Skip to main content
Log in

Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8–12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acevedo OC, Pezzi LP, Souza RB, Anabor V, Degrazia G (2010) Atmospheric boundary layer adjustment to the synoptic cycle at the Brazil-Malvinas Confluence South Atlantic Ocean. J Geophys Res 115: D22107. doi:10.1029/2009JD013785

  • Alexander MA, Penland C (1996) Variability in a mixed layer model of the upper ocean driven by stochastic atmospheric surface fluxes. J Climate 9:2424–2442

    Article  Google Scholar 

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE (2010) World ocean atlas 2009 volume 2: salinity. In: Levitus S (ed) NOAA atlas NESDIS 69. U.S. Government Printing Office, Washington, D.C

    Google Scholar 

  • Barré N, Provost C, Saraceno M (2006) Spatial and temporal scales of the Brazil–Malvinas Current confluence documented by simultaneous MODIS Aqua 1.1-km resolution SST and color images. Adv Space Res 37:770–786

    Article  Google Scholar 

  • Barreiro M, Tippmann A (2008) Atlantic modulation of El Niño influence on summertime rainfall over southeastern South America. Geophys Res Lett 35. doi:10.1029/2008GL035019. issn: 0094-8276

  • Barros VR, Silvestri GE (2002) The relation between sea surface temperature at the subtropical south-central Pacific and precipitation in southeastern South America. J Climate 15:251–267

    Article  Google Scholar 

  • Barrucand M, Rusticucci M, Vargas W (2008) Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation. J Geophys Res 113: D20111. doi:10.1029/2007JD009026

  • Bianchi AA, Giulivi CF, Piola AR (1993) Mixing in the Brazil/Malvinas Confluence. Deep-Sea Res 40:1345–1358

    Article  Google Scholar 

  • Bianchi AA, Piola AR, Collino GJ (2002) Evidence of double diffusion in the Brazil–Malvinas Confluence. Deep-Sea Res I 49:41–52

    Article  Google Scholar 

  • Bonatti JP, Rao VB (1999) Meso escale perturbations and thermohaline fronts in the South Atlantic Ocean. Dyn Atmos Oceans 30:11–24. doi:10.1016/S0377-0265(99)00016-0

    Article  Google Scholar 

  • Carton AG, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Carton AG, Chepurin G, Cao X, Giese BS (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30:294–309

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Witter DL, Richman JG (1990) GEOSAT altimeter observations of the surface circulation of the Southern Ocean. J Geophys Res 95:17,877–17,903. doi:10.1029/JC095iC10p17877

    Article  Google Scholar 

  • Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Stephens CM, Antonov JI (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures. Natl Oceanogr Data Center, Silver Spring (17)

  • Corre L, Terray L, Balmaseda M, Ribes A, Weaver A (2010) Can oceanic reanalysis be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? Clim Dyn 38:877–896

    Article  Google Scholar 

  • Cunningham AP, Barker PF (1996) Evidence for westward-flowing Weddell Sea deep water in the Falkland Trough, western South Atlantic. Deep-Sea Res 43:643–654

    Article  Google Scholar 

  • de Camargo R, Todesco E, Pezzi LP, de Souza RB (2013) Modulation mechanisms of marine atmospheric boundary layer at the Brazil-Malvinas Confluence region. J Geophys Res Atmos 118. doi:10.1002/jgrd.50492

  • Diaz AF, Studzinski CD, Mechoso CR (1998) Relationships between precipitation anomalies in Uruguay and Southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. J Climate 11:251–271

    Article  Google Scholar 

  • Eremy WJ, Thomson RE (2001) Data analysis methods in physical oceanography. 2nd ed. Elsevier, 638 p

  • Ferrari R, Provost C, Renault A, Sennéchael N, Barré N, Park Y-H, Lee JH (2012) Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin. J Geophys Res 117, C12024, doi:10.1029/2012JC008264

  • Fetter AFH and Matano R (2008) On the origins of the variability of the Malvinas Current in a global, eddy-permitting numerical simulation. J Geophys Res 113, C11018. doi:10.1029/2008JC004875

  • Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev Notes Correspondence 119:1293–1303

    Article  Google Scholar 

  • Garcia CAE, Sarma YVB, Mata MM, Garcia VMT (2004) Chlorophyll variability and eddies in the Brazil-Malvinas Confluence region. Deep-Sea Res 51:159–172

    Article  Google Scholar 

  • Garzoli SL, Giulivi C (1994) What forces the variabillity of the southwestern Atlantic boundary currents? Deep-Sea Res I 41:1527–15550

    Article  Google Scholar 

  • Garzoli SL, Gordon AL (1996) Origins and variability of the Benguela Current. J Geophys Res 101:897–906

    Article  Google Scholar 

  • Garzoli SL, Matano R (2011) The South Atlantic and the Atlantic meridional overturning circulation. Deep-Sea Res II 58:1837–1847

    Google Scholar 

  • Goni G, Wainer I (2001) Investigation of the Brazil Current front dynamics from altimeter data. J Geophys Res 106:31,117–31,128. doi:10.1029/2000JC000396

    Article  Google Scholar 

  • Gordon AL, Greengrove CL (1986) Geostrophic circulation of the Brazil-Falkland Confluence. Deep Sea Res Part A 573–585

  • Griffies SM, Hallberg RW (2000) Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946

    Article  Google Scholar 

  • Griffies SM, Gnanadesikan A, Dixon KW, Dunne JP, Gerdes R, Harrison MJ, Rosati A, Russell JL, Samuels BL, Spelman MJ, Winton M, Zhang R (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79

    Article  Google Scholar 

  • Hoskins BJ, Hodges KIA (2005) A new perspective on Southern Hemisphere storm tracks. J Climate 18:4108–4130

    Article  Google Scholar 

  • Katsumata K, Masuda S (2013) Variability in Southern Hemisphere ocean circulation from the 1980s to the 2000s. J Phys Oceanogr 43(9):1981–2007

    Article  Google Scholar 

  • Kidson JW (1999) Principal modes of Southern Hemisphere low frequency variability obtained from NCEP-NCAR reanalysis. J Climate 12:2808–2830

    Article  Google Scholar 

  • Klein B, Molinari RL, Muller TJ, Siedler G (1995) A transatlantic section at 14.5°N: meridional volume and heat fluxes. J Mar Res 53:929–957

    Article  Google Scholar 

  • Large WG, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/T-460 + STR. CGD Division of the National Center for Atmospheric Research, USA

  • Large WG, Yeager S (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi:10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Legeckis R, Gordon AL (1982) Satellite observations of the Brazil and Falkland Currents—1975 to 1976 and 1978. Deep-Sea Res 29:375–401

    Article  Google Scholar 

  • Lentini CAD, Podestá GG, Campos EJD, Olson DB (2001) Sea surface temperature anomalies on the western South Atlantic from 1982 to 1994. Cont Shelf Res 21:89–112

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) World ocean atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA atlas NESDIS 68. U.S. Government Printing Office, Washington, D.C, 184 pp

    Google Scholar 

  • Lübbecke JF, McPhaden MJ (2013) A comparative stability analysis of Atlantic and Pacific Niño modes. J Climate 26(16):5965–5980

    Article  Google Scholar 

  • Maamaatuaiahutapu K, Garçon VC, Provost C, Boulahdid M, Osiroff AP (1992) Brazil-Malvinas Confluence: water mass composition. J Geophys Res 97:9493–9506

    Article  Google Scholar 

  • Matano RP, Schlax MG, Chelton MG (1993) Seasonal variability in the southwestern Atlantic. J Geophys Res 98:18,027–18,035

    Article  Google Scholar 

  • Möller OO, Piola AR, Freitas AC, Campos AJD (2008) The effects of river discharge and seasonal winds on the shelf o southeastern South America. Cont Shelf Res 28:1607–1624. doi:10.1016/j.csr.2008.03.012

    Article  Google Scholar 

  • Namias J, Born RM (1974) Further studies of temporal coherence in North Pacific sea surface temperatures. J Geophys Res 79:797–798

    Article  Google Scholar 

  • Olson D, Podesta G, Evans R, Brown O (1988) Temporal variations in the separation of the Brazil and Malvinas Currents. Deep-Sea Res 35:1971

    Article  Google Scholar 

  • Pacanovsky RC, Griffies SM (1999) “The MOM 3 manual,” Geophys Fluid Dynam Labor, NOAA Princenton

  • Palma ED, Matano RP, Piola AR (2008) A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing. J Geophys Res 113:1–22. doi:10.1029/2007JC004720, C11010

    Google Scholar 

  • Parker DE, Jones PD, Folland CK, Bevan A (1994) Interdecadal changes of surface temperature since the late nineteenth century. J Geophys Res 99:14373–14399

    Article  Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26(1):1–73

    Article  Google Scholar 

  • Pezzi LP, Cavalcanti I (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim Dyn 17:205–212

    Article  Google Scholar 

  • Pezzi LP, Souza RB, Dourado MS, Garcia CAE, Mata MM, Silva-Dias MAF (2005) Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region. Geophys Res Lett 32: L22603, doi:10.1029/2005GL023866

  • Pezzi LP, Souza RB, Acevedo O, Wainer I, Mata MM, Garcia CAE, Camargo R (2009) Multi-year measurements of the oceanic and atmospheric boundary layers at the Brazil-Malvinas Confluence region. J Geophys Res 114:D19103. doi:10.1029/2008JD011379

  • Piola AR, Matano RP (2001) In: Thorpe SA (ed) Brazil and Falklands (Malvinas) Currents. Encyclopedia of ocean sciences. Elsevier, New York, pp 340–349

    Chapter  Google Scholar 

  • Piola AR, Campos EJD, Möller OO, Charro M, Martinez C (2000) The Subtropical shelf front off eastern South America. J Geophys Res 105:6565–6578

    Article  Google Scholar 

  • Provost C, Garçon V, Falcon LM (1996) Hydrographic conditions in the surface layers over the slope-open ocean transition area near the Brazil-Malvinas Confluence during austral summer 1990. Cont Shelf Res 162:215–219

    Article  Google Scholar 

  • Rao VB, Do Carmo A, Franchito S (2003) Interannual variations of the storm tracks in the Southern Hemisphere and their connections with the Antarctic Oscillation. Int J Climatol 23:1537–1545. doi:10.1002/joc.948

    Article  Google Scholar 

  • Romero SL, Piola AR, Charo M, Garcia CE (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res 111: C05021 doi:10.1029/2005JC003244

  • Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res 109: C05027, doi:10.1029/2003JC002127

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

  • Souza RB, Mata MM, Garcia CAE, Kampel M, Oliveira EN, Lorenzzetti JA (2006) Multisensor satellite and in situ measurements of a warm core eddy south of the Brazil-Malvinas Confluence region. Remote Sens Environ 100:52–66. doi:10.1016/j.rse.2005.09.018

    Article  Google Scholar 

  • Spadone A, Provost C (2009) Variations in the Malvinas Current volume transport since 1992. J Geophys Res 114, C02002. doi:10.1029/2008JC004882

  • Thompson DWJ, Wallace JM (2000) Annular mode in the extratropical circulation. Part I: month-to-month variability. J Climate 13:1000–1016

    Article  Google Scholar 

  • Tokinaga H, Tanimoto Y, Xie S-P (2005) SST-induced wind variations over Brazil-Malvinas Confluence: satellite and in-situ observations. J Climate 18:3470–3482

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Climate 14:1697–1701

    Article  Google Scholar 

  • Venegas SA, Mysak LA, Straub DN (1996) Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophys Res Lett 23:2673–2676

    Article  Google Scholar 

  • Vera C, Silvestri G, Barros V, Carril A (2004) Differences in El Niño response over the Southern Hemisphere. J Climate 17:1741–1753

    Article  Google Scholar 

  • Vivier F, Provost C, Meredith MP (2001) Remote and local forcing in the Brazil-Malvinas region. J Phys Oceanogr 31(4):892–913

    Article  Google Scholar 

  • Wainer I, Venegas S (2002) South Atlantic variability in the climate system model. J Climate 15:1408–1420

    Article  Google Scholar 

  • Witter DL, Gordon AL (1999) Interannual variability of South Atlantic circulation from 4 years of TOPEX/POSEIDON satellite altimeter observations. J Geophys Res 104(C9):20,927–20,948

    Article  Google Scholar 

  • Xie S-P (2004) Satellite observations of cool ocean-atmosphere interaction. BAMS 195–208

  • Zhang R, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming El Niño change on scales in the Tropical Pacific. Nature 391:879–882

    Article  Google Scholar 

  • Zhu J, Huang B, Wu Z (2012) The role of ocean dynamics in the interaction between the Atlantic meridional and equatorial modes. J Climate 25(10):3583–3598

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Institute for Space Research (INPE), the National Counsil of Technological and Scientific Development (CNPq), and São Paulo Research Foundation (FAPESP) for their support. The first author was funded by FAPESP 2007/06782-0 and Atlantic Carbon Experiment (ACEx-CNPq) 558108/2009–1. Luciano Ponzi Pezzi acknowledges support from CNPq, as a contribution for the PQ (CNPq) project number 304633/2012-7. Two anonymous reviewers provided comments, which reflected substantial improvements to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Porto da Silveira.

Additional information

Responsible Editor: Aida Alvera-Azcárate

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silveira, I.P., Pezzi, L.P. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence. Ocean Dynamics 64, 347–360 (2014). https://doi.org/10.1007/s10236-014-0699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0699-4

Keywords

Navigation