Skip to main content
Log in

Mixed-layer salinity budget in the tropical Indian Ocean: seasonal cycle based only on observations

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The mixed-layer salinity (MLS) budget in the tropical Indian Ocean is estimated from a combination of satellite products and in situ observations over the 2004–2012 period, to investigate the mechanisms controlling the seasonal MLS variability. In contrast with previous studies in the tropical Indian Ocean, our results reveal that the coverage, resolution, and quality of available observations are now sufficient to approach a closed monthly climatology seasonal salt budget. In the South-central Arabian Sea and South-western Tropical Indian Ocean (SCAS and STIO, respectively), where seasonal variability of the MLS is pronounced, the monthly MLS tendency terms are well captured by the diagnostic. In the SCAS region, in agreement with previous results, the seasonal cycle of the MLS is mainly due to meridional advection driven by the monsoon winds. In the STIO, contrasting previous results indicating the control of the meridional advection over the seasonal MLS budget, our results reveal the leading role of the freshwater flux due to precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler RF et al (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Beal LM, Hormann V, Lumpkin R, Foltz GR (2013) The reponse of the surface circulation of the Arabian Sea to monsoonal forcing. J Phys Oceanogr 43. doi:10.1175/JPO-D-13-033.1

  • Berger H, Treguier AM, Talandier C (2014) Dynamical contribution to sea surface salinity variations in the eastern Gulf of Guinea based on numerical modelling. Clim Dyn. doi:10.1007/s00382-014-2195-4

    Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Da-Allada YC, Alory G, du Penhoat Y, Kestenare E, Durand F, Hounkonnou NM (2013) Seasonal mixed-layer salinity balance in the Tropical Atlantic Ocean: mean sate and seasonal cycle. J Geophys Res Oceans 118. doi:10.1029/2012JC008357

  • Da-Allada YC, Alory G, du Penhoat Y, Jouanno J, Hounkonnou NM, Kestenare E (2014a) Causes for the recent increase in sea surface salinity in the north-eastern Gulf of Guinea. Afr J Mar Sci 36(2):197–205. doi:10.2989/1814232X.2014.927398

    Article  Google Scholar 

  • Da-Allada YC, du Penhoat Y, Jouanno J, Alory G, Hounkonnou (2014b) Modeled mixed-layer salinity balance in the Gulf of Guinea: seasonal and interannual variability. Ocean Dyn. doi:10.1007/s10236-014-0775-9

    Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12):52–71

    Article  Google Scholar 

  • de Boyer Montégut C, Vialard J, Shenoi SSC, Shankar D, Durand F, Ethé C, Madec G (2007) Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean. J Clim 20:3249–3268

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Allberg KP, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dong S, Garzoli SL, Baringer M (2009) An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. J Geophys Res 114, C12001. doi:10.1029/2008JC005258

    Article  Google Scholar 

  • Donguy JR, Meyers G (1996) Seasonal variation of sea-surface salinity and temperature in the tropical Indian Ocean. Deep Sea Res I 43:117–138

    Article  Google Scholar 

  • Durand F, Shankar D, de Boyer Montegut C, Shenoi SSC, Blanke B, Madec G (2007) Modelling the barrier- layer formation in the Southeastern Arabian Sea. J Clim 20:2109–2120. doi:10.1175/JCLI4112.1

    Article  Google Scholar 

  • Durand F, Alory G, Dussin R, Reul N (2013) SMOS reveals the signature of Indian Ocean dipole events. Ocean Dyn 63:1203–1212. doi:10.1007/s10236-013-0660-y

    Article  Google Scholar 

  • Foltz GR, McPhaden MJ (2008) Seasonal mixed layer salinity balance of the tropical North Atlantic Ocean. J Geophys Res 113, C02013. doi:10.1029/2007JC004178

    Google Scholar 

  • Foltz GR, Vialard J, Kumar P, McPhaden MJ (2010) Seasonal mixed layer heat balance of the Southwestern Tropical Indian Ocean. J Clim 23. doi:10.1175/2009JCLI3268.1

  • Gaillard F, Autret E, Thierry V, Galaup P, Coatanoan C, Loubrieu T (2009) Quality control of large Argo datasets. J Atmos Ocean Technol 26:337–351

    Article  Google Scholar 

  • Halkides D, Lee T (2011) Mechanisms controlling seasonal mixed layer temperature and salinity in the Southwestern Tropical Indian Ocean. Dyn Atmos Oceans 51:77–93

    Article  Google Scholar 

  • Hasson AEA, Delcroix T, Dussin R (2013) An assessment of the mixed layer salinity budget in the tropical Pacific Oceans. Observations and modelling (1990–2009). Ocean Dyn 63(2–3):179–194. doi:10.1007/s10236-013-0596-2

    Article  Google Scholar 

  • Hernandez O, Boutin J, Kolodziejczyk N, Reverdin G, Martin N, Gaillard F, Reul N, Vergely JL (2014) SMOS salinity in the subtropical north Atlantic salinity maximum: part I: comparison with Aquarius and in situ salinity. J Geophys Res Oceans. doi:10.1002/2013JC009610

    Google Scholar 

  • Jensen TG (2003) Cross-equatorial pathways of salt and tracers from the northern Indian Ocean: modelling results. Deep Sea Res Part II 50:2111–2128

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kim W, Yeh SW, Kim JH, Kug JS, Kwon M (2011) The unique 2009–2010 El Nino event: a fast phase transition of warm pool El Nino to La Nina. Geophys Res Lett 38. doi:10.1029/2011gl048521

  • Kolodziejczyk N, Gaillard F (2013) Variability of the heat and salt budget in the subtropical Southeastern Pacific mixed layer between 2004 and 2010: spice injection mechanisms. J Phys Oceanogr 43. doi:10.1175/JPO-D-13-04.1

  • Kolodziejczyk N, Hernandez O, Boutin J, Reverdin G (2015) SMOS salinity in the subtropical north Atlantic salinity maximum: 2.Two-dimensional horizontal thermohaline variability. J Geophys Res Oceans 120:972–987. doi:10.1002/2014JC010103

  • Li Y, Wang F, Han W (2013) Interannual sea surface salinity variations observed in the tropical North Pacific Ocean. Geophys Res Lett 40:2194–2199. doi:10.1002/grl.50429

    Article  Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96(suppl):3343–3357

    Article  Google Scholar 

  • Lumpkin R, Johnson GC (2013) Global ocean surface velocities from drifters: mean, variance, El Nino-Southern Oscillation response, and seasonal cycle. J Geophys Res Oceans 118:2992–3006. doi:10.1002/jgrc.20210

    Article  Google Scholar 

  • Masson S, Boulanger JP, Menkes C, Delecluse P, Yamagata T (2004) Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. J Geophys Res 109, C02002. doi:10.1029/2003JC001807

    Google Scholar 

  • Masson S et al (2005) Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys Res Lett 32, L07703. doi:10.1029/2004GL021980

    Google Scholar 

  • Mignot J, de Boyer Montegut C, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. J Geophys Res 112, C10010. doi:10.1029/2006JC003954

    Article  Google Scholar 

  • Pailler K, Bourlès B, Gouriou Y (1999) The barrier layer in the western tropical Atlantic Ocean. Geophys Res Lett 26:2069–2072

    Article  Google Scholar 

  • Qu T, Gao S, Fukumori I (2011) What governs the North Atlantic salinity maximum in a global GCM? Geophys Res Lett 38. doi:10.1029/2011gl046757

  • Rao RR, Sivakumar R (2003) Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J Geophys Res 108(C1):3009. doi:10.1029/2001JC000907

    Article  Google Scholar 

  • Ren L, Riser SC (2009) Seasonal salt budget in the northeast Pacific Ocean. J Geophys Res 114, C12004. doi:10.1029/2009JC005307

    Article  Google Scholar 

  • Ren L, Speer K, Chassignet EP (2011) The mixed layer salinity budget and sea ice in the Southern Ocean. J Geophys Res 116, C08031. doi:10.1029/2010JC006634

    Google Scholar 

  • Schott FA, Xie SP, McCreary JP Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47, RG1002. doi:10.1029/2007RG000245

    Article  Google Scholar 

  • Seo H, Xie SP, Murtugudde R, Jochum M, Miller AJ (2009) Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J Clim 22:6577–6596

    Article  Google Scholar 

  • Shankar D, Vinayachandran PN, Unnikrishnan AS (2002) The monsoon currents in the north Indian Ocean. Prog Oceanogr 52:63–120. doi:10.1016/S0079-6611(02)00024-1

    Article  Google Scholar 

  • Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the tropics. J Geophys Res 97:7305–7316

    Article  Google Scholar 

  • Taylor K (2001) Summarizing mutiple aspects of model performances in a single diagram. J Geophys Res 106(D7):7183–7192

  • Terray L, Corre L, Cravatte S, Delcroix T, Reverdin G, Ribes A (2012) Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J Clim 25:958–977. doi:10.1175/JCLI-D-10-05025.1

    Article  Google Scholar 

  • Vialard J, Delecluse (1998) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28(6):1071–1088. doi:10.1175/1520-0485(1998)028<1071:aosftt>2.0.co;2

    Article  Google Scholar 

  • Vialard J, Delecluse P, Menkes C (2002), A modeling study of salinity variability and its effects in the tropical Pacific Ocean during the 1993–1999 period. J Geophys Res 107(C12). doi:10.1029/2000jc000758

  • Vinayachandran PN, Nanjundiah RS (2009) Indian Ocean sea surface salinity variations in a coupled model. Clim Dyn. doi:10.1007/s00382-008-0511-6

    Google Scholar 

  • Vinayachandran PN, Murty VSN, Ramesh Babu V (2002) Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J Geophys Res 107(C12):8018. doi:10.1029/2001JC000831

    Article  Google Scholar 

  • Vinogradova NT, Ponte RM (2013) Clarifying the link between surface salinity and freshwater fluxes on monthly to interannual time scales. J Geophys Res Oceans 118:3190–3201. doi:10.1002/jgrc.20200

    Article  Google Scholar 

  • Webster PJ (1994) The role of hydrological processes in ocean atmosphere interactions. Rev Geophys 32:427–476

    Article  Google Scholar 

  • Xie SP, Annamalai H, McCreary FA Jr (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:864–878

    Article  Google Scholar 

  • Yu L (2011) A global relationship between the ocean water cycle and near surface salinity. J Geophys Res 116, C10025. doi:10.1029/2010JC006937

    Article  Google Scholar 

  • Yu L, Jin X, Weller R (2008) Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables, 64 pp

Download references

Acknowledgments

C.Y. Da-Allada was supported by an Ifremer postdoctoral grant. The ERA-Interim reanalyses products are provided by the European Centre for Medium-Range Weather Forecasts (http://data-portal.ecmwf.int/data/d/interim_mnth/), the NCEP/NCAR reanalysis products are available at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html, the evaporation OAFlux product is provided by the WHOI OAFlux project (http://oaflux.whoi.edu), the Global Precipitation Climatology Project is available at http://wwW.esrl.noaa.gov/psd/data/gridded/data.gpcp.html , the seasonal climatology of mixed-layer depth is available at http://www.ifremer.fr/cerweb/deboyer/mld/Surface_Mixed_Depth.php, and the current data is available at http://www.oscar.noaa.gov for OSCAR currents and for the Global Drifter Program at http://www.aoml.noaa.gov/envids/gld/index.php.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casimir Y. Da-Allada.

Additional information

Responsible Editor: Aida Alvera-Azcárate

Appendix: error estimates

Appendix: error estimates

In this study, we have performed sensitivity tests before choosing the MLD criterion, the E-P dataset, the choice of the depth of the salinity vertical gradient at the base of the mixed layer, and the surface current products. We tested two density criteria (0.03 and 0.125 kg m−3) of the MLD which are used in several studies (e.g., de Boyer Montégut et al. 2004; Dong et al. 2009; Yu 2011), and we also used the MLD product of de Boyer Montégut et al. (2004) based on density criteria (0.03 kg m−3). The reference depth for the vertical density gradient is set to 10 m because of better data sampling than 0 or 5 m. For the E-P, we tested the product described in the data section with two reanalysis products: the monthly evaporation and precipitation dataset from the ERA-Interim reanalysis (Dee et al. 2011) of the European Centre for Medium-Range Weather Forecasts (ECMWF) available at 0.5° resolution and the monthly evaporation and precipitation dataset from the National Center for Environmental Prediction (NCEP) reanalysis 1 which are available at 2° resolution (Kalnay et al. 1996). The surface currents presented in the data section are tested with the near-surface velocity average at 15 m depth deduced from satellite-tracked drifting buoy observations. This product is available on a monthly mean climatology on a 0.5° × 0.5° grid (Lumpkin and Johnson 2013). The subsurface salinity at the base of the mixed layer is tested with three different values: salinity just at the mixed-layer base (S_h0) and salinity at 5 m (S_h5) and at 15 m (S_h15) below the mixed-layer base. Using different combinations of MLD, E-P, salinity at the mixed-layer base, and surface current products, we diagnosed 25 MLS tendencies time series for each box. For each of these combinations, observed and diagnosed MLS tendencies are compared and we quantify the similarity between the two estimates by computing the correlation coefficient and root mean square difference (RMSD) which are presented in the Taylor diagrams (Fig. 10). In the SCAS region, the Taylor diagram shows the sensitivity of the region to current products, and we found that the correlation coefficient between observed and diagnosed MLS tendencies is better with OSCAR than drifter currents. We find a small sensitivity when this current (OSCAR) is used with the three different E-P and also the three salinity values at the mixed-layer base. The RMSD between the MLS tendencies (using OSCAR currents) appears more important using different density criteria to compute the MLD than E-P. We noted that OAFLUX-GPCP and the salinity at 15 m below the mixed-layer base using OSCAR current and density criteria of 0.125 kg m−3 for the MLD give the best correlation (0.97), the smallest RMSD (0.25), and the best (closest to 1) standard deviation ratio (0.95).

Fig. 10
figure 10

Taylor diagram in the SCAS and the STIO regions. Observed and diagnosed MLS tendencies are represented by points on a diagram where the correlation coefficient (R) between the observed and diagnosed time series is given by the azimuthal position, standard deviation of the observed or diagnosed time series is given by the radial distance from the origin, and the centered root mean square difference (RMSD) is given by the distance between the observed point and diagnosed point. REF is the reference experiment

In the STIO, the values in the Taylor diagram are more dispersed than in the SCAS. OSCAR and drifter currents give roughly similar results although drifter current slightly improves the correlation between the diagnosed and observed tendencies. This region is more sensitive to E-P, density criteria for MLD, and the choice of the depth of salinity gradient at the mixed layer. We selected the OSCAR current with OAFLUX-GPCP, salinity at 15 m below the mixed layer, and the density criteria 0.125 kg m−3 for the reference experiment in the two boxes. To complete sensitivity tests, we replace in the reference experiment, the MLD by the product of de Boyer Montégut et al. (2004) which is based on density criteria 0.03 kg m−3 (Fig. 10). In the SCAS, we have obtained RMSD = 0.32 instead of 0.24 with the reference MLD, while in the STIO, RMSD = 0.38 instead of 0.25 with the reference. These results suggest that the reference MLD used in this study is more appropriate to approach the salinity balance than the product of de Boyer Montégut et al. (2004).

All the sensitivity tests are used to estimate the error bar on the diagnosed MLS tendency. Following Da-Allada et al. (2013), standard error is estimated from all the diagnosed tendencies described above, for each month of the seasonal cycle.

For the observed MLS tendency, we first estimate monthly error (ε S) in MLS as the standard error of all available observations for each month over the 2004–2012 period. Then, errors in MLS (ε obs) are obtained following the formula of Foltz and McPhaden (2008): \( {\varepsilon}_{\mathrm{obs}}=\left(\sqrt{\varepsilon_{{\mathrm{S}}_{t+1}}^2+{\varepsilon}_{{\mathrm{S}}_{t-1}}^2}\right)/\varDelta t \), with ∆t = 2 months.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da-Allada, C.Y., Gaillard, F. & Kolodziejczyk, N. Mixed-layer salinity budget in the tropical Indian Ocean: seasonal cycle based only on observations. Ocean Dynamics 65, 845–857 (2015). https://doi.org/10.1007/s10236-015-0837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0837-7

Keywords

Navigation