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Abstract
Mixed integer–real least squares (MIRLS) estimation still has two open scientific problems, i.e., the validation of results and 
computational efficiency for a large number of satellites. This paper presents and discusses a non-conventional approach to 
MIRLS estimation, which belongs to the ambiguity function method (AFM) class. Because the solution is searched for in the 
constant three-dimensional coordinate domain instead of the n-dimensional ambiguity domain, the computational efficiency 
does not depend as much on the number of satellites as it does in conventional MIRLS estimation. Simple numerical pretests 
have shown that the reliability and precision of results from the presented approach and the conventional MIRLS estimation 
are exactly the same. Hence, the presented approach, contrary to AFM, may be treated as MIRLS estimation. Furthermore, 
the presented approach is a few hundred times faster than AFM and may be considered in (near) real-time GNSS positioning. 
In light of the above, the new field of research on MIRLS estimation may be opened.
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Introduction

Precise GNSS positioning requires resolving the so-called 
mixed integer–real problem to determine carrier phase 
integer ambiguities. Teunissen developed and ordered the 
entire family of ambiguity estimators and not only the inte-
ger ones. Three classes may be distinguished in this family. 
Integer (I) estimators constitute the first and most important 
class (Teunissen 1999a). Well-known examples are integer 
least squares (ILS), integer bootstrapping (IB), and integer 
rounding (IR). These estimators recognize to some degree 
the correlation between estimated ambiguities. Integer aper-
ture (IA) estimators belong to the second class (Teunissen 
2003). These estimators unify I-estimation with validation 
and can adopt both integer and real values. Estimators in this 
class differ in applied methods of I-estimation and valida-
tion. Integer equivariant (IE) estimators constitute the third 
and most general class (Teunissen 2002). These estimators 
are always real-valued. Partial (P) estimation is a significant 
expansion of the above ambiguity estimation theory. This 

approach was first introduced in Teunissen et al. (1999). In 
P-estimation, only a subset of ambiguities can be an integer, 
while the other ambiguities must be real-valued. Examples 
of P-estimators are the PI-estimator (Verhagen et al. 2011; 
Brack 2016) and PIA-estimator (Brack 2015). A common 
feature of the above family of estimation is that searching 
for the final solution is performed in the ambiguity domain.

The second category of algorithms includes the very 
first ambiguity estimation technique developed, namely the 
ambiguity function method (AFM). This method was first 
introduced by Counselman and Gourevitch (1981). Remondi 
(1984, 1990) used this method extensively for GPS static 
positioning and also for pseudokinematic positioning. These 
methods utilize certain properties of the chosen trigonomet-
ric functions, which have known values for the integer argu-
ments, without determining ambiguities. The solution search 
proceeds in the coordinate domain.

The last category includes the simplest techniques that 
use C/A or P-code pseudoranges directly to estimate the 
ambiguities of corresponding carrier phase measurements. 
The precision of the pseudoranges is not sufficient to deter-
mine the integer ambiguities, and linear inter-frequency 
combinations are usually used to estimate the ambiguities. 
Computations proceed in the measurement domain.
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In the Gaussian case, the ILS estimator is the optimal 
solution (Teunissen 1999b). The optimality criterion used is 
that of maximizing the probability of correct integer ambigu-
ity estimation, the so-called success rate (SR). However, the 
search for the ILS estimator is time-consuming and hence 
ineffective in (near) real-time applications. This results from 
the occurrence of strong correlations between estimated 
ambiguities. To resolve the problem, numerous methods 
were developed, increasing the computational efficiency of 
the ILS estimation (Frei and Beutler 1990; Teunissen 1995; 
Chen and Lachapelle 1995; Kim and Langley 2000a, b; Xu 
2001, 2012; Chang et al. 2005; Zhou 2011; Jazaeri et al. 
2014). The computational efficiency of the ILS estimation 
methods existing now is satisfactory for (near) real-time 
positioning. Hence, these methods, in particular, the least 
squares ambiguity decorrelation adjustment (LAMBDA), 
are today widely used for the mixed integer–real least 
squares (MIRLS) estimation. However, this applies to only 
up to a dozen or so ambiguities. In the case of a larger num-
ber of ambiguities, the computation time may be too long 
for (near) real-time applications (Jazaeri et al. 2014). It is 
still a challenge for GNSS investigators. The validation of 
estimated ambiguities is a second open problem (Verhagen 
and Teunissen 2013).

We discuss and pretest a completely different approach 
which may open the new field of research on the MIRLS 
estimation. Contrary to the conventional MIRLS estimation, 
the search for a solution occurs in a three-dimensional coor-
dinate domain and is much faster than in AFM. Because the 
solution is searched for in the constant domain instead of the 
n-dimensional domain, the computational efficiency does 
not depend as much on the number of satellites as it does in 
the conventional MIRLS estimation. The presented approach 
is, in fact, a variant of the modified ambiguity function 
approach (Cellmer et al. 2010; Cellmer 2012). Hence, it has 
been conventionally named the modified ambiguity function 
approach-integer least squares (MAFA-ILS).

Mixed integer–real least squares estimation

The equation of double difference (DD) carrier phase meas-
urements may be represented as:

where � is the vector of DD geometrical distances, � is the 
wavelength of the signal, a is the vector of DD carrier phase 
ambiguities, and e is the vector of DD carrier phase meas-
urement errors. It is assumed that biases such as satellite 
ephemeris errors, tropospheric and ionospheric delays and 
ranging errors caused by multipath are absent. Linearization 
of the observation equations, with respect to the unknown 

(1)� = �∕� + � + �

parameters, gives the well-known mixed integer–real linear 
model:

where y is the vector of ‘observed minus computed’ DD car-
rier phase measurements, A and B are the design matrices, 
b is the vector that contains the increments of the unknown 
baseline components, Zn is the space of integers, R3 is the 
space of reals, �2

0
 is the variance factor, and Qy and Cy are 

the cofactor and covariance matrix of DD carrier phase 
measurements, respectively. In order to solve for this sys-
tem of equations, the constrained LS principle is applied:

where �̂ and �̂ are the LS estimate of e and a, respectively, 
and ⌣� is the ILS estimate of a. The final constrained baseline 
solution has the following form:

where �̂ is the LS estimate of b. The ILS estimation of ambi-
guities is the basic task. Unfortunately, the real-valued LS 
estimator of ambiguities is usually highly correlated, and its 
confidence region is usually extremely elongated. Hence, 
finding the ILS solution may be extremely time-consuming. 
As it has already been mentioned, the ambiguity search 
space is most often reduced to increase the computational 
efficiency. The integer ‘decorrelation’ plays a significant 
role. The newly transformed ambiguities are almost inde-
pendent, and the search for the ILS solution is then relatively 
quick.

Modified Ambiguity Function Approach

Typically, the noise of carrier phase measurement is about 
0.01 cycle. Thus, the errors of DD carrier phase measure-
ments should be much less than half a cycle. Hence, on the 
basis of (1), and taking into account the integer nature of 
ambiguities, the vector of ambiguities shall then have the 
form: � = round(� − �∕�) , where the round is a function of 
rounding to the nearest integer value. For m epochs, the vec-
tor of ambiguities shall obviously have the form of [
… �T

j
…

]T
 , j = 1,… ,m . After substituting the above vec-

tor of ambiguities to (1), one obtains the following 
equation:

For the purpose of linearization, a differentiable function 
in the place of the term on the right side of (5) is proposed 
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and all coordinates, x, from the given cell pull in to the 
center of this cell, x(v). The coordinates of the center of 
each Voronoi cell realize some integer ambiguities, v, and 
the coordinates of the center of good Voronoi cell realize 
true integer ambiguities, a. In the GNSS literature, the pull-
in regions from the Teunissen theory are sometimes referred 
to also as Voronoi cells, where the distance is measured in 
the metric of �â (Xu 2006). However, the Voronoi cells in 
MAFA are different. Figure 1 presents an example of a few 
Voronoi cells and some cloud of float positions in 2D space. 
The good Voronoi cell is located in the center. These cells 
were empirically generated based on (11) from a dense set of 
points, for some model (8). The shape of these cells depends 
on the geometrical configuration of satellites and their size 
on the wavelength of the phase signal.

Condition (12) is a necessary and sufficient condition to 
obtain a correct solution in MAFA. The determination of 
coordinates that satisfy this condition, i.e., which are located 
in the good Voronoi cell as shown in Fig. 1, is the basic prob-
lem. Unfortunately, approximate coordinates obtained, for 
example, from the float solution frequently are not located 
in the good Voronoi cell. Therefore, a cascade adjustment 
was suggested in MAFA, using a few linear combinations 
of phase signals. The performed tests have shown that such 
an approach significantly increases the probability of deter-
mining the coordinates located in the good Voronoi cell and 
hence the probability of good solution. Some improvement 
to the above approach was also suggested in Cellmer (2013). 
Unfortunately, it is still not possible to always determine 
the coordinates which are accurate enough, i.e., which are 
located in the good Voronoi cell. There is always a small risk 
that these coordinates may be located in the bad Voronoi 
cell. However, another solution is possible here. Namely, 
it is always possible to find such approximate coordinates, 
which shall give the ILS solution!

(14)

(ii) Int(V�(�1)
)
⋂

Int(V�(�2)
) = �, ∀V�(�1)

,V�(�2)
∈ R3, �1 ≠ �2

(Cellmer 2012). A differentiable single component has the 
following form:

where ri = �i − �i∕� , �i = �(�) , � =
[
x y z

]T is the vector 
of the receiver coordinates and i = 1,… , n . The derivative of 
(6) is: �ei∕�� = (�ei∕�ri)·(�ri∕��) = 1· (−��i∕��)∕� . Hence, 
after a Taylor series expansion of (6):

where x0, y0, z0 are the approximate coordinates of the 
receiver and dx, dy, dz are the increments of the unknown 
baseline components, one obtains a linear mathematical 
model:

where � =
(
� − �0∕�

)
− round

(
� − �0∕�

)
 and �0 = �(�0) 

is the vector of computed DD geometrical distances. In order 
to solve for this equation, the LS principle is applied:

where ⌣� is the LS estimate of e, but conditioned on � ∈ Zn . 
The constrained baseline solution is the following estimator:

The ambiguity parameters are not present in model (8). Nev-
ertheless, the above formulation yields results that fulfill the 
condition of integer ambiguities.

Problem of the approximate coordinates

After linearization, the vector of ambiguities has the form:

The following condition must be met for (11) to be correct:

where ��0 is the vector of the computed DD geometrical dis-
tance errors. A so-called good Voronoi cell is a graphical 
interpretation of Eq. (11) in the coordinate domain (Cellmer 
2012). The entire coordinate domain is filled—without gaps 
or overlaps—with Voronoi cells, V, i.e.,
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V�(�) = R3, � ∈ Zn Fig. 1  Example of some Voronoi cells and float positions
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Modified ambiguity function 
approach‑integer least squares

The optimization problem in MAFA has the form of (8) and 
(9). However, despite the application of the LS principle and 
enforcing an integer ambiguity nature, the MAFA method is 
not the same as the ILS ambiguity estimation. The MAFA 
method is the LS estimation of the baseline components, 
using certain, most often true, integer ambiguities. Instead, 
a variant of MAFA has been suggested in this section, which 
‘estimates’ ambiguities and specifically implements the ILS 
ambiguities.

Keep in mind that in the MIRLS estimation one searches 
for such a vector of integer ambiguities which is the solution 
of optimization (2) and (3). Determination of coordinates, 
which are located in a good Voronoi cell, is the basic prob-
lem of MAFA. As it has already been mentioned, determi-
nation of such coordinates is not always possible. However, 
finding such coordinates, which shall be the global solution 
of optimization (8) and (9), is always possible! Such solution 
is named MAFA-ILS. Figure 2 shows the graphic interpre-
tation of the MAFA-ILS minimization form (9), against a 
background of the orthogonal decomposition of the con-
strained LS minimization forms (3).

The first step in MAFA-ILS is intended only to provide 
initial approximate coordinates, to determine the search 
region center. However, step 2 is of basic importance. This 
step is intended for finding such approximate coordinates, 
which give the global solution of optimization (8) and (9). It 
should be emphasized that such coordinates are not unique. 
These could be any coordinates located in the ILS Voronoi 
cell, where the coordinates at the center of the ILS Voronoi 
cell realize the ILS ambiguities. It is important to note that 
the ILS Voronoi cell shall not always be a good Voronoi cell. 
This obviously results from the stochastic nature of model 
(8) and depends on its strength. It is a general problem that 

for weak models the correct solution and the ILS solution 
are sometimes in different places.

Trivial search procedure

A trivial search procedure may consist of generating an 
appropriate cloud of points and select such point, which is 
located in the ILS Voronoi cell. Such a cloud must obviously 
contain at least one point located in the ILS Voronoi cell. 
The most trivial solution may consist in generating an appro-
priate cube of grid points around the initial position, e.g., 
float position, �̂ . Such a set of points may be easily generated 
by means of the following recurrent formula:

where

and �1(1 × g) = [… −2 −1 0 1 2 …] is the matrix of 
grid points around the initial position, g is the number of 
grid layers, d is the distance between neighboring points, 
�f (3 × g3) = �̂(3 × 1) ⋅ �

(
1 × g3

)
 is the matrix of initial coor-

dinates (the same in each column), i = 1,… , c , c = g3 means 
the number of all points, and ‘ ⊗ ’ is the Kronecker product 
symbol. Now it is necessary to find the point located in the 
ILS Voronoi cell. A most trivial way may consist in calcu-
lating the square form (9) for each candidate with respect to 
model (8). The candidate, which will give the smallest value 
of this form, will be the point located in the ILS Voronoi 
cell. For this point, the ambiguity values (11) shall be the 
same for all m epochs and equal to the ILS ambiguity esti-
mator (3). This hypothesis will be studied in the numerical 
section.

Density and size of the appropriate search region

The crucial question is: What could be the minimum size of 
the search region and the minimum density of grid candi-
dates so that the set would contain at least one point located 
in the ILS Voronoi cell? It may be noticed that to satisfy the 
above condition at least one candidate must fall into each 
Voronoi cell. So, the density of grid candidates depends on 
the size and shape of Voronoi cells. Figure 3 shows an exam-
ple of a Voronoi cell. This cell was generated empirically 
based on (11) from a dense set of points, for some model 
(8). Voronoi cells are symmetric and convex; therefore, an 
upper bound for the minimum density, dmax, can be calcu-
lated empirically based on given model (8) as follows:
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i
(3 × 1) … ] = �f +�3 ⋅ d
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where max(Δx) , max(Δy) , max(Δz) are maximum differ-
ences of the coordinates of grid points, making an empiri-
cal Voronoi cell, in directions passing through the center of 
the cell along the axes of the coordinate system as shown in 
Fig. 3. The upper bound (17) can be helpful in determining 
the minimum density of appropriate search cube.

Instead, the minimum size of an appropriate search 
region, e.g., the minimum length of the cube side, s, depends 
on the distance between the ILS Voronoi cell and the center 
of the search region. This problem may also be resolved 
empirically, for example, based on the Monte Carlo (MC) 
simulations. Specifically, it is possible to generate a cloud of 
float positions, which concern a unique ILS solution. Based 
on such a cloud, it is possible to determine the coordinate 
differences between this solution and the most distant float 
position. On the basis of such differences, it is now possible 
to determine, for example, the minimum length of the search 
cube side. It is easily noticeable that this length should not 
be smaller than a double value of the largest difference of 
coordinates between the unique ILS solution and the most 
distant float position, i.e.,

where �̂(3 × N) is the matrix of float positions, which con-
cern the unique ILS solution, and 

⌣

�(3 × N) is the matrix of 
the unique ILS positions (the same in each column), where 
N is the number of simulations. Then, the point located 
in the ILS Voronoi cell shall be in the search cube with 
probability P = 1 − 1∕N . Figure 4 shows some unique ILS 
Voronoi cell, its corresponding cloud of float positions for 
N = 5000, and the appropriate search cube. In this case, the 
maximum coordinate difference was max(ΔY) = 0.68 m ; 
hence, smin = 1.36 m.

It should be noted that the above solution may be applied 
to formulate a certain universal solution. Namely, for 
many configurations of satellites the values of (18) can be 

(18)smin = 2 ⋅ max

(
max

(
abs

(
�̂ −

⌣

�

)))

calculated, and then, the relationships between those val-
ues and values characterizing the satellite configurations, 
e.g., the PDOP values, may be determined. In this way, a 
universal formula for calculation of the minimum size of 
appropriate search cube for any satellite configuration can 
be empirically determined.

Necessary condition for the correct solution

A cloud of float positions for a unique ILS Voronoi cell, 
Fig. 4, creates a certain region to be called the region of the 
ILS float positions, S�(�) ∶ R3 . In practice, this region can 
be approximated, for example, by means of a convex hull, 
which is the smallest surface comprising all points of the 
given cloud as shown in Fig. 5.

The coordinates of this region center are also the coordi-
nates of the center of the ILS Voronoi cell and realize integer 
ambiguities. Hence, in the context of the Teunissen theory, 
it is possible to say that the region of the ILS float positions 
represents the pull-in region of the ILS ambiguities, but 

Fig. 3  Example of a Voronoi cell (m) Fig. 4  Example of some appropriate search cube (m)

Fig. 5  Example of some region of the ILS float positions (m)
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in the coordinate domain. Moreover, the Teunissen theory 
states that if some float ambiguities are located in a pull-in 
region of the ILS ambiguities, at which center there are cor-
rect integer ambiguities, then the ILS ambiguity estimator 
will be correct. This is a definition of necessary and suf-
ficient condition to obtain a correct solution in the MIRLS 
estimation. Also in MAFA-ILS, we have a certain analogy. 
That is, if the float position is located outside the region of 
the ILS float positions, corresponding to correct ambigui-
ties, then the MAFA-ILS ambiguity estimator will not be 
correct, i.e.,

In the context of the Teunissen theory, this may be inter-
preted as a definition of a necessary condition for a correct 
solution in MAFA-ILS. For example, for the model in Fig. 4, 
it is possible to state that if a true error of float position 
would be larger than 0.68 m, then MAFA-ILS would give 
an incorrect solution. Instead, the problem of sufficient con-
dition for a correct solution in MAFA-ILS has no analogy 
to the MIRLS estimation. Namely, if the float position is 
located in the region of ILS float positions, corresponding to 
correct ambiguities, then despite that, the MAFA-ILS ambi-
guity estimator may not be correct, i.e.,

This results from the fact that individual regions of the ILS 
float positions have gaps although the space filled with these 
regions has no gaps, and these regions overlap, i.e.,

Thus, the sufficient condition for the correct solution in 
MAFA-ILS cannot be defined.

Implicit integer ambiguities

Each candidate pulls in to the center of its Voronoi cell, and 
the coordinates of the center of each Voronoi cell realize 
some integer ambiguities, in accordance with (11). So, one 
may say that in MAFA-ILS, as in the case of MIRLS estima-
tion, integer ambiguities are also considered, but in this case 
in an implicit form. Moreover, as in MIRLS estimation, the 
number of all possible integer ambiguities in the appropri-
ate search region is reduced here. However, this reduction 
is different. In the MIRLS estimation, an appropriate set of 
all possible integer ambiguities is reduced most often by 
means of integer ‘decorrelation.’ Instead, in MAFA-ILS this 
set is reduced by filtering using function (11) instead of by 
decreasing. More precisely, this function takes into account 
only such vectors of integer ambiguities for which all obser-
vations fit model (8) well. ‘Well’ means that the misclosures 

(19)
⌣

� ≠ �, ∀�̂ ∉ S�(�)

(20)
⌣

� ≠ �, ∃�̂ ∈ S�(�)

(21)Int(S�(�))
⋂

Int(S�(�i)) ≠ �, ∀S�(�), S�(�i) ∈ R3, � ≠ �i

are relatively small, i.e., a priori � ∈ ⟨−0.5, 0.5⟩ cycle and 
a posteriori:

where ⌣� is the residual vector of optimization (8) and (9). 
Such an implicit set of integer ambiguities, expressed in 
the three-dimensional coordinate domain, is significantly 
reduced. This is why, the number of points in MAFA-ILS, 
even with a trivial search procedure, can be relatively small.

MAFA‑ILS in the AFM context

Broadly and without loss of generality, in the case of AFM 
one searches for station coordinates mostly that maximize/
minimize the cosine/sine of the residuals. If one further 
assumes that all observations are equally weighted, then by 
means of AFM one can look for an approximate ILS solu-
tion for one epoch. For a single baseline, this task may be 
presented in the following form (Leick et al. 2015, p. 317):

A relatively dense grid cube, e.g., d = 0.01 m , is a set of can-
didates. Moreover, this value of density is a possible error in 
the determination of the minimum of function (23).

Let it be noted now that, with respect to the symbols of 
model (8), the optimization condition (23) may be—with a 
good approximation—written as:

because ||2�k|| ≈ |||sin
{
�
(
�k − �0

k
∕�

)}||| . It is seen that in the 

case of the approximate ILS solution, AFM minimizes 
squares of a priori misclosures of model (8). Whereas if one 
assumes that all observations are equally weighted, MAFA-
ILS minimizes squares of a posteriori misclosures of model 
(8), i.e.,

Generally, this is a theoretical relationship between MAFA-
ILS and an approximate ILS solution by means of AFM.

Also, certain practical differences result from the above. 
Specifically, MAFA-ILS has two advantages in comparison 
with an approximate ILS solution by means of AFM. First, 
MAFA-ILS is exact. That is, the minimum of function (25) is 
determined precisely in the estimation process. Second, and 
the most important, MAFA-ILS is more computationally effi-
cient. Figure 6 presents a fragment of the set of candidates for 
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AFM (left) and MAFA-ILS (right). The coordinates ⌣� are the 
sought LS solution. It is seen that in AFM one must approach 
this LS solution manually. Therefore, the number of candidates 
is very large. The point, which is closest to the minimum of 
function (23), is the final LS solution. The denser the grid 
region is, the smaller a possible error in the determination of 
the minimum of function (23) can be. Instead, the situation in 
MAFA-ILS is different. Namely, one must put at least one can-
didate into the ILS Voronoi cell. Afterward, in the estimation 
process, this point is pulled precisely to the sought LS solution 
(25), as shown in Fig. 6. This is why the number of points in 
MAFA-ILS may be much smaller than in AFM.

Numerical examples

The first numerical test is based on a three-epoch simu-
lated observational session with an interval of 90 s from 
six satellites. A baseline is short, about 230 m, located in 
Olsztyn in Poland as shown in Fig. 7.

GPS single-frequency L1 signals ( � = 0.1903 m ) 
are used. The theoretical coordinates of satellites and 
receivers are accessible at: www.gnss .5v.pl/appe ndix .txt. 

These coordinates were used for computation of theo-
retical DD geometric distances. Atmospheric delays are 
assumed to be sufficiently suppressed because of a very 
short baseline. The noise of simulated DD carrier phase 
measurements is assumed as zero-mean Gaussian noise, 
�(m ⋅ n × 1) ∼ N

(
�, �2 ⋅ diag

(
… �y,j …

))
 , where

is the cofactor matrix for the subset of DD carrier phase 
measurements from the jth epoch, and �2 is the variance of 
simulated DD carrier phase measurements. The Box–Muller 
(1958) method has been used for this purpose. The vectors 
of independent normal random variables were thus obtained, 
�′ . Next, these vectors were changed into the vectors of 
dependent normal random variables by means of the fol-
lowing linear transformation

where chol(⋅) is an upper triangular matrix from the 
Cholesky decomposition. The above vectors of errors (26) 
were generated for three different values of DD carrier phase 
measurement noise: � = 0.02 , � = 0.03 , and � = 0.04 cycle. 
The elevation-dependent weighting factor and the biases 
such as satellite ephemeris errors, ranging errors caused by 
multipath or cycle slips, have been ignored. The simulated 
errors (26) and some integer values of ambiguities have 
been added to the theoretical DD geometric distances. In 
this way, simulated DD carrier phase measurements have 
been generated. The data processing was performed with 
the application of the MIRLS estimation and MAFA-ILS. 
The MIRLS estimation was implemented by means of 
LAMBDA. The float position was the initial approximate 
position in MAFA-ILS.

Reliability

The first test was intended only for comparing success 
rates (SRs) of the ambiguity estimation for the MIRLS 
estimation and MAFA-ILS. Integer ambiguities in MAFA-
ILS were calculated based on formula (11). The minimum 
size of the appropriate search cube in MAFA-ILS was 
calculated empirically based on formula (18). Addition-
ally, the upper bound for the density of grid candidates 
was calculated empirically based on formula (17). These 
calculations gave: smin = 1.359 m and dmax = 0.087 m , 
for all three cases. However, for cognitive purposes, the 
SRs were calculated for different, appropriate, and inap-
propriate parameters (Table 1). For each variant, 10,000 

�y,j(n × n) =

⎡
⎢⎢⎣

1 ⋯ 0.5

⋮ ⋱ ⋮

0.5 ⋯ 1

⎤
⎥⎥⎦

(26)� =
(
chol

(
�y

))T
⋅ ��

Fig. 6  Fragment of the set of candidates in 2D space

Fig. 7  Skyplot of constellation (PDOP = 2.2)

http://www.gnss.5v.pl/appendix.txt
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simulated DD carrier phase measurements were generated, 
as described previously.

The results of above calculations show that the suggested 
solutions (17) and (18) are valid. It turns out that MAFA-
ILS obtains exactly the same SR values as MIRLS. It is 
seen that in case of MAFA-ILS, the minimum parameters 
of appropriate search cube were equal: d = 0.6�(0.114 m) 
and s = 12d (1.370 m) . For these parameters, the ambiguity 
values (11) were always the same for all epochs and equal 
to the ILS ambiguity estimator (3). Furthermore, the above 
results also confirm the fact that the minimum values of 
appropriate grid parameters do not depend on a measure-
ment noise. That is, for all three cases, the same values 
proved sufficient. Thus, these values depend only on the 
functional part of model (8). In addition, Fig. 8 presents the 
relationship between the SR value and the size of the search 
cube in MAFA-ILS. SRs obtained in the MIRLS estimation 
are presented in gray lines.

Precision

The results of calculations thus far have shown that the reli-
ability of both approaches is exactly the same. However, 
this does not necessarily mean that both approaches give the 
same precision of estimated position. Therefore, the second 
test was carried out in order to compare the empirical preci-
sion of estimated position. Empirical covariance matrices 
were calculated based on the MC simulations. In addition, 
for cognitive purposes, analytical covariance matrices were 
calculated from the propagation law for formulas (4) and 
(10). The same computations were carried out for the float 
and the AFM solution. In the case of MAFA-ILS and AFM, 
the same size of appropriate search cube was taken, s = 12d 
(d = 0.6� = 0.114 m) and s = 137d (d = 0.01 m) , respec-
tively. For AFM, due to a relatively long computations time, 
only 1000 simulations were performed, and 10,000 for the 
other solutions. Results are presented in Table 2.

One can see that MAFA-ILS always gives exactly the 
same standard deviations as the MIRLS estimation, and 
these values are significantly lower than in AFM. Moreover, 
the values of analytical standard deviations are always 
smaller than those of empirical ones. This obviously results 
from the fact that the covariance matrix calculated from the 
propagation law assumes that ⌣� = � ( SR = 100% ). Below, to 
evaluate more completely the empirical precision of both 
approaches, Fig. 9 presents the empirical probability density 
function (PDF) for the L2-norm vector of the true errors of 
estimated position, 

‖‖‖‖
⌣

� − �
‖‖‖‖ , separately for a success and for 

a failure. Despite the fact that the empirical standard devia-
tions are exactly the same for both approaches (Table 2), the 
plot of empirical PDFs differs as shown in Fig. 9. For exam-
ple, small differences are visible in the enlarged PDF frag-
ments for success. This could be explained by the fact that 
both approaches are based on different values of approxi-
mate coordinates. Namely, MAFA-ILS is based on approxi-
mate coordinates from the ILS Voronoi cell, while the 
MIRLS estimation is based on different approximate coor-
dinates, for example, from the single-point positioning. 
However, the above differences are not significant, and it is 
possible to suggest the thesis that the estimated position has 
the same probabilistic properties in both approaches.

Table 2 also presents the information on the computa-
tional efficiency of MAFA-ILS, AFM, and MIRLS estima-
tion. In fact, the computation time in MAFA-ILS is a few 
hundred times shorter than that for AFM, but it is ten or so 
times longer than in the MIRLS estimation.

The second numerical test is based on three-epoch ses-
sions of the GPS real measurements with an interval of 90 
s. The baseline WRLG–WT21 is very short, about 60 m, 
located in Wettzell in Germany. Data were obtained from 
BKG (Bundesamt für Kartographie und Geodäsie) GNSS 

Table 1  Values of SRs for MAFA-ILS

Values of SRs for the MIRLS estimation are in parentheses

s SR (%)

d = 1� d = 0.8� d = 0.6�

� = 0.02 cycle

 10d 68.21 (99.83) 95.52 (99.81) 99.85 (99.89)
 12d 68.12 (99.86) 95.43 (99.94) 99.84 (99.84)
 14d 68.45 (99.82) 95.29 (99.84) 99.87 (99.87)
� = 0.03 cycle

 10d 62.78 (94.34) 90.43 (94.42) 94.36 (94.37)
 12d 62.25 (94.49) 90.12 (94.43) 94.53 (94.53)
 14d 62.36 (94.49) 89.81 (94.54) 94.41 (94.41)
� = 0.04 cycle

 10d 54.26 (76.98) 71.93 (76.50) 76.57 (76.70)
 12d 53.94 (76.68) 71.92 (76.56) 76.81 (76.81)
 14d 53.55 (77.03) 72.05 (76.48) 77.02 (77.02)

Fig. 8  Values of SRs (for d = 0.6�)
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Data Center for the time interval 12:00:00–13:00:00 UTC 
on July 19, 2017. The coordinates of the satellites for the 
epochs of signal emission were interpolated based on pre-
cise orbits SP3, taking into account all required time cor-
rections. An elevation mask angle was equal to 10°. The 
observations did not contain cycle slips. Atmospheric delays 
were assumed to be sufficiently suppressed because of a very 
short baseline. The measurements on the L1 frequency were 
processed with the application of the MIRLS estimation 

and MAFA-ILS based on ten, three-epoch sessions. The 
first session concerns the epochs 12:00:00, 12:01:30 and 
12:03:00, the second the epochs 12:03:30, 12:05:00 and 
12:06:30, etc. The parameters of the search cube in MAFA-
ILS were calculated empirically based on formulas (17) and 
(18). The float position was calculated based on L1 carrier 
phase measurements, and contrary to the previous simula-
tion test, additionally C/A pseudoranges. As a consequence, 
the search cube was smaller than previously. The compu-
tation time was equal to and about 0.02 and 0.05 s in the 
MIRLS estimation and MAFA-ILS, respectively. Figure 10 
presents the estimated coordinates of the WT21 point. The 
‘true’ position was obtained from the float solution of a 120-
epoch session (12:00:00–13:00:00; interval 30 s). One can 

Table 2  Precision of estimated 
position

Computation times refer to a PC using Core i5-6200U CPU at 2.30 GHz

Solution SR (%) Time (s) Standard deviation (m)

Empirical Analytical

𝜎x̂ 𝜎ŷ 𝜎ẑ 𝜎x̂ 𝜎ŷ 𝜎ẑ

� = 0.02 cycle

 Float – – 0.1355 0.1348 0.0855 0.1360 0.1345 0.0854
 MIRLS 99.84 0.010 0.0155 0.0191 0.0175 0.0020 0.0011 0.0026
 MAFA-ILS As above 0.146 As above
 AFM – 103.43 0.0352 0.0610 0.0595 – – –
� = 0.03 cycle

 Float – – 0.2029 0.2006 0.1208 0.2036 0.2014 0.1279
 MIRLS 94.53 0.011 0.1075 0.1034 0.0772 0.0029 0.0016 0.0038
 MAFA-ILS As above 0.148 As above
 AFM – 104.21 0.1665 0.1635 0.1353 – – –
� = 0.04 cycle

 Float – – 0.2716 0.2687 0.1707 0.2710 0.2689 0.1728
 MIRLS 76.81 0.010 0.2460 0.2331 0.1556 0.0038 0.0021 0.0049
 MAFA-ILS As above 0.147 As above
 AFM – 103.83 0.3102 0.2551 0.2112 – – –

Fig. 9  Histograms of MC simulations for L2-norm vector of the true 
errors of estimated position (for � = 0.04)

Fig. 10  Estimated positions of the WT21 station
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see that the results of above field experiment are consistent 
with the results of the previous simulated experiment. Both 
approaches give exactly the same estimated positions, which 
lead us to the previous conclusion that MAFA-ILS can be 
treated as MIRLS estimation.

Summary and conclusions

We discussed and pretested a non-conventional approach 
to the MIRLS estimation which may open the new field of 
research. Contrary to the conventional MIRLS estimation, 
the search for a solution occurs in a constant three-dimen-
sional coordinate domain and is much faster than in AFM. 
The performed experiments have shown that the suggested 
approach may be considered in (near) real-time GNSS posi-
tioning. Despite that, the search for a solution is sometimes 
about ten times slower than in the conventional MIRLS esti-
mation. However, in this research, the center of the search 
region was based on the float position, which in terms of 
computational efficiency is suboptimal. Second, the prob-
lem of the optimization of the search procedure was not the 
objective of this research, and a very trivial procedure has 
been used. The optimization of the search procedure in the 
coordinate domain is a separate, currently open problem. 
In Cellmer et al. (2018), we propose to use a grid ellipsoid 
instead of a grid cube and a cascade processing with a wide-
lane combination in a first step. These solutions can signifi-
cantly improve the computational efficiency.
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