
Softw Syst Model (2010) 9:311–333
DOI 10.1007/s10270-009-0138-z

SPECIAL SECTION PAPER

Application of reflection in a model transformation language

Ivan Kurtev

Received: 10 November 2008 / Revised: 2 September 2009 / Accepted: 24 September 2009 / Published online: 10 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Computational reflection is a well-known tech-
nique applied in many existing programming languages
ranging from functional to object-oriented languages. In this
paper we study the possibilities and benefits of introducing
and using reflection in a rule-based model transformation
language. The paper identifies some language abstractions to
achieve structural and behavioral reflection. Reflective fea-
tures are motivated by examples of problems derived from
the experience with currently used transformation languages.
Example solutions are given by using an experimental lan-
guage with reflective capabilities. The paper also outlines
possible implementation strategies for adding reflection to a
language and discusses their advantages and disadvantages.

Keywords Reflection · Model transformation languages ·
MDE · MISTRAL

1 Introduction

Computational reflection is a technique applied in many pro-
gramming languages to solve non-trivial problems. Usually,
adding reflective capabilities to a language is motivated by
the need to improve certain quality attributes in the programs
such as runtime adaptability, long-term maintainability, mod-
ularity and composability.

Communicated by Jeff Gray.

I. Kurtev (B)
Software Engineering Group, University of Twente,
P.O. Box 217, 7500 AE, Enschede, The Netherlands
e-mail: kurtev@ewi.utwente.nl; ivan.kurtev@gmail.com

Reflection may be applied to languages based on differ-
ent paradigms. It was first proposed by Brian Smith in the
context of Lisp [27] and later was successfully introduced
in object-oriented languages [21] such as Smalltalk, CLOS,
and Java [4].

The problems that may be tackled by using reflection
span a wide spectrum. Here we briefly mention some liter-
ature sources and the issues they address. It was shown that
debugging and tracing can be based on reflective techniques
[20]. The Composition Filters approach to object composi-
tion [2] is based on a restricted reflection on message passing
between objects. The application of reflection in aspect-ori-
ented programming is studied in a number of works [26,28].
A limited form of reflection (introspection) was introduced in
the Java language. The reflective API available in ECore [3]
allows building generic model editors. Kiczales et al. [13] use
reflection to adapt an existing language (CLOS) to user-spe-
cific needs, thus allowing a reflective language to be treated
as an open-end, customizable language, i.e., as a family of
related languages.

The ability of reflection to be applied across diverse types
of languages to solve a significant number of problems is
appealing. The quality characteristics that a reflective pro-
gram may possess (e.g. adaptability and reusability) are
often required in model transformation specifications. There-
fore, it is worth studying how reflection may be applied in
current model transformation languages in the context of
Model-Driven Engineering (MDE). Our study is also moti-
vated by problems that are difficult to solve with the available
techniques in the majority of these languages.

Transformation languages already provide a solution for
adapting transformation specifications to certain needs when
the language constructs are not expressive enough. This
solution is based on higher-order transformations (HOT)
[30]. In several MDE approaches, transformation languages

123

312 I. Kurtev

are defined by a metamodel and therefore transformation
specifications are models. Transforming these specifications
is not different from any other transformation executed on
models. A higher-order transformation transforms transfor-
mations to other transformations. However, this solution is
static. It accesses only one type of computational objects:
the transformation programs, and allows changes only before
their execution. A fully-fledged reflection mechanism goes
beyond this. It allows accessing and altering runtime com-
putational objects and changing programs at runtime.

In this paper we study the possibilities for adding reflec-
tion to an experimental model transformation language
called MISTRAL [16]. The main challenge is to balance
between the expressiveness and the safety of the reflective
features. We are driven by a set of problems encountered
in our experience with current transformation languages.
The introduced reflective features aim at solving these prob-
lems in a concise manner that improves the quality of
the transformation specifications. Furthermore, the pres-
ence of reflection allows adaptation of the language with-
out extending its concrete syntax and re-implementing its
engine.

The most important problems that motivate this work are:
achieving flexible trace generation in model transformations,
fine-grained control over the rule execution order, improving
change impact analysis and change propagation when source
or target models change, and achieving better composabil-
ity and adaptability of existing transformation specifications.
We also aim at a conceptual solution that is applicable to
both imperative and declarative transformation languages.
We present a set of computational objects and events that are
exposed to metaprograms. Examples are presented to illus-
trate the motivation and the applicability of the proposed
reflective features.

The paper is organized as follows. Section 2 gives back-
ground knowledge about reflection and a general view how
reflection can be applied in model transformation languages.
Section 3 shows several motivating examples that benefit
from the availability of reflection. An experimental transfor-
mation language named MISTRAL is presented in Sect. 4.
Section 5 systematically identifies reflective features for
MISTRAL based on its execution semantics. Section 6 gives
solutions to the motivating examples. Section 7 discusses
the experienced difficulties, the implementation options, and
the limitations of our work. Section 8 presents related
work. Section 9 concludes the paper and outlines future
work.

2 Computational reflection

We present a brief theoretical overview on reflection and the
relevant concepts in Sect. 2.1. The concept of reflection is

Fig. 1 Relations between the base program and metaprogram

applied to the domain of model transformation languages.
We make assumptions about the structures and operations
available in a model transformation execution environment
that make our approach general enough and potentially
applicable to other languages (Sect. 2.2). Section 2.3 intro-
duces a two-dimensional space that serves as a guiding
framework for designing reflective infrastructures.

2.1 Background

Reflection is a capability to perform computation about
another computation. A computation is an execution of a
program written in a programming language. A running pro-
gram may expose some elements of its execution environ-
ment via some interface. It is said that the running program
resides at the base level of computation and is called the
base program. Another program may be written that acces-
ses and eventually changes the exposed elements of the
execution environment for the base program. Such a pro-
gram is called a metaprogram and its computational envi-
ronment is called the metalevel1. The relation between the
base level and the metalevel is causal [21]. This means that
changes in the base level are visible in the metalevel and
changes made in the metalevel affect the base level. Figure 1
illustrates the relations between the base program and the
metaprogram.

The concept of reflection was proposed by Brian Smith
[27] and later elaborated for a number of languages. Reflec-
tion was intensively studied in the context of object-oriented
languages. In this paper we use terminology from this field.
A presentation of the original work of Smith is given in
[8].

In his PhD thesis, Tanter [29] presents an overview of
existing reflective systems and proposes a set of defini-
tions for reflective mechanisms. He identifies two orthogonal
classification schemes for reflection. They are based on the
ability of the metaprogram to access various elements of
the base level and the ability to alter the base level.
The classifications are based on the concepts of structural

1 The term metalevel used in this paper is different from the same term
used to denote a layer in a metamodeling architecture.

123

Application of reflection in a model transformation language 313

reflection, behavioral reflection, introspection, and interces-
sion. We repeat the definitions from [29] in order to establish
a set of concepts for this paper.

Definition 1 (Structural Reflection) The ability of a program
to access a representation of its structure, as it is defined in
the programming language.

Definition 2 (Behavioral Reflection) The ability of a pro-
gram to access a dynamic representation of itself, that is
to say, of the operational execution of the program as it is
defined by the programming language implementation (pro-
cessor).

Definition 3 (Introspection) The ability of a program to rea-
son about reifications of otherwise implicit aspects of itself or
of the programming language implementation (processor).

Definition 4 (Intercession) The ability of a program to act
upon reifications of otherwise implicit aspects of itself or of
the programming language implementation (processor).

It should be noted that introspection allows only reason-
ing on reifications, that is, it is read-only form of reflection,
whereas intercession allows acting upon reifications includ-
ing possible changes.

Definitions 3 and 4 use the important concept of reifica-
tion. Reification is defined as follows.

Definition 5 (Reification) The process by which the state of
the running program is passed to the program itself, suitably
packaged (reified) so that the program can manipulate it.

An example of reification is the process of explicit rep-
resentation of a message sent from one object to another
object in an object-oriented system. The reified message is
a structure that contains the sender and the receiver objects,
the name of the method responsible for handling the message
and the message parameters (if any). Such a reified message
may be a subject of introspection and intercession. Introspec-
tion and intercession may be applied in both structural and
behavioral reflection. For example, intercession may affect
both the structural part and the behavioral part of the base
level. Concerning the structural part, the metaprogram may
change the structure of the running program. Concerning the
behavioral part, the metaprogram may change the runtime
structures of the running program and change its behavior
at runtime. A reified message, for example, may be manipu-
lated by changing the name of the method and then passed to
the receiver. In this way, the intercession allows the altering
of the default message passing behavior.

We consider all types of reflection in this paper: structural,
behavioral, introspection, and intercession.

2.2 Towards a common model of execution of model
transformation programs

The success of applying reflection in object-oriented (OO)
languages is due to the possibility of finding a common
computational model valid for a large set of OO languages.
A minimal computation model consists of objects that
exchange messages. The typical representation of an object-
based execution environment includes interfaces to objects,
reification of messages and other computational events.

The following assumptions lead to a concise yet unified
computational model for execution of model transforma-
tions:

• The transformation language operates on models that
conform to metamodels. The transformation language by
itself is defined by a metamodel;

• The language is rule-based. Transformation specification
consists of transformation rules executed on tuples of
source elements. Every rule may create new elements,
update existing elements, and delete elements. Creation
and update involve setting property values.

The majority of transformation languages used in MDE
satisfy the assumptions. Many transformation languages
operate in an ECore or MOF based metamodeling environ-
ment. The abstract syntax of the language may be expressed
in a metamodel. We should note that there are transfor-
mation languages that are not based on MOF/ECore. For
example, many graph transformation languages do not rely
on the OMG standards (including MOF).

Furthermore, a transformation rule is the most commonly
found modular unit that operates on the model elements.
It should be noted that it is possible to have transforma-
tion approaches not organized around the rule concept. Such
approaches are usually built on a general-purpose language
and a library for model manipulation. For example, the lan-
guage SiTra follows this approach [1].

A transformation may be considered as a sequence of
events. Execution of a rule is such an event. Execution
of a rule involves other events: identifying matches of
the rule source and executing the effects of the rule per
match. Effects are creation, deletion, and update of model
elements. These events may occur in various orders. For
example, in ATL [10], a declarative transformation is exe-
cuted in the following order: matching of all the rules,
for every match the creation of new elements is exe-
cuted, and property values are assigned. In the case of an
imperative language such as QVT Operational Mappings
[24] the order of matching, creation, and property value
assignment may differ. Regardless of the order of events,
however, the set of event types is stable across the languages.

123

314 I. Kurtev

Table 1 Example operations on transformation specification and transformation rule

Structural reflection Behavioral reflection

Introspection Transformation specification Transformation specification

Read the transformation specification Check the status of the transformation (started, in exe-
cution, executed)

Obtain the currently executed rule

Transformation rule Transformation rule

Read the rule structure Check the rule status

Read data related to a rule match and execution (source
element, created target elements)

Check the current match being executed

Intercession Transformation specification Transformation specification

Change the transformation specification at runtime Start/stop transformation execution

Transformation rule Transformation rule

Change the rule structure at runtime Execute rule
Mark rule as executed

This is our starting point for identifying the elements that
should be exposed during a model transformation execu-
tion.

2.3 Reflection in the common execution model

McAffer [22] proposes two approaches for identifying the
elements that should/could be available at the metalevel. The
first approach considers the language constructs that should
be exposed. This corresponds to identifying the elements
accessible in structural reflection. The second approach con-
siders the events observed during the program execution.
This corresponds to identifying the elements accessed in
behavioral reflection.

Clearly, both approaches may be combined. They also
span the dimension of introspection/intercession. The two
dimensions give a large solution space for designing a
reflective infrastructure ranging from a limited structural
introspection to a difficult to design and control behavioral
intercession.

The paper gives an example of possible structures and
operations at the metalevel by considering two constructs
found in transformation languages and the relevant events:
transformation specification and transformation rule. We
place them in a two-dimensional space where the first
dimension denotes the structural/behavioral dichotomy and
the second dimension denotes the introspection/interces-
sion dichotomy. The space consists of four points shown
as cells in Table 1. Each cell provides transformation and
rule constructs. Constructs are shown in italics. A bulleted
list indicates possible operations on them.

Table 1 shows that even for two constructs with only part
of the possible operations we have 12 operations (see the
bulleted elements).

The infrastructure for a metalevel usually allows inter-
cepting the relevant events in the execution (behavioral intro-
spection) and reification of the relevant data as metaobjects.
The term metaobject should be interpreted in the broad sense
as a data structure describing another data structure (not nec-
essarily implemented in an OO language). Metaobjects may
be queried by the metaprogram, may be changed (example
of structural intercession), and operations may be applied on
them that eventually affect the program behavior (behavioral
intercession).

In the remaining part of the paper we will identify the
elements of a metalevel (similarly to Table 1) for our exper-
imental language. The identification is guided by a set of
motivating scenarios and the analysis of the execution seman-
tics of the language. We present the motivating scenarios in
Sect. 3. Section 4 presents MISTRAL, which is a transfor-
mation language that has reflective capabilities.

3 Motivating scenarios

Our motivating scenarios serve as use cases for the ini-
tial identification of reflective features. The first use case
addresses a common problem in model transformations:
generation of custom trace links. The second use case is
derived from our experience in implementing aspect weavers
as model transformations.

123

Application of reflection in a model transformation language 315

3.1 Example: generation of custom trace links

Some transformation languages and their engines create trace
links between source and target elements. These links allow
identification of the target elements obtained from a given
source element by applying a given rule. Often, the links are
maintained in the proprietary internal structures of the trans-
formation engine and are not available after the execution
of the transformation. However, there may be cases in which
the transformation developer prefers to create their own trace
structures. This problem is already analyzed in [11,17]. It is
desirable to create a generic trace generation functionality
that is independent from the concrete transformation specifi-
cation and may be reused in multiple transformation execu-
tions.

Consider a transformation that transforms UML class
models to Java programs. We require that every UML attri-
bute is transformed to a private field and two methods for
getting and setting the value of the field. For brevity we do
not give the metamodels of UML and Java. The following
pseudo code shows a part of the transformation specifica-
tion. The code specifies rules with source patterns and target
actions. Actions in this case are instantiations of target ele-
ments that assign values to their properties. Source and target
elements are assigned to variables (e.g. “sp”, “tp”, “f”, etc.).
These variables are used to refer to the elements in expres-
sions, for example, in line 9. No execution order among the
rules is assumed. OCL is used to query the source models.

1. Rule copyPackage {

2. source [sp : UML!Package]

3. target [tp : Java!Package {name = sp.name}]

4. }

5.

6. Rule copyClass {

7. source [sc : UML!Class]

8. target [tc : Java!Class {name = sc.name,

9. fields = sc.attribute->collect(a | transformation.trace(a, 'f')),

10. methods = sc.attribute->collect(a |

11. Sequence{transformation.trace(a, 'getter'),

12. transformation.trace(a, 'setter')})->flatten()}]

13. }

14.

15. Rule transformAttribute {

16. source [sa : UML!Attribute]

17. target [f : Java!Field{name = sa.name, isPublic = false,

18. type = transformation.trace(sa.type, 'tc')},

19. getter : Java!Method{name = 'get_'+sa.name, isPublic = true},

20. setter : Java!Method{name = 'set_'+sa.name, isPublic = true}]

21. }

We aim at producing an output model that contains trace
links between source and target elements. The metamodel for
traces expressed in KM3 [12] is given below. KM3 is a con-
crete textual syntax for expressing ECore metamodels. The
syntax strongly resembles the Java syntax and the syntactical
elements corresponds almost directly to the metaclasses in
ECore.

1. package Traces{

2.

3. class Trace {

4. attribute ruleName : String;

5. attribute sourceName : String;

6. attribute targetName [1-*]: String;

7. }

8. }

9.

10. package PrimitiveTypes {

11. datatype String;

12. }

The idea is that for every execution of a rule over a source
node we create an instance of class Trace that contains the
name of the rule, the name of the source element, and a list
of the names of the target elements. This may be done by
introducing a new instantiation in every rule that uses the
identifiers of the source and target elements per rule. The
following code shows the first two rules extended with trace
generation functionality (lines 4–6, 14–16).

123

316 I. Kurtev

1. Rule copyPackage {

2. source [sp : UML!Package]

3. target [tp : Java!Package {name = sp.name},

4. trace : Traces!Trace {ruleName = ‘copyPackage’,

5. sourceName = sp.name,

6. targetName = sp.name)}]

7. }

8.

9. Rule copyClass {

10. source [sc : UML!Class]

11. target [tc : Java!Class {name = sc.name,

12. fields =sc.attribute->collect(a | transformation.trace(a, 'f')) ,

13. ………

14. trace : Traces!Trace {ruleName = ‘copyClass’,

15. sourceName = sc.name,

16. targetName = sc.name)}]

17. }

This solution, however, has two problems that reduce the
reusability and adaptability of the transformation specifica-
tion. First, the trace generation functionality depends on the
context of a particular rule and is repeated in every rule. This
hinders the reusability of this functionality since it is not spec-
ified in a single language module. Second, the adaptability of
the transformation specification is deteriorated since the trace
generation cannot be added and removed without manually
changing the transformation specification.

To solve the first problem we need a mechanism for
abstracting the trace generation functionality from the
details of a particular rule. For this purpose we need to obtain
the name of the context rule and to obtain details about the
current match of the rule and the currently created target ele-
ments. Structural introspection may help in getting the name
of the rule. Behavioral introspection may help in obtaining
the information about the context of the rule at runtime (the
source element being matched and the current target ele-
ments).

To solve the second problem we need to modify the
rules before their execution by adding a new action: crea-
tion of trace records. This may be done by extending the
language with a dedicated composition construct, e.g. rule
inheritance. Another option is to use structural intercession

that allows changing the transformation specification at run-
time. For example, a transformation may be changed before
its execution. The change may insert the trace instantiations
to a set of selected rules (or all rules). An example of this is
given in Sect. 6.1.

3.2 Example: controlling aspect weaving at shared join
points

This scenario is inspired by a problem in Aspect-Oriented
Programming (AOP) [14]. Aspects are constructs that mod-
ularize code scattered across multiple locations in a pro-
gram. They are inserted in designated points (called join
points) by a process called aspect weaving. In general,
aspects do not know about each other and more than one
aspect may be woven in a single join point. Possibly,
aspect interference may occur. This problem is known as
weaving of aspects at shared join points [7]. Usually, a
solution requires some policy of ordering of the aspect
weaving.

In this scenario we perform aspect weaving by executing
model transformation rules on a source Java program. Con-
sider the following two rules that implement a logging aspect
and a synchronization aspect.

123

Application of reflection in a model transformation language 317

1. Rule addLogAspect {

2. source[sourceMethod : Java!Method condition{(sourceMethod.name = 'methodA')

3. or (sourceMethod.name = 'methodC')}]

4. target[logInvocation : Java!MethodCall{variableName='Log',

5. methodName = 'log'},

6. update sourceMethod{statements =

7. Sequence{logInvocation}->union(sourceMethod.statements)}

8.]

9. }

10.

11. Rule addSynchAspect {

12. source[sourceMethod : Java!Method]

13. target[obtainLockInvocation : Java!MethodCall{variableName = 'Lock',

14. methodName = 'getLock'},

15. releaseLockInvocation : Java!MethodCall{variableName = 'Lock',

16. methodName = 'releaseLock'},

17. update sourceMethod{statements =

18. Sequence{obtainLockInvocation}->union(sourceMethod.statements)->union(

19. Sequence{releaseLockInvocation})}

20.]

21. }

Rule addLogAspect creates a call to a method that imple-
ments the logging functionality (lines 4–5). Then the call is
inserted before the statements of the selected Java methods.
The rule weaves the aspect in methods in the source program
named methodA or methodC (see the rule condition in lines
2–3). The weaving is done by using an update action that
modifies the statements of the source element (line 6).

Rule addSynchAspect inserts two method calls in an exist-
ing method. The first one is inserted in the beginning of the
method body and is responsible for obtaining a synchroniza-
tion lock (line 13). The second one is inserted at the end of
the method body and releases the lock (line 15). This aspect
is woven in all methods of the source program (see the source
of the rule on line 12).

The two aspects have shared join points. The question is
in which order the aspects are applied at these shared join
points. This problem is studied in [15] and several solutions
are proposed. Assume that for some Java methods we want
to apply first the logging aspect and then the synchroniza-
tion aspect while for other methods we reverse the order.
We require that the aspects are reusable and remain unaware
about each other. The order of weaving should be speci-
fied separately. In most declarative transformation languages,
however, the order of rule execution cannot be controlled.
Even with the possibility to order the rule execution, the prob-
lem cannot be completely solved. Rule ordering ensures that
a rule is executed before another rule for all matched source
elements,whereas we require finer control at the level of a sin-
gle source node. If the language is imperative, controlling the

lead rule order may to reimplementation of the code respon-
sible for the execution order.

The problem may be solved if fine grained control over
rule execution is available. The programmer should be able
to inspect the rules that match a single source element and
impose partial order over rule execution. These features are
examples of behavioral reflection.

4 MISTRAL: an experimental language with reflective
features

We present an experimental transformation language with
reflective features. The language syntax is presented infor-
mally by giving an example in Sect. 4.1. Section 4.2 gives
the pseudo code of the execution algorithm for MISTRAL
transformations. The algorithm is a starting point for design-
ing the reflective features of the language.

4.1 Example MISTRAL program

MISTRAL was initially described in [16] without having
a complete execution engine. Recently we implemented an
experimental interpreter for the language. This section briefly
describes the language constructs and their meaning.

Consider the following code fragment that is used in a
larger transformation for flattening class hierarchies in UML
class models that use single inheritance. Only the identifica-
tion of attributes of a class (including the inherited attributes)

123

318 I. Kurtev

is shown. Creation of the target classes is not shown. The
full version of the transformation is available from [23].

1. transformation Flattening

2. input s : UML

3. output t : UML

4.

5. allAttributesOfRoot ModelElementRule {

6. source [class : UML!Class condition{class.extends->isEmpty()}]

7. target [attr : Sequence(UML!Attribute) = class.attribute]

8. }

9.

10. allAttributesOfNonRoot ModelElementRule {

11. source [class : UML!Class condition{class.extends->size() > 0}]

12. target [attr : Sequence(UML!Attribute) = class.attribute->union(

13. transformation.trace(class.extends->first(), 'attr'))

14.]

15. }

A transformation declares a number of input and output
models that are assigned to variables typed by the corre-
sponding metamodel (lines 1–3). Output models do not exist
in advance and are created during the execution of the trans-
formation. The input models may be changed at runtime.

Every transformation contains named model element rules
(allAttributesOfRoot, allAttributesOfNonRoot). Model ele-
ment rules have a source that is identified by a single variable
of a given type and an optional condition over the values of
the variable. The purpose of a model element rule is to exe-
cute actions enumerated in its target. Actions are executed for
every match of the rule source. Two types of actions are sup-
ported: instantiation and update (update is not shown in this
example). An instantiation action causes creation of new ele-
ments. The types of the elements are types from a metamodel
and the built-in OCL types (for example, Integer, Boolean,
Sequence, Set).

The example code determines the total set of attributes
per class including the locally defined and the inherited attri-
butes. Rule allAttributesOfRoot determines the attributes of
root classes. The total set of attributes is represented in the
target of the rule as variable attr of type Sequence. It has
an initialization expression. Rule allAttributesOfNonRoot
determines the attributes of classes that extend other classes.
The set of the attributes is the union of the locally defined and
the inherited attributes. The inherited attributes are obtained
by navigating to the parent class and invoking the trace reso-
lution function that returns target elements for a given source.
The resolution function is called ‘trace’. It accepts two

arguments: the source element and the identifier of the target
element. An example invocation is given in line 13.

The current implementation of the language supports rules
that match only to a single source element. A source element
may be matched by multiple rules. Target model elements are
navigable during the transformation execution. Properties of
model elements are called slots. If a slot value of a target
element is requested but not yet assigned, the value will be
calculated on demand and assigned.

MISTRAL is a DSL (Domain-Specific Language) aimed
at specifying unidirectional model transformations. It encour-
ages a declarative specification style where relations between
source and target elements are specified. The developer does
not encode the rule execution order. The rule execution order
and the action execution order within a rule are decided by
the interpreter at runtime. As explained in [16], if a trans-
formation does not change the models by using update and
delete actions the transformation execution is deterministic.
This means that different execution orders produce the same
output.

The declarative nature of the language limits its expressive
power. There are no constructs for iteration and condition that
can be used to specify sophisticated rule ordering. Declara-
tiveness and domain-specificity are major design decisions
for MISTRAL. Section 5 shows how these decisions nega-
tively affect the design of the reflective architecture.

4.2 Execution semantics

We give the execution semantics of MISTRAL in a
pseudo code that presents the execution algorithm for a

123

Application of reflection in a model transformation language 319

transformation. The starting point is the procedure Execute-
Transformation that takes a transformation t and a map of
models.

1. ExecuteTransformation(Transformation t,

2. Map models) {

3.

4. Traces traces = new Traces();

5.

6. ForEach rule in t.rules {

7. MatchRule(rule, models, traces)

8. }

9.

10. ForEach rule in t.rules {

11. ExecuteRule(rule, models, traces)

12. }

13. }

We first create the traces (line 4) as an internal structure
that keeps track of the correspondences between source and
target elements and the rule that generates the target ele-
ments from a given source. The first step in the execution is
to match the source patterns of all the rules over the source
models (lines 6–8). The matching initializes the traces. The
second step is to execute all the rules by using the models
and traces (lines 10–12).

The procedure MatchRule finds all the matches for the
source pattern of a given rule.

14. MatchRule(Rule rule,

15. Map models,

16. Traces traces) {

17.

18. Model sourceModel = models.get(rule.source.extentName)

19.

20. List elements = sourceModel.getAllInstances(rule.source.type)

21. ForEach el in elements {

22. If el satisfies rule.source.condition {

23. traces.addMatch(el, rule)

24. }

25. }

26. }

The matching is done over a single source model iden-
tified by the extentName property of RuleSource (line 18).
All the model elements of a given type are obtained and then
filtered by checking the rule source condition (lines 20–25).
Traces are updated accordingly (line 23).

The procedure ExecuteRule iterates over all the matches
for a given rule. Since the transformation of a given source
element may have been already performed on demand by
another rule, the algorithm transforms only the source ele-
ments not transformed yet (line 34).

123

320 I. Kurtev

27. ExecuteRule(Rule rule,

28. Map models,

29. Traces traces){

30.

31. List matches = traces.getMatchesForRule(rule)

32.

33. ForEach match in matches {

34. If match not transformed {

35. ExecuteRuleOnMatch(rule, match, models, traces)

36. Mark match as transformed

37. }

38. }

39. }

The procedure ExecuteRuleOnMatch generates the target
elements for a single source element and a given rule that
matches this element. The procedure iterates over the actions
specified in the rule (lines 45–56). In order to simplify the
explanation we consider only instantiation actions. At the
moment of writing this paper, actions that update and delete
existing elements are implemented partially and are in an
immature form. We did not consider them as a part of the
reflective framework.

If a given action is not performed yet (this is checked by
inspecting the traces, line 46) an element is created and added
to the target model (lines 47–49). Traces are updated accord-
ingly (line 50). After creating the target element, its slots are
assigned with values (lines 52–54).

40. ExecuteRuleOnMatch(Rule rule,

41. Element match,

42. Map models,

43. Traces traces){

44.

45. ForEach action in rule.target {

46. If not traces.containsTarget(match, rule, action.id) {

47. Model targetModel = models.get(action.extentName)

48. Element result = create target element of type action.type

49. targetModel.add(result)

50. traces.update(match, rule, action.id, result)

51.

52. ForEach slot in action.slotAssignments {

53. AssignSlotValue(rule, match, result, slot, models, traces)

54. }

55. }

56. }

57. }

The procedure AssignSlotValue calculates the values of
slots and takes care of possible circularity dependencies
among slot values. Assume that the value of a slot A requires
the value of a slot B, which in turn requires the value of A.
In this case there is a mutual dependency between the values
and both cannot be calculated. In this respect the execution
of a MISTRAL transformation is similar to the calculation
of an attribute grammar [25]. The cyclic attribute grammars
cannot be executed. MISTRAL transformations with such
cycles cannot be executed likewise. Cycles are detected at
runtime.

During the transformation execution, every slot of a given
model element may be in three possible states: not processed,
processing, and processed. The procedure first checks if the

123

Application of reflection in a model transformation language 321

slot is in the processing state (line 65). If so, this means
that the process of value calculation has started but is
not finished yet. The calculation is trying to obtain other
slot values (recall that in MISTRAL the target mod-
els are navigable) and the value of the current slot is
requested again before the calculation is complete. In this
case a cycle is detected and an error is thrown (line
66).

If no cycle is detected yet, the initialization expression in
OCL is evaluated (line 71). The expression may request val-
ues of other slots or may try to obtain target elements from
their corresponding source (see the further explanation of the
procedure Resolve). The method evaluateExpression invokes
the OCL interpreter of MISTRAL.

58. AssignSlotValue(Rule rule,

59. Element match,

60. Element target,

61. SlotAssignment slot,

62. Map models,

63. Traces traces){

64.

65. If slot is in processing state {

66. Throw Error(“Circularity among slot values”)

67. }

68.

69. If slot is not processed {

70. Mark slot as in processing state

71. List result = slot.expression.evaluateExpression(match,

72. target,

73. models,

74. traces)

75. target.set(slot.name, result)

76. Mark slot as processed

77. }

78. }

In the context of the MISTRAL language, OCL is
extended with an operation that resolves traces from source
to target elements (see line 13 in the example). In order to
evaluate the operation call, the OCL interpreter invokes the
procedure Resolve. This invocation is not shown since we
abstract from the details of the interpretation of OCL. The
procedure Resolve returns the target model elements obtained
from a given source by applying some transformation rule.
Target elements are assigned with an identifier. If the identi-
fier is not known an error is generated (line 84). The target
element may be already created. In this case it is obtained
from the traces and returned (line 91). If it is not created
then the required transformation rule is executed on the given
source on demand (line 88).

123

322 I. Kurtev

79. Resolve(Element source,

80. String identifier,

81. Traces traces, Map models){

82.

83. If not traces.existsIdForSource(source, identifier) {

84. Throw Error(“There is no element identified by identifier”)

85. }

86.

87. If traces.getTargetForSource(source, identifier) is null {

88. ExecuteRuleOnMatch(traces.getRule(source, identifier),

89. source, models, traces)

90. }

91.

92. Return traces.getTargetForSource(source, identifier)

93.

94. }

5 Adding reflection to MISTRAL

We illustrate how the execution algorithm and the motivat-
ing scenarios help in identifying the structures available at
the metalevel (Sect. 5.1). Section 5.2 presents the extension
of MISTRAL with reflection.

5.1 Identification of relevant computational objects
and events

Deciding on reflection features of a language is not an easy
task. The challenge is to identify the computational objects
and events that should be exposed to the metaprograms.
One approach is to provide a rich set of features covering
most of the language constructs and execution structures.
Another approach is to select a set of concrete problems and
to choose only the necessary features to solve them. We chose
a combination of both approaches by analyzing the potential
reflective features and selecting mainly those for which we
can identify and envisage a motivating scenario. Following
McAffer [22], we examine thoroughly the already presented
execution semantics in order to identify possible computa-
tional objects and events. Some of them are included in the
MISTRAL reflective framework.

Table 2 gives a summary of our analysis of potential fea-
tures and what has been selected.

5.1.1 ExecuteTransformation

A major decision is not to include the trace object in the
reflective framework. It is possible to fix an abstract interface

to such an object and to let the developer provide their cus-
tom implementation. This can solve the problem in the first
scenario (generating custom traces). We decided to solve
this problem by other means illustrated in Sect. 6. Further-
more, the decision to match all the rules before their exe-
cution is important for the execution algorithm and has a
positive impact on the performance during transformation
execution. We decided not to provide a reflective access to
the rule matching event.

Transformation specification will be exposed to
metaprograms both for reading and writing. Changing a
transformation at runtime allows adding new rules and
making adaptations of the rules.

The default execution algorithm does not assume rule exe-
cution order. The first scenario shows a need for explicit exe-
cution order. We provide a possibility to customize the rule
execution order by handling the event of starting the rule
execution.

5.1.2 MatchRule

As explained above the matching process is not accessible
from metaprograms. Therefore, this procedure does not pro-
vide reflective features.

5.1.3 ExecuteRule

The main responsibility of this procedure is to iterate over the
matches for a single rule and to invoke the procedure Execut-
eRuleOnMatch. A possible alteration of the default behavior

123

Application of reflection in a model transformation language 323

Table 2 Reflective features in
MISTRAL Procedure Possible computational Included computational

objects and events objects and events

ExecuteTransformation Objects: Objects:

Transformation specification Transformation specification

Traces

Events: Events:

Transformation execution Transformation execution

Trace creation Rule execution

Rule matching

Rule execution

MatchRule Objects: None

Rule

Events:

Match of a rule

ExecuteRule Objects: None

Rule

Current status of rule

Events:

Execution of matches

ExecuteRuleOnMatch Objects: Objects:

Rule Rule

Current match Current match

Rules per match Rules per match

Events:

Execution of target actions

AssignSlotValue Objects: Objects:

Rule Rule

Current match Current match

Current slot Current slot

Resolve Objects: Objects:

Source element Source element

Identifier Identifier

is to provide an order for handling the matches. Currently,
we do not see a convincing usage for this that goes beyond
the slogan “nice to have”. This procedure does not contribute
to the reflective framework.

5.1.4 ExecuteRuleOnMatch

This procedure performs important tasks during the transfor-
mation execution. It provides information about the current
execution context of a rule. The possibility to react to the
event of execution and to read/change the execution con-
text is included in the reflective framework. For example, a
metaprogram may perform recording of the execution order,
or generate custom traces by handling the event when this
procedure is executed. Furthermore, a rule may be changed

before its execution. This feature will be used in Sect. 6.1 to
solve the trace generation problem.

The execution of target actions is the main event in
this procedure. Currently only the instantiation and update
actions are supported. The execution order among them is
automatically determined.

5.1.5 AssignSlotValue

This procedure is called in the execution of a rule target
action. The metaprograms are notified before the execution
of the procedure and get an access to the execution con-
text: the enclosing rule, the current match of this rule and
the information about the slot. The reflective mechanism is
able to change the contextual information before resuming
the default execution semantics for assigning slot values.

123

324 I. Kurtev

5.1.6 Resolve

This procedure implements the algorithm for mapping source
to target elements based on the internal trace structure. When
invoked, the metaprogram may handle the invocation event
and to access its context: the source element and the iden-
tifier of the target element. The context may be changed,
thus allowing the metaprograms to alter the default resolu-
tion algorithm. It should be noted that the metaprograms are
not allowed to change the internal trace structure but may
read it. The capability to reflect upon the resolution algo-
rithm improves the composability of independently devel-
oped transformation specifications.

5.2 Expressing metaprograms

The base program and the metaprogram can be possibly
expressed in different languages. However, metaprograms
are often written in the same language used at the base level.
This is the case for the metaprograms for Java, Smalltalk
and CLOS reflective frameworks, for example. An attempt
to apply this approach to MISTRAL faces a major obstacle.
MISTRAL is a DSL aimed at specifying model transforma-
tions. However, some computations at the metalevel require
more expressive power that only a general-purpose language
may provide.

In the general case, we cannot expect that all metapro-
grams acting upon a program expressed in a DSL can be
expressed in this DSL. Consider the example when the rules
that match a single source element need to be executed in
a particular order. We assume that the metaprogram is pro-
vided with a reified structure that contains a list of matching
rules for a given element. The metaprogram has to reorder
part of the rules before handing in the execution to the base
level. Doing this in a rule-based language not armed with
constructs for iteration and condition is difficult and may be
even impossible.

This obstacle prevents the usage of the MISTRAL lan-
guage in its current form to express some metaprograms.
Therefore, the language has to be extended with new features
that allow expressing the required metaprograms. Another
option is to express the metaprograms in a general-purpose
language.

In this paper we opt for the first alternative. We extend
the language with new types of rules by following the same
syntactical style and keeping the declarativeness of the rules
as much as possible. For example, the problem of ordering
of rules is solved by enumerating the rules explicitly. The
interpreter is responsible for imposing this order. In that way
the language remains declarative and is not extended with
iteration and condition.

Metaprograms consist of rules called metarules. In addi-
tion, two variables are introduced and can be used within the

rules. Metarules and ordinary transformation rules are given
in the same transformation specification. Most metarules fol-
low the style of the base level rules: they take a source element
and execute instantiations, updates, and deletes.

In this section we present the language primitives for spec-
ifying metaprograms. We first explain the two variables, fol-
lowed by a presentation of the metarules.

5.2.1 Variables

Two variables are introduced: transformation and this. The
variable transformation may be used everywhere in the trans-
formation specification. It refers to the transformation defi-
nition being executed. It is accessible as an ordinary model.
OCL can be used for navigating over the transformation def-
inition.

The variable this may be used in the context of a model
element rule. During the execution it refers to the rule being
executed. Via this a transformation definition may access
the name of the rule, the source pattern, etc. Function value
can be invoked on rules bound to this variable. It takes as
argument an identifier that refers to the rule source or to the
target elements and returns the element currently assigned to
the identifiers in the context of the rule match.

For example, in the context of rule allAttributesOfRoot the
expression this.name is evaluated to “allAttributesOfRoot”.
The property name is defined in the metamodel of MISTRAL
[23]. The expression this.value(‘class’) is evaluated to the
value of the variable class for the concrete match of the rule.
Variables transformation and this allow structural introspec-
tion. Function value allows introspection of runtime data that
form the context of a rule execution. This is an example of
behavioral introspection.

5.2.2 Metarules

Several types of metarules are introduced to allow behavioral
reflection.

5.2.3 Transformation execution rule

This rule is derived on the basis of the analysis of the pro-
cedure ExecuteTransformation. It is called when the trans-
formation execution starts and allows the programmer to
alter the default transformation execution algorithm. More
concretely, the programmer is able to specify a partial/com-
plete order over model element rules and to modify the trans-
formation definition before the execution. Thus, it provides
reflection over the computational object of transformation
definition and the computational event of executing the rules.
The syntax is as follows:

123

Application of reflection in a model transformation language 325

ruleName TransformationExecutionRule

target[actions]

execute listOfRuleNames

execute listOfRuleNames

 …………….

execute listOfRuleNames

The optional target construct lists actions that are exe-
cuted over the transformation definition. Thus, a transforma-
tion definition may be changed before its execution. Actions
are executed before the execute clauses. An execute clause
lists at least one rule. Their execution order is determined
by the transformation engine. execute clauses are ordered.
This means that a rule included in a clause will be executed
before the rules listed in the following clauses. In this way
the programmer may specify a partial execution order, a full
execution order (if only one rule is given in a clause) and
may skip a rule by not including it in a clause.

Only one metarule of this kind is allowed per transfor-
mation. A rule may be referred to from at most one execute
clause. If the list of execute clauses is empty then all the rules
are executed in an order determined by the interpreter, that
is, the default execution algorithm is used.

If a target element is requested and it is not created yet,
the default execution algorithm will create the element on
demand. This may conflict with the partial ordering of rules
since the target element may be created by a rule that must
be executed later. Such a request will result in a runtime error
because the rule will not be matched and the information in
the internal trace will be missing.

This rule may add new rules before the transformation
execution, if needed, and modify existing rules. For example,
adding the trace functionality can be done in a transformation
execution rule. Section 6.1 shows an alternative solution.

5.2.4 Execution order rule

This rule provides behavioral reflection on the procedure
ExecuteRuleOnMatch. It is invoked before the execution of
a model element rule over a source element. This metarule
controls the execution order of the rules that match the source
element. Our motivation for introducing this metarule is the
need for a fine-grained control over the rule order per sin-
gle source element. This need is illustrated in the scenario
about aspect weaving at shared join points. The syntax is as
follows:

ruleName ExecutionOrderRule {

source

target[listOfRuleNames]

}

source has the same syntax as the source of model ele-
ment rules. The target specifies an ordered list of rule names.

If a source element is matched by the source of an execution
metarule then during the execution of the transformation the
set of rules that will be executed on this element is obtained
from the metarule. Rules are executed in the order specified
in listOfRuleNames. In general, this order is partial, that is,
not all the applicable rules are listed there. Not listed rules
may be executed in an order decided by the transformation
engine.

5.2.5 Rule execution

This metarule provides behavioral reflection on the proce-
dure ExecuteRuleOnMatch. Similar to the previous rule, it is
invoked before the execution of a model element rule over a
source element. The programmer is able to take actions, for
example, to modify the rule or to create new elements in a
model. The changes done on the rule are valid only for the
execution in the given context. We will illustrate the appli-
cability of this rule in Sect. 6. Its syntax is as follows.

ruleName RuleExecution on listOfRuleNames {

source

target

}

The syntax of source and target is the same as the one
used in model element rules. The metarule is invoked only
for rules listed in listOfRuleNames and whose match satis-
fies the source pattern. Thus, the programmer has fine-grain
control over the execution context in which reflection is pro-
vided. Once the context is identified, the target is executed.
After that the normal execution of the model element rule is
resumed.

It is not possible to have more than one execution meta-
rule for a pair of a model element rule and a source element.
Multiple execution metarules may possibly conflict with each
other by making conflicting modifications to the rule. The
conflicts must be detected at runtime by the interpreter. We
impose the aforementioned constraint to ease the implemen-
tation of the interpreter.

5.2.6 Instantiation rule

This metarule is called every time before executing an instan-
tiation action. The syntax is the following:

ruleName InstantiationRule (inputParameters) {

source

target

}

123

326 I. Kurtev

The rule source matches elements in the source model.
The metarule is executed only for those source elements. In
that way the developer may narrow the scope of the rule. The
rule accepts two input parameters: the first one is bound to
the rule being executed and the second one is bound to the
instantiation action being executed. These parameters give
access to the context of the instantiation.

5.2.7 Slot assignment rule

This metarule is called every time before assigning a value
to a slot in the context of a target action. The syntax is the
following:

ruleName SlotAssignmentRule (inputParameters) {

source

target

}

The execution semantics of this rule is similar to the
semantics of the instantiation rule. The difference is that three
parameters are passed: the rule being executed, the identifier
of the object that possesses the slot, and the slot name.

5.2.8 Resolution rule

This metarule is applied when a call to the internal res-
olution algorithm occurs. Recall that this algorithm is
invoked by calling the predefined operation trace: transfor-
mation.trace(element, id). The syntax of the metarule is as
follows:

ruleName ResolutionRule (inputParameters) {

condition

expresion

}

There are two input parameters: the source element and
the target element identifier. An optional condition can
limit the application of the rule to certain input values only.

The expression specifies how the target element is obtained.
The metarule can override the logic of the default resolu-
tion algorithm. For example, the developer may maintain
their own trace structure and use it during transformation
execution. Another example is that the resolution metarule
may rename the target identifier and call the default execu-
tion algorithm with changed parameters. Calls to the default
resolution algorithm from the metalevel may cause a cycle if
a resolution rule intercepts a call. This is avoided by checking
the source of the call. If it comes from the metalevel, the inter-
preter does not execute resolution rules and the computation
is performed at the base level.

6 Example applications

We present three example applications of the reflective
constructs introduced in MISTRAL. Section 6.1 presents a
solution to the first motivating scenario. Sect. 6.2 presents
a solution to the second scenario. Section 6.3 provides an
additional example that illustrates the usage of instantiation
and slot assignment metarules (not needed in the motivating
scenarios).

The notation used in Sect. 3 to present the motivating
examples is considered as pseudo code and only states the
relations among the source and target elements. This section
uses the MISTRAL syntax which is inspired by this pseudo
notation.

6.1 Generation of trace links based on introspection

Section 3.1 presented a scenario in which the trace gener-
ation functionality is user defined. The solution given in a
pseudo code exposes two problems. The first problem is the
repetition of the trace generation code across rules. The sec-
ond problem is the difficulty in adding and removing this
functionality without manually editing the transformation
definition.

We first present a solution in MISTRAL to the transfor-
mation described in Sect. 3.1.

123

Application of reflection in a model transformation language 327

1. transformation UML2Java

2. input s : UML

3. output t : Java

4.

5. copyPackage ModelElementRule {

6. source [sp : UML!Package]

7. target [tp : Java!Package {name = sp.name}]

8. }

9.

10. copyClass ModelElementRule {

11. source [sc : UML!Class]

12. target [tc : Java!Class {name = sc.name, isPublic = true, isStatic = false,

13. field = sc.attribute->collect(a | transformation.trace(a, 'f')) ,

14. method = sc.attribute->collect(a |

15. Sequence{transformation.trace(a, 'getter'),

16. transformation.trace(a, 'setter')})->flatten()}]

17. }

18.

19. transformAttribute ModelElementRule {

20. source [sa : UML!Attribute]

21. target [f : Java!Field{name = sa.name, isPublic = false,

22. type = transformation.trace(sa.type, 'tc'),

23. owner = transformation.trace(sa.owner, 'tc')},

24. getter : Java!Method{name = 'get_'+sa.name, isPublic = true,

25. returnType = f.type, owner = f.owner},

26. setter : Java!Method{name = 'set_'+sa.name, isPublic = true,

27. owner = f.owner}]

28. }

The following code is a solution for trace generation that
is independent of the details of the rule in which it is exe-
cuted. Such a generic solution may be obtained by using the
variable this. The following instantiation named trace (line
8) needs to be added in every rule (we show only the new
signature of the transformation and the first rule):

1. transformation UML2Java

2. input s : UML

3. output t : Java, traces : Traces

4.

5. copyPackage ModelElementRule {

6. source [sp : UML!Package]

7. target [tp : Java!Package {name = sp.name},

8. trace : Traces!Trace in traces {ruleName = this.name,

9. sourceName = this.value(this.source.variableName).name,

10. targetName = this.target->select(t |

11. t.identifierName <> 'trace')->collect(t |

12. this.value(t.identifierName).name)}]

13. }

A new output model that will contain traces is declared in
line 3. The new instantiation specified in lines 8–12 creates
a new trace and puts it in the extent denoted with the vari-
able traces (please note the keyword in on line 8). It should
be noted that the new code does not use any details from
the hosting rules. The concrete details about the elements are

123

328 I. Kurtev

obtained by the function value. The navigation expressions
this.source.variableName and this.target rely on knowledge
from the MISTRAL metamodel.

This solution, however, requires manual changes in every
rule. We add a metarule that modifies model element rules
by adding the trace generation functionality. In that way we
achieve loose coupling between the existing rules and the
trace code. This metarule exemplifies a structural interces-
sion.

1. addTrace RuleExecution on copyPackage, copyClass {

2. target [new : Mistral!Instantiation = trace : Traces!Trace in traces

3. {ruleName = this.name,

4. sourceName = this.value(this.source.variableName).name,

5. targetName = this.target->select(t |

6. t.identifierName <> 'trace')->collect(t |

7. this.value(t.identifierName).name)}

8. update rule{target = rule.target->append(new)}

9.]

10. }

We use a metarule that controls the execution of model
element rules copyPackage and copyClass. Instead of using
a list of names, the pattern symbol “*” can be used to select
all the rules in a given transformation. A new instantiation is

created and assigned to the variable new. Note that it is ini-
tialized with MISTRAL code. MISTRAL code can be used
in initialization expressions in order to specify code frag-
ments in the concrete syntax rather than in the more clumsy
abstract syntax. The update action adds the trace instantia-
tion new to the target of every rule. Here the variable rule
refers to the model element rule controlled by the addTrace
metarule.

6.2 Controlling aspect weaving at shared join points

The solution to the second scenario (see Sect. 3.2) is given
below.

1. addLogConcern ModelElementRule {

2. source[sourceMethod : Java!Method condition{(sourceMethod.name = 'methodA')

3. or (sourceMethod.name = 'methodC')}]

4. target[logInvocation : Java!MethodCall{variableName='Log',

5. methodName = 'log'},

6. update sourceMethod{statements =

7. Sequence{logInvocation}->union(sourceMethod.statements)}

8.]

9. }

10.

11. addSynchConcern ModelElementRule {

12. source[sourceMethod : Java!Method]

13. target[obtainLockInvocation : Java!MethodCall{variableName = 'Lock',

14. methodName = 'getLock'},

15. releaseLockInvocation : Java!MethodCall{variableName = 'Lock',

16. methodName = 'releaseLock'},

17. update sourceMethod{statements =

18. Sequence{obtainLockInvocation}->union(sourceMethod.statements)->union(

19. Sequence{releaseLockInvocation})}

20.]

21. }

123

Application of reflection in a model transformation language 329

As can be seen, the logging aspect is applied to methods
with name methodA or methodC. The synchronization aspect
is applied to all the methods in the base program. These two
aspects have shared join points. Assume that for some meth-
ods we want to apply first the logging aspect and then the
synchronization aspect, while for other methods we reverse
the order. The execution order metarule can be applied in this
situation. It allows to select a source element and to specify
a partial order of execution among the rules that match the
element. We apply the following execution order rule:

orderConcerns ExecutionRule {

 source [sourceMethod : Java!Method condition{sourceMethod.name = 'methodA'}]

 target [addSynchConcern, addLogConcern]

}

The rule specifies that for all methods with name methodA
first the synchronization aspect is applied and then the log-
ging aspect. If there are other rules matching that method then
their order is up to the execution engine. The execution order
metarule implements behavioral intercession in MISTRAL.

6.3 Generation of execution trace

A declarative language like MISTRAL usually does not rely
on explicit specification of the control flow. The execution
engine detects dependencies among rules at runtime and
orders the execution of instantiations and slot assignments.
Typically, the execution order and the dependencies are not
kept after the execution. Their externalization, however, may
help in solving a number of problems. In this example we
show how the execution trace can be captured by intercepting

execution events. Instantiation rules and slot assignment rules
are used for this purpose.

Consider the previous example of transforming UML
to Java. We introduce two metarules: one for intercepting
instantiations and one for intercepting slot assignments.

1. catchInstantiation InstantiationRule (rule : Mistral!Rule,

2. instantiation : Mistral!Instantiation) {

3. source[s : SimpleUML!UMLModelElement]

4. target [e : ExecutionEvents!InstantiationEvent in events{ruleName= rule.name,

5. sourceName = s.name,

6. id = instantiation.identifierName,

7. targetClassName = instantiation.type.elementName}]

8. }

9.

10. catchAssignment SlotAssignmentRule (rule : Mistral!Rule,

11. id : Mistral!String,

12. assignment : Mistral!SlotAssignment) {

13. source[s : SimpleUML!UMLModelElement]

14. target [e : ExecutionEvents!PropertyAssignment in events {sourceName= s.name,

15. ruleName = rule.name,

16. id = id,

17. slotName = assignment.name}]

18. }

123

330 I. Kurtev

ThecatchInstantiation rule is invoked before executing an
instantiation from a given rule on a given source node. The
source node is bound to the source variable s. The context rule
and the instantiation are passed as parameters. The source of
the rule may have a condition, thus limiting the scope of the
rule only on some source nodes. When the rule is executed a
new instance of the class InstantiationEvent will be created.
It will store info about the name of the rule, the name of the
source, the identifier of the target element, and the target class
name. Clearly, this is just one possibility to store information
about instantiation events.

Similarly, catchAssignment rule is invoked every time
before an assignment is performed. Again, the source node is
passed to the rule and the context of the execution is passed
as three parameters.

We envision two applications of these metarule types.
They may be used for performing debugging of transforma-
tions. They may also be used to capture the execution order
and the dependency among the execution events. This infor-
mation, combined with information about the access to the
source and target model elements and a trace record (like
in the previous example), allows performing change impact
analysis and to manage change propagation when the source
model is changed. We intend to report about this application
of reflection in another paper.

7 Discussion

In our experience with reflection we encountered several
challenges that posed limitations and required making deci-
sions among possible solutions. They are discussed in the
following subsections.

7.1 Identification of reflective features

Before implementing a reflective framework the first step is
the identification of the elements to be exposed to the meta-
level. In our approach we started with a set of scenarios with
problems and used them as a criterion for selecting among
the possible reflective features. This approach, however, may
not be sufficient if a general-purpose reflective mechanism
is required. To overcome this, we extended our analysis by
inspecting the computational objects and events available in
the execution semantics of the language.

We cannot claim that we support full reflection according
to the view expressed in [21], where every computational
object has its own metaobject. First, some aspects of the
computation were intentionally left out. A general princi-
ple in language design is that a good language protects its
own abstractions. In contrary, reflection requires that some,
otherwise implicit, computational aspects are exposed. We
decided not to expose the rule matching algorithm and the

internal trace. Second, MISTRAL is a work in progress.
Several features are planned but not fully implemented yet.
They are not considered in the paper. These are rule inher-
itance, constructs for transformation packaging and reuse,
and helper rules. A detailed presentation of these features
is given in [16]. Rule inheritance and package import are
resolved statically before the execution of the transformation.
We do not expect conceptual problems in including these lan-
guage constructs in the reflective mechanism by providing an
interceptor to a suitable event and an access to the transfor-
mation model. The same is valid for the helper rules due to
their close similarity to the model element rules. It should be
noted that the algorithm of resolution of the rule inheritance
is an interesting computational event that can be exposed to
metaprograms. This would allow transformation developers
to alter the default inheritance semantics for rules.

Some metarules required more expressivity from the
language. However, we perceive the domain-specific and
declarative nature of MISTRAL as a higher priority than the
richness of its reflection capabilities. This leads to limitations
discussed in the next subsection.

7.2 The reflective tower

It is known that the computation levels may be layered
upon each other forming a potentially infinite stack of com-
putation levels known as a reflective tower. The metalevel
may be perceived as an ordinary computation (base) level.
Another metalevel may be built upon it. Thus, the dichotomy
base/meta level becomes relative. In MISTRAL, we use only
two computation levels. This means that it is not possible to
specify metaprograms upon other metaprograms. This is cer-
tainly a major limitation of our approach.

There are benefits in using more than two levels. One
of the applications of reflection is debugging. However, if
we want to debug a transformation for which metarules are
specified we need a reflection upon the metarules. Another
reason to consider more than two levels is that metarules are
often modules with reusable application logic. They may be
manipulated in the same way as a metarule manipulates base
rules.

We already mentioned the problem that certain compu-
tations cannot be easily expressed by using base rules of
MISTRAL. The reason is the domain-specific nature of the
language that makes it suitable for a limited set of problems. If
we decide to build a second (or a higher order) metalevel, the
same challenge will appear: we have to analyze the required
scenarios and eventually to extend further the language. This
can be stopped if we introduce constructs from general-pur-
pose languages such as iteration and condition. We consider
the domain-specificity of the language as a higher priority.

Metaprogram can be expressed in a general-purpose pro-
gramming language. If this language is reflective then the

123

Application of reflection in a model transformation language 331

problem with the reflective tower is solved according to the
existing research in this area [32]. The reason not to choose
this approach is that we wanted to apply a solution within
the boundary of MISTRAL, that is, a solution which is still
domain-specific.

An interesting direction for research is to study a transfor-
mation language implemented as an embedded DSL [9] in
a language that supports reflection. An example is the Rub-
yTL [5] implemented in Ruby. This idea is a subject of future
work.

7.3 Implementing reflection

In general, there are three ways to introduce reflection in a
language: using preprocessing, modifying the language inter-
preter, and modifying the language compiler.

• Using preprocessing. This approach is employed in [19].
The language is syntactically extended and the new con-
structs are translated to the existing constructs by includ-
ing a preprocessing phase. This approach does not require
changing the interpreter/compiler of the language. In the
context of MDE, this approach may be applied by using
a higher-order transformation that translates the reflec-
tive program to a non-reflective one. Jouault [11] applies
HOT to achieve flexible traceability. He does not extend
the transformation language with new features though.
The shortcoming of the preprocessing approach lies in
the fact that it deals with static aspects of reflection and is
limited to source code manipulation. In case of reflection
upon the runtime structures, HOTs are not enough.

• Changing the interpreter. The current prototype of the
MISTRAL engine is implemented as an interpreter and
we had to change it to introduce the forms of behav-
ioral reflection we presented. Generally, this approach
is considered to lead to decreased performance in terms
of execution time. This is due to the fact that the inter-
preter is checking every time if a reflection feature is
requested when the interpreter evaluates expressions that
are exposed to metacomputations.

• Changing the compiler. This approach overcomes the
problems of the interpreter-based execution. During com-
pilation the compiler may analyze the reflective code and
introduce the invocations to the metalevel only when nec-
essary. An application of this idea is reported in [28] and
applied for the Java reflective framework Reflex.

8 Related work

Unfortunately, there is limited experience in using reflec-
tion in current model transformation languages. The most

commonly found form of reflection is structural introspection
over model elements based on the reflective API of ECore.

Tefkat [18] indicates reflection support. This comes in
three forms. The first form is a generic access to the proper-
ties and metaclasses of the model elements. Tefkat relies on
the ECore reflective API to do that (the operational environ-
ment of the language is based on the ECore metamodeling
architecture). The second form allows specifying expressions
in places where a class or a feature is expected. The third
form uses the construct AnyType that allows any object to be
selected regardless of its concrete type. The latter two mech-
anisms may not be regarded a reflective features but they
increase the genericity of the Tefkat programs.

These three reflective constructs allow model copy trans-
formations to be specified in a generic and concise manner.
The reflective support in Tefkat concerns only source and
target model elements. We are not aware of reflective capa-
bilities that allow navigation over the transformation rules or
changing the behavior of the transformation system at run-
time. MISTRAL does not support introspection over model
elements in the form found in Tefkat.

VIATRA2 [31] allows defining generic template rules. In
these rules, the classes are parameters that may be substituted
via template instantiation. The instantiation is achieved by a
meta-transformation in the terms of VIATRA2. In fact, the
instantiation executes a higher-order transformation which
manipulates the generic transformation.

MISTRAL does not directly allow generic template rules
as first-class language elements. This effect can be achieved
by using transformation and rule execution metarules that
replace the parameters with concrete classes.

We have not experimented with transformation languages
that are embedded DSLs in a language with reflective fea-
tures. Such a language is RubyTL [5] implemented in the
context of Ruby. The authors of RubyTL report on the pos-
sibility to introspect the transformation program elements, a
capability generally available for Ruby programs. This cor-
responds to the capability provided by the variables trans-
formation and this in our work.

Our work fits in the more general context of adding reflec-
tion to DSLs. The closest related work in this domain comes
from the series of workshops on Domain-Specific Aspect
Languages (DSAL) [6]. One of the problems treated in
this research area is how to specify domain-specific join
points in a DSL and how to implement domain-specific
aspect weavers. Reflection is perceived as a solution to this
problem.

The reflective features of MISTRAL allow modularization
of crosscutting transformation code. The metarule addTrace
in Sect. 6.1 can be perceived as an aspect specification. The
scattered trace generation code is modularized in a single
rule. This rule is executed on two rules. This corresponds to
join points in the AOP terminology. The update action in the

123

332 I. Kurtev

rule implements the advice mechanism that inserts the aspect
code in the selected base rules.

9 Conclusions

In this paper we studied the possibilities to employ reflection
in a rule-based model transformation language. The design of
the reflective framework was derived from several usage sce-
narios and the computational objects used in the transforma-
tion execution. The reflective features were considered from
a more general perspective in a two-dimensional space that
provides a reasoning framework about the possible solutions.
The reflective capabilities were implemented in an experi-
mental model transformation language by modifying the lan-
guage interpreter.

It was possible to solve the problems formulated in the
scenarios. The trace generation may be separated in a single
module, either in a transformation execution metarule or in
a rule execution metarule. The metarules may be excluded if
this functionality is not needed. A fine-grained weaving pol-
icy in the second scenario may be expressed via a global rule
ordering (transformation execution rule) or via an ordering
per single element as shown in Sect. 6.2.

Since we applied reflection on a DSL we encountered
several limitations rooted in the fact that a DSL has a limited
problem scope and often limited expressivity. This prevented
us to achieve uniformity in treating base rules and metarules.
The result is a reflective architecture with a single metalevel.

The major benefit of using reflection is achieving transfor-
mation solutions with better quality. We were able to spec-
ify generic and reusable trace generation functionality. This
should help us in improving traceability and change manage-
ment in model transformations. Reflection may provide fine
control during execution and as we suggested in the paper
other technologies (e.g., AOP) may benefit from this.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Akehurst, D., Bordbar, B., Evans, M.J., Howells, W.G.J.,
McDonald-Maier, K.D.: SiTra — Simple Transformations in Java.
MoDELS 2006, pp. 351–164. Genova, Italy (2006)

2. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa,
A.: Abstracting Object Interactions Using Composition Filters.
ECOOP Workshop on Object-based Distributed Programming,
pp. 152–184. Darmstadt, Germany (1993)

3. Budinsky, F., Steinberg, D., Raymond Ellersick, R., Ed Merks, E.,
Brodsky, S.A., Grose, T.J.: Eclipse Modeling Framework. Addison
Wesley, Reading (2003)

4. Chiba, S.: Load-time structural reflection in Java. ECOOP 2000,
pp. 313–336. Sophia Antipolis, France (2000)

5. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A Practical,
Extensible Transformation Language. ECMDA-FA 2006, pp. 158–
172. Bilbao, Spain (2006)

6. Domain-Specific Aspect Languages Workshops Series. http://dsal.
dcc.uchile.cl

7. Havinga, W., Nagy, I., Bergmans, L., Aksit, M.: Detecting and
Resolving Ambiguities Caused by Inter-dependent Introductions.
AOSD 2006, pp. 214–225. Bonn, Germany (2006)

8. Herzeel, C., Costanza, P., D’Hondt, T.: Reflection for the Masses.
Self-Sustaining Systems 2008, pp. 87–122. Potsdam, Germany
(2008)

9. Hudak, P.: Building Domain-Specific Embedded Languages. ACM
Comput. Surv 28(4es), 196 (1996)

10. Jouault, F., Kurtev, I.: Transforming Models with ATL. Model
Transformations in Practice Workshop, MoDELS 2005 Confer-
ence, Montego Bay, Jamaica (2005)

11. Jouault, F.: Loosely Coupled Traceability for ATL, ECMDA 2005
Workshop on Traceability. Nuremberg, Germany (2005)

12. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification.
FMOODS 2006, pp. 171–185. Bologna, Italy (2006)

13. Kiczales, G., Rivières, J.D., Bobrow, D.G.: The Art of the Meta-
object Protocol. MIT Press, Cambridge (1991)

14. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W.G.: An Overview of AspectJ. EOOP 2001, pp. 327–
354. Budapest, Hungary (2001)

15. Kojarski, S., Lorenz, D. H.: Awesome: an Aspect Co-weaving Sys-
tem for Composing Multiple Aspect-Oriented Extensions. OOP-
SLA 2007, pp. 515–534. Montreal, Canada (2007)

16. Kurtev, I.: Adaptability of Model Transformations, PhD thesis,
University of Twente, The Netherlands. ISBN 90-365-2184-X
(2005)

17. Kurtev, I., van den Berg, K., Jouault, F.: Rule-based modulariza-
tion in model transformation languages illustrated with ATL. Sci.
Comput. Program 68(3), 138–154 (2007)

18. Lawley, M., Steel, J.: Practical Declarative Model Transformation
with Tefkat. MoDELS Satellite Events. pp. 139–150, Montego Bay,
Jamaica (2005)

19. Leitner, A., Eugster, P., Oriol, M., Ciupa, I.: Reflecting on an Exist-
ing Programming Language. TOOLS Europe 2007, JOT 6, (9)
(2007)

20. Lewis, B., Ducassé, M.: Using events to debug Java programs back-
wards in time. OOPSLA Companion 2003, pp. 96–97. Anaheim,
CA, USA (2003)

21. Maes, P.: Computional reflection. PhD thesis, Artificial intelligence
laboratory, Vrije Universiteit, Brussels, Belgium (1987)

22. McAffer, J.: Engineering the meta-level. Reflection 1996, pp. 39–
61. San Francisco, CA, USA (1996)

23. Mistral web site. http://www.vf.utwente.nl/~kurtev/mistral/
24. OMG. MOF 2.0 Query/Views/Transformations RFP. OMG docu-

ment ad/2002-04-10 (2002)
25. Paakki, J.: Attribute Grammar Paradigms—A High-Level

Methodology in Language Implementation. ACM Comput.
Surv 27(2), 196–255 (1995)

26. Pawlak, R., Seinturier, L., Duchien, L., Floring, G.: In: JAC: A flex-
ible solution for aspect-oriented programming in Java. 3rd Interna-
tional Conference on Metalevel Architectures and Advanced Sep-
aration of Concerns, Japan (2001)

123

http://dsal.dcc.uchile.cl
http://dsal.dcc.uchile.cl
http://www.vf.utwente.nl/~kurtev/mistral/

Application of reflection in a model transformation language 333

27. Smith, B.C.: Reflection and Semantics in Lisp. In: 14th Annual
ACM Symposium on Principles of Programming Languages 1984,
pp. 23–35. Salt lake City, USA (1984)

28. Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial Behavioral
Reflection: Spatial and Temporal Selection of Reification. OOP-
SLA 2003, pp. 27–46. Anaheim, CA, USA (2003)

29. Tanter, E.: From Metaobject Protocols to Versatile Kernels for
Aspect-Oriented Programming. PhD thesis, University of Nantes
and University of Chile (2004)

30. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bezivin, J.: On the
Use of Higher-Order Model Transformations. ECMDA 2009, pp.
18–32, Enschede, the Netherlands (2009)

31. Varro, D., Pataricza, A.: Generic and Meta-transformations for
Model Transformation Engineering. UML2004, pp. 290–304.
Lisbon, Portugal (2004)

32. Wand, M., Friedman, D.P.: The mystery of the tower revealed: a
non-reflective description of the reflective tower. In: ACM Sym-
posium on LISP and Functional Programming 1986, pp. 298–307.
Cambridge (1986)

Author Biography

Ivan Kurtev holds a MSc degree
in Computer Science from Uni-
versity of Sofia and a PhD
degree in Software Engineer-
ing from University of Twente.
He is currently an assistant pro-
fessor in the Software Engi-
neering group in University of
Twente, the Netherlands. His
main research interests are in the
domain of Model Driven Engi-
neering with a focus on model
transformation languages, meta-
modeling, requirements model-
ing and traceability.

123

	Application of reflection in a model transformation language
	Abstract
	1 Introduction
	2 Computational reflection
	2.1 Background
	2.2 Towards a common model of execution of model transformation programs
	2.3 Reflection in the common execution model

	3 Motivating scenarios
	3.1 Example: generation of custom trace links
	3.2 Example: controlling aspect weaving at shared join points

	4 MISTRAL: an experimental language with reflective features
	4.1 Example MISTRAL program
	4.2 Execution semantics

	5 Adding reflection to MISTRAL
	5.1 Identification of relevant computational objects and events
	5.1.1 ExecuteTransformation
	5.1.2 MatchRule
	5.1.3 ExecuteRule
	5.1.4 ExecuteRuleOnMatch
	5.1.5 AssignSlotValue
	5.1.6 Resolve

	5.2 Expressing metaprograms
	5.2.1 Variables
	5.2.2 Metarules
	5.2.3 Transformation execution rule
	5.2.4 Execution order rule
	5.2.5 Rule execution
	5.2.6 Instantiation rule
	5.2.7 Slot assignment rule
	5.2.8 Resolution rule

	6 Example applications
	6.1 Generation of trace links based on introspection
	6.2 Controlling aspect weaving at shared join points
	6.3 Generation of execution trace

	7 Discussion
	7.1 Identification of reflective features
	7.2 The reflective tower
	7.3 Implementing reflection

	8 Related work
	9 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

