    Article  CAS  PubMed  Google Scholar 

  36. Petitdemange E, Caillet F, Giallo J, Gaudin C (1984) Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass. Int J Syst Bacteriol 34:155–159

    Article  Google Scholar 

  37. Pidot S, Ishida K, Cyrulies M, Hertweck C (2014) Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. Angew Chemie Int Ed 53:7856–7859. https://doi.org/10.1002/anie.201402632

    Article  CAS  Google Scholar 

  38. Powers JC, Asgian JL, Asgian Ekici OD, Özlem Doǧan Ekici A, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750. https://doi.org/10.1021/CR010182V

    Article  CAS  PubMed  Google Scholar 

  39. Price-Whelan A, Dietrich LEP, Newman DK (2006) Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78. https://doi.org/10.1038/nchembio764

    Article  CAS  PubMed  Google Scholar 

  40. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908

    Article  CAS  PubMed  Google Scholar 

  41. Rischer M, Raguž L, Guo H et al (2018) Biosynthesis, synthesis, and activities of barnesin A, a NRPS-PKS hybrid produced by an anaerobic epsilonproteobacterium. ACS Chem Biol Article ASAP. https://doi.org/10.1021/acschembio.8b00445

    Article  Google Scholar 

  42. Schneider BA, Balskus EP (2018) Discovery of small molecule protease inhibitors by investigating a widespread human gut bacterial biosynthetic pathway. Tetrahedron 74:3215–3230. https://doi.org/10.1016/J.TET.2018.03.043

    Article  CAS  Google Scholar 

  43. Shabuer G, Ishida K, Pidot SJ et al (2015) Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory. Science 350:670–674. https://doi.org/10.1126/science.aac9990

    Article  CAS  PubMed  Google Scholar 

  44. Shi Y, Pan C, Auckloo BN et al (2017) Stress-driven discovery of a cryptic antibiotic produced by Streptomyces sp. WU20 from Kueishantao hydrothermal vent with an integrated metabolomics strategy. Appl Microbiol Biotechnol 101:1395–1408. https://doi.org/10.1007/s00253-016-7823-y

    Article  CAS  PubMed  Google Scholar 

  45. Siklos M, BenAissa M, Thatcher GRJ (2015) Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 5:506–519. https://doi.org/10.1016/J.APSB.2015.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sturgen NO, Casida LE Jr (1962) Antibiotic production by anaerobic bacteria. Appl Microbiol 10:55–59

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Vetriani C, Speck MD, Ellor SV et al (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181. https://doi.org/10.1099/ijs.0.02781-0

    Article  CAS  PubMed  Google Scholar 

  48. Westerik JO, Wolfenden R (1972) Aldehydes as inhibitors of papain. J Biol Chem 247:8195–8197

    CAS  PubMed  Google Scholar 

  49. Woo J-T, Sigeizumi S, Yamaguchi K et al (1995) Peptidyl aldehyde derivatives as potent and selective inhibitors of cathepsin L. Bioorg Med Chem Lett 5:1501–1504

    Article  CAS  Google Scholar 

  50. Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1:718–725. https://doi.org/10.1007/s13238-010-0093-z

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes—a review. Nat Prod Rep 33:988–1005. https://doi.org/10.1039/C6NP00025H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Energy Biosciences Institute, Alfred P. Sloan Foundation, the National Institutes of Health (DP2AT009148), and the Chan Zuckerberg Biohub Investigator Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Zhang.

Additional information

This article is part of the Special Issue “Natural Product Discovery and Development in the Genomic Era 2019”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.S., Barber, C.C. & Zhang, W. Natural products from anaerobes. J Ind Microbiol Biotechnol 46, 375–383 (2019). https://doi.org/10.1007/s10295-018-2086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2086-5

Keywords

Navigation