Skip to main content

Advertisement

Log in

Statistical Geometrical Features for Microaneurysm Detection

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Automated microaneurysm (MA) detection is still an open challenge due to its small size and similarity with blood vessels. In this paper, we present a novel method which is simple, efficient, and real-time for segmenting and detecting MA in color fundus images (CFI). To do this, a novel set of features based on statistics of geometrical properties of connected regions, that can easily discriminate lesion and non-lesion pixels are used. For large-scale evaluation proposed method is validated on DIARETDB1, ROC, STARE, and MESSIDOR dataset. It proves robust with respect to different image characteristics and camera settings. The best performance was achieved on per-image evaluation on DIARETDB1 dataset with sensitivity of 88.09 at 92.65% specificity which is quite encouraging for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramoff MD: Retinopathy online challenge roc @ONLINE. 2017

  2. Adal KM, Sidibé D, Ali S, Chaum E, Karnowski TP, Mériaudeau F: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput Methods Prog Biomed 114(1):1–10, 2014

    Article  Google Scholar 

  3. Baudoin CE, Lay BJ, Klein JC: Automatic detection of microaneurysms in diabetic fluorescein angiography. Revue d’é,pidémiologie et de santé publique 32(3–4):254–261, 1983

    Google Scholar 

  4. Bhalerao A, Patanaik A, Anand S, Saravanan P: Robust detection of microaneurysms for sight threatening retinopathy screening. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing ICVGIP’08. IEEE, 2008, pp 520–527.

  5. Chen YQ, Nixon MS, Thomas DW: Statistical geometrical features for texture classification. Pattern Recogn 28(4):537–552, 1995

    Article  Google Scholar 

  6. Delori FC, Pflibsen KP: Spectral reflectance of the human ocular fundus. Appl Opt 28(6):1061–1077, 1989

    Article  CAS  PubMed  Google Scholar 

  7. Dupas B, Walter T, Erginay A, Ordonez R, Deb-Joardar N, Gain P, Klein J-C, Massin P: Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exuyears, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Diabetes Metab 36(3): 213–220, 2010

    Article  CAS  PubMed  Google Scholar 

  8. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF: Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans Med Imaging 25(9):1223–1232, 2006

    Article  PubMed  Google Scholar 

  9. Gan D: Diabetes atlas. International Diabetes Federation. 2003

  10. Hassan SSA, Bong DBL, Premsenthil M: Detection of neovascularization in diabetic retinopathy. J Digit Imaging 25(3):437–444, 2012

    Article  PubMed  Google Scholar 

  11. Hoover A: Stare database Available: http://cecas.clemson.edu/ahoover/stare/. 1975

  12. Kande GB, Satya Savithri T, Venkata Subbaiah P: Automatic detection of microaneurysms and hemorrhages in digital fundus images. J Digit Imaging 23(4):430–437, 2010

    Article  PubMed  Google Scholar 

  13. Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J: The diaretdb1 diabetic retinopathy database and evaluation protocol. In: BMVC, 2007, pp 1–10.

    Google Scholar 

  14. Lay B, Baudoin C, Klein J-C: Automatic detection of microaneurysms in retinopathy fluoro-angiogram. In: 27th Annual Techincal Symposium, International Society for Optics and Photonics, 1984, pp 165–173.

    Google Scholar 

  15. Lee SC , Wang Y, Lee ET: Computer algorithm for automated detection and quantification of microaneurysms and hemorrhages (hmas) in color retinal images. In: Medical Imaging’99, International Society for Optics and Photonics, 1999, pp 61–71.

    Google Scholar 

  16. Manjaramkar A, Kokare M: A rule based expert system for microaneurysm detection in digital fundus images. 2016 international conference on computational techniques in information and communication technologies (ICCTICT) . IEEE; 2016. p. 137–140.

  17. TECHNO-VISION MESSIDOR. Messidor: methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology. 2014. Available on: http://messidor.crihan.fr/index-en.php Accessed: October, 9, 2014

  18. Millodot M: Dictionary of optometry and visual science. Elsevier Health Sciences. 2014

  19. Niemeijer M, Van Ginneken B, Cree MJ , Mizutani A, Quellec G, Sánchez CI , Zhang B, Hornero R, Lamard M, Muramatsu C, et al.: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195, 2010

    Article  PubMed  Google Scholar 

  20. Niemeijer M, Ginneken BV, Staal J, Suttorp-Schulten MSA, Abràmoff MD: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 24(5):584–592, 2005

    Article  PubMed  Google Scholar 

  21. Otsu N: A threshold selection method from gray-level histograms. Automatica 11(285-296):23–27, 1975

    Google Scholar 

  22. Preece SJ, Claridge E: Monte carlo modelling of the spectral reflectance of the human eye. Phys Med Biol 47(16):2863, 2002

    Article  CAS  PubMed  Google Scholar 

  23. Purwita AA, Adityowibowo K , Dameitry A, Atman MWS: Automated microaneurysm detection using mathematical morphology. 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). IEEE, 2011, pp 117–120.

  24. Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C: Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging 27(9):1230–1241, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sopharak A, Uyyanonvara B, Barman S: Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images. Comput Med Imaging Graph 37(5):394–402, 2013

    Article  PubMed  Google Scholar 

  26. Spencer T, Olson JA, McHardy KC, Sharp PF, Forrester JV: An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res 29(4):284–302, 1996

    Article  CAS  PubMed  Google Scholar 

  27. Walter T, Massin P, Erginay A, Ordonez R, Jeulin C, Klein J-C: Automatic detection of microaneurysms in color fundus images. Med Image Anal 11(6):555–566, 2007

    Article  PubMed  Google Scholar 

  28. Su W, Tang HL, Hu Y, Sanei S, Saleh GM, Peto T, et al.: Localising microaneurysms in fundus images through singular spectrum analysis. IEEE Transactions on Biomedical Engineering. 2016

  29. Zhang B, Wu X, You J, Li Q, Karray F: Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recogn 43(6):2237–2248, 2010

    Article  Google Scholar 

  30. Zhou W, Wu C, Chen D, Yi Y, Du W: Automatic microaneurysm detection using the sparse principal component analysis-based unsupervised classification method. IEEE Access 5:2563–2572, 2017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arati Manjaramkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjaramkar, A., Kokare, M. Statistical Geometrical Features for Microaneurysm Detection. J Digit Imaging 31, 224–234 (2018). https://doi.org/10.1007/s10278-017-0008-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-0008-0

Keywords

Navigation