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Abstract The aim of this work is to report on an activity
carried out during the 2010 Recognized Environmental Pic-
ture experiment, held in the Ligurian Sea during summer
2010. The activity was the first at-sea test of the recently
developed decision support system (DSS) for operation plan-
ning, which had previously been tested in an artificial exper-
iment. The DSS assesses the impact of both environmental
conditions (meteorological and oceanographic) and non-
environmental conditions (such as traffic density maps) on
people and assets involved in the operation and helps in
deciding a course of action that allows safer operation. More
precisely, the environmental variables (such as wind speed,
current speed and significant wave height) taken as input by
the DSS are the ones forecasted by a super-ensemble model,
which fuses the forecasts provided by multiple forecasting
centres. The uncertainties associated with the DSS’s inputs
(generally due to disagreement between forecasts) are propa-
gated through the DSS’s output by using the unscented trans-
form. In this way, the system is not only able to provide a
traffic light map (run/not run the operation), but also to
specify the confidence level associated with each action. This
feature was tested on a particular type of operation with
underwater gliders: the glider surfacing for data transmission.
It is also shown how the availability of a glider path prediction
tool provides surfacing options along the predicted path. The

applicability to different operations is demonstrated by apply-
ing the same system to support diver operations.

Keywords Geospatial decision support systems . Uncertainty
handling . Ensemble statistics . Unscented transform .

Underwater gliders . Fuzzy logic . Decision under risk

1 Introduction

Military and civilian maritime operations are both deeply
affected by METereological and OCeanographic (METOC)
conditions putting human safety, involved assets and the
environment at serious risk. To be successful in the dynamic
maritime environment, improvement of the general situa-
tional awareness (SA) of mission planners and decision
makers is a key. In particular, improving environment SA
by providing information and tools to correctly assess the
future impact of the weather and the ocean state on oper-
ations, deeply contributes to reducing the risk of mission
failure due to environmental conditions falling outside the
allowed operational constraint intervals.

A considerable number of operational failures and
important accidents have been due to human factors,
in particular lack of SA of operators, and due to bad
environmental conditions (Grech and Horberry 2002;
Clifford and Ah 2004; de la Campa 2005). The main
causes of these failures and accidents span the three
levels of the classical SA model of Endsley (1995,
2000, 2004), which are perception, cognition and pro-
jection of events in the future. For example, poorly
designed observational sensor networks, data scarcity
and data misperception are factors contributing to incor-
rectly perceived information by the decision maker. A
large amount of time- and spatial-varying data from
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several sources and associated uncertainty prevents the
decision maker from correctly integrating or compre-
hending information and from making correct projec-
tions of present trends. In general, all these factors
cause humans to be unable to make informed decisions,
increasing the risk of failure.

To allow METOC information to play a role in the
mission planning process, a significant effort in observing
and forecasting atmospheric and oceanic variables and as-
sociated uncertainty is essential, especially in those highly
dynamic areas such as the littoral zone. Moreover, to further
improve environmental SA, decision support systems (DSS)
that are able to fuse and analyse a massive amount of
METOC forecasts and measurements, collected from a
number of distributed METOC centres have to be provided
to the decision maker. Environmental risk assessment given
mission operational constraints (that is, thresholds on
METOC variables elicited by domain experts), automat-
ic hypothesis ranking, and decision making on the
course of action are value-added products that synthet-
ically describe and predict the situation in the opera-
tional field and decrease the heavy cognitive work load
on the decision maker. Exploitation of data uncertainty
associated with METOC predictions and measurements
makes it possible to give a level of confidence to the
DSS outcomes to further improve SA.

1.1 The REP10 experiment

The 2010 Recognized Environmental Picture experiment
(REP10) took place in the Ligurian Sea from 19 August
to 3 September 2010. The sea trial was focused on the
exploitation of a variety of observational assets, includ-
ing remote sensing satellites, underwater gliders (Eriksen
et al. 2001; Schofield et al. 2007), drifters, HF radar and
moorings, to extract near-surface geophysical parameters
and physical and bio-optical properties in the water col-
umn. All these measurements can be assimilated into
bio-optical and physical METOC models providing an
integrated approach for near real-time METOC data col-
lection and modelling. The uncertainty associated with
METOC measurements and forecasts has been evaluated
so that it can be exploited by decision support tools that
are able to propagate input uncertainty and give a confi-
dence score to their outcomes as detailed in the follow-
ing sections.

1.2 Related works on environmental DSSs

Senne and Condon (2007) presented the Lincoln Laboratory
initiative in integrated sensing and decision support (ISDS),
a decision support model combining key elements of the
observe-orient-decide-act (OODA) loop, the military

decision making process and the recognition-primed deci-
sion models. They highlighted the necessity of integrating
improved observational capabilities with automatic intelli-
gent decision support tools in order to analyze the increasing
amount of information available to the decision makers and
thereby improve their responsiveness and ability to make
informed decisions. Examples of the use of the ISDS model
in several fields were reported, including air traffic control
applications in which weather forecast models were used to
extend the time horizon of air-route traffic planners under
severe weather conditions.

Regnier (2007) discussed main gaps between systems
and end-users preventing the proper use of METOC infor-
mation in DSSs and highlighted important research topics to
be investigated in order to cover the gaps, including tools for
decision-centric end-to-end systems, cognitive aspects of
weather forecasting, production of stochastic forecasts and
use of uncertainty in DSSs.

The economic value of METOC probabilistic forecasts,
as predicted by ensemble techniques, was analyzed by sev-
eral authors, such as Zhu et al. (2002), demonstrating
through a cost-loss model, the benefit of using ensemble
predictions compared to deterministic ones. The analysis
was conducted without taking into account possible addi-
tional benefits provided by automatic DSSs.

Decision support tools are widely used in several
fields such as operation planning, transport, medicine,
finance, environmental resource planning and crisis
management at strategic, tactical and operational levels
(Jarre et al. 2008; Liu and Lai 2009; Acosta et al. 2010;
Apipattanavis et al. 2010; Mensa et al. 2011). In these
tools, several approaches to risk assessment and auto-
matic decision making are used. Rule-based fuzzy logic
expert systems (Ross 2010) have several advantages
with respect to other techniques. High interpretability,
the possibility to deal with objective and/or subjective
knowledge elicited from experts, application in the pres-
ence of uncertainty and vagueness, are, among others,
the most remarkable characteristics making fuzzy sys-
tems highly preferable.

Aiello et al. (2009), Balmat et al. (2009), and Tavana and
Bourgeois (2010) are examples of interesting works on
fuzzy-based DSSs for risk assessment in maritime opera-
tions in which the risk is assessed by analysing the impact of
dynamical environmental and static non-environmental fac-
tors. The environmental part of their proposed architectures
does not make use of stochastic forecasts and therefore
predicted uncertainty on METOC input variables is not
exploited to improve SA of the end user.

The NATO Undersea Research Centre (NURC) has been
conducting research on tactical DSSs for assessing the im-
pact of the environment on maritime operations since 2002.
A first architecture based on fuzzy systems coupled with
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web-based geographical information systems (GISs) for da-
ta management and dissemination was proposed in Grasso
and Giannecchini (2006). Since then, the system has been
incrementally updated (Grasso 2009; Grasso et al.
2010b) up to the latest version presented in Grasso et al.
(2011) and tested during REP10 as reported in the present
work. Improvements with respect to previous works include
fusion of METOC predictions from different centres and
production of stochastic forecasts as well as efficient and
explicit use of the predicted uncertainty through the unscented
transform (UT) to improve performance of the decision
makers.

1.3 Main contributions of this work

The DSS component of the REP10 trial allowed the demon-
stration of an extended concept of a recognised environmental
picture, which exploits the acquired environmental knowledge
at higher levels of abstraction of decision support models such
as the OODA loop.

The experiment provided a rare opportunity to test the
generic maritime operation DSS described in Grasso et al.
(2011) during a real experiment at sea involving a fleet of
underwater gliders and operational METOC forecast models
from different sources. In particular, the system has been
used to automatically deliver DSS products in near-real
time, which are now available to the REP10 partners for
post analysis and validation. Moreover, an initial investiga-
tion activity involving human experts has already started,
aiming at assessing human factors in decision support sys-
tems that use METOC data. This activity is providing useful
feedback, which is helping to improve the system and define
new requirements.

1.4 Organisation of the paper

Section 2 of this paper describes the architecture of the DSS
used during REP10 with a minimal level of technical details.
Section 3 describes the part of the REP10 experiment related
to the use of the DSS. Section 4 describes the experimental
scenario in terms of environmental conditions and Section 5
presents the outcomes. Section 6 offers conclusions and
future work.

2 System description

The architecture of the integrated DSS is depicted in Fig. 1.
The DSS comprises two sub-systems:

– A super ensemble (SE) stochastic forecast system that
fuses measurements and METOC predictions from N
METOC centres, and measurements and produces a
forecast of METOC statistics such as mean and
covariance

– A DSS to support generic operations based on a fuzzy/
Bayesian rule-based expert system, which calculates the
risk of performing an operation due to the environment,
proposes a course of action and assigns a confidence
level to decisions by propagating the input uncertainty
through the entire system by the UT

The fuzzy/Bayesian DSSwill be described in the following
subsections, mainly reviewing the concepts outlined in Grasso
et al. (2010b) and Grasso et al. (2011), with additional details,
in particular those specific to the REP10 experiment.

2.1 The super-ensemble forecast system

The SE multi-model technique combines several predictions
provided by different models to produce a single forecast
and uncertainty. The technique is based on the optimization,
in terms of distance to observations, of the weighted linear
combination of the input models during a specified learning
period. The weights are then used to combine the
corresponding model forecasts. The 3D super-ensemble
(3DSE) described in Lenartz et al. (2010), which allows
spatially varying model weights, has been used. The present
implementation in the Ligurian Sea provides 72-h predictions
of ocean temperature, horizontal ocean currents, significant
wave height, and 10-m wind velocity. The prediction of the
different parameters is the result of independent 3DSE simu-
lations. Surface temperature data from the Operational Sea
Surface Temperature and Sea Ice Analysis (OSTIA) system
(Stark et al. 2007) is assimilated during the learning period,
together with ocean temperature profiles from gliders and
conductivity–temperature–depth stations. Mourre et al.
(2011) evaluated the accuracy of these 3DSE temperature
predictions, showing RMS errors of 0.40°C against future

Super ensemble

stochastic forecast

system

METOC centre 1

METOC centre N

Fuzzy/Bayesian DSS

for generic

operations

Operation risk
and stats
Action
decision

Decision
confidence

Fig. 1 The integrated DSS architecture comprises a super-ensemble METOC forecast system and a general purpose environmental DSS based on a
fuzzy/Bayesian inference engine

Ocean Dynamics (2012) 62:469–493 471



OSTIA analysis and 0.77°C against independent REP10 in
situ temperature profiles. Below the sea surface, the 3DSE
was found to provide similar temperature forecast skills as the
most accurate of the models and the model ensemble mean,
whereas the 3DSE skills were better at the surface.

The 3DSE provides an associated uncertainty forecast
(Mourre et al. 2011) when observations are assimilated
during the learning period, which is the case of ocean
temperature in this study. This uncertainty is estimated from
the product of the model predictions by the a posteriori
model weight error covariances computed through the
3DSE analysis. This uncertainty, which depends on (1) the
location and error statistics of the observations assimilated
during the 3DSE learning period, and (2) the a priori weight
error covariances (specified as distance-dependent in this
study), is lower in the area spanned by the assimilated
measurements. When there are no observations assimilated
(as is the case for ocean currents, significant wave height
and winds), the 3DSE is the mean forecast over the ensemble
of models, while an estimate of the associated uncertainty is
given by the standard deviation of the ensemble.

2.1.1 The forecasting models used by the 3DSE in REP10

The set of METOC operational numerical systems consid-
ered during the REP10 experiment consists of two atmo-
spheric forecasting systems, four surface gravity wave
forecasting systems and three ocean forecasting systems.
All the systems provided forecasts in real time with at least
3 days of forecast range. Although some institutions release
more than one forecast per day, only runs with 00:00 UTC
reference time have been used in the super-ensemble. The
systems are reported in Appendix 1.

2.2 The fuzzy/Bayesian DSS

The DSS for generic operations is depicted in Fig. 2. The
core of the system (Grasso et al. 2010b) is a risk calculator
based on a hybrid fuzzy/Bayesian inference engine (Ross
2010). This block calculates the risk of performing an ac-
tion, selected from a pre-defined list of actions, under given
environmental conditions described by a set of METOC
variables predicted by the SE model. The risk calculator is
wrapped by the UT that is used to propagate input METOC
statistics (mean and covariance) and predict mean and co-
variance of the action risks (Grasso et al. 2011). The risk
statistics are then used as inputs to the action selection rule

and the confidence calculator. The former simply chooses
the action having the minimum mean risk, while the latter
analyses the mean and the covariance of the action risks to
assess the statistical separability of the actions and give a
confidence level to the final decision. Each component of
the system depicted in Fig. 2 will be described in greater
detail in the following sub-sections.

2.2.1 The action risk calculator

Figure 3 depicts the action risk calculator in detail. The
system couples the flexibility of a fuzzy logic system in
encoding expert knowledge and dealing with vague con-
cepts and the rigorous formulation of the Bayesian mini-
mum risk decision theory.

The fuzzy classifier assigns subjective conditional prob-

abilities, P wm xtij

���� �
(Anscombe and Aumann 1963), to a set

of environmental decision classes, 4 � w1; . . . ;wMf g, giv-
en a vector of F METOC variables, xtij � x1; . . . ; xF½ �T (also

called environmental factors, such as significant wave
height and wind speed), affecting the operation to be sup-
ported. The indices (i, j) represent discrete positions on a
spatial grid, which covers the geographical area of interest
(in this paper the grid is in latitude and longitude on the sea
surface), while t is a temporal index indicating a time instant
in the future.

In the specific case of this work, the input space is parti-
tioned into three classes, Ω≡{ω10favourable, ω20marginal,
ω30unfavourable}. The ω1 class represents environmental
conditions in which the operation can safely run, while
ω3 is the class having METOC values in a range such
that it is unsafe to run the operation. The ω2 class
represents intermediate situations between the two extreme
classes ω1 and ω3. It indicates METOC ranges for
which the decision of running or not running an operation
should be postponed until a clear understanding of the
environmental condition is available. The outputs of the sys-
tem are the three class subjective conditional probabilities

ptij ¼ Pðw1 xtij

��� Þ Pðw2 xtij

��� Þ Pðw3 xtij

��� Þ
h iT

. The rule base

of the fuzzy classifier depends on the considered operation.
It embeds knowledge elicited from experts of the domain
(including the types of METOC variables to be considered
and the operational constraints on those variables) as a series
of if-then rules (Ross 2010). Appendix 2 describes the fuzzy

Unscented transform

Actionrisk
calculator

Predicted mean vector
of METOC factors

Predicted covariance of
METOC factor vector

Action risk
mean vector

Action risk vector
covariance

Action
selectionrule

Confidence

Course of action

Decision
confidence

Fig. 2 The schematic of the
fuzzy/Bayesian DSS for generic
operations
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classifier in greater detail including the type of inference used
and considerations about the elicitation of system parameters.

The risk associated with an action αl ∈ A, where A≡{α1,
…,αL}, in the Bayesian sense, is calculated (see the risk
calculator in Fig. 3) as the average conditional cost of deciding
αl given xtij, over the set of environmental classes, Ω:

rðal x
t
ij

��� Þ ¼
X
wm24

lðal wmj Þ � Pðwm xtij

��� Þ; ð1Þ

where, 1(αl|ωm) is the conditional cost of deciding for the
action αl given the environmental class ωm.

In this work, the action list A is composed of two ele-
ments, A≡{α10run operation, α20not run operation}. The
conditional costs, 1(αl|ωm), can be arranged in this case in a
L02 by M03 matrix as follows:

0 ¼ lða1 w1j Þ lða1 w2j Þ lða1 w3j Þ
lða2 w1j Þ lða2 w2j Þ lða2 w3j Þ

� �
: ð2Þ

The conditional cost matrix is specified by experts of the
domain. It should take into account, for instance, actual
costs of assets and equipment involved in the operation
and subjective judgement of experts with regards to their
preferences about risk.

An estimate of risk for running the operation and for not
running the operation for every input METOC environmen-
tal variable is now available. The next steps include the
propagation of uncertainty through the risk calculator, the
action selection and the decision confidence as detailed in
the following sub-sections.

2.2.2 Propagation of the input uncertainty by the UT

The risk calculator can be considered as a non-linear
random vector mapping between the input space of METOC

factors, xtij 2 R
F and the action conditional risks, rtij ¼

½rða1 xtij

��� Þ; . . . ; rðaL xtij

��� Þ�T 2 R
L. The UT is used to propagate

the statistics of xtij through the risk calculator up to the

second order. In particular, the mean METOC factor vector,

xtij , and the covariance matrix, Xt
ij , predicted by the SE

model (see Fig. 2) are the inputs to the UT wrapping the
risk calculator. The UT is an efficient way to propagate
second order statistics (mean, covariance and cross-
covariance) of a random variable passing through a non-
linearity of any order (Julier and Uhlmann 2004; Van der
Merwe 2004). The UT estimates the statistics of the output
random vector knowing the statistics of the input by approx-
imating the true probability density function of the input
with a Gaussian and making use of a deterministic sampling
procedure that is more efficient than classical random sam-
pling Monte Carlo techniques. Advanced versions of the
technique use information on higher order moments of the
input distribution, resulting in an improved estimate of mean
and covariance of the output (Julier and Uhlmann 2004).
These features will be used in future work for those
cases in which the input presents highly non-Gaussian
characteristics.

The output of the risk calculator is evaluated for a set of
so-called sigma points:

sptijk � wk ; ctijk

n o
k ¼ 1; :::; 2F þ 1 ð3Þ

with ctijk 2 R
F . The UT deterministic sampling scheme

generates the samples ctijk in the input space by using the

METOC statistics and the weights wk. The same weights
and the risk calculator outputs evaluated for each ctijk are

then used to estimate the statistics of the output by means of
sample weighted averages as reported in Appendix 3.

As specified by Eq. 3, the UT makes use of S02F+1
sigma points to estimate the output statistics (in case of 4
inputs, as in the present work, the number of sigma points is
just 9). In those cases for which only the input statistics are
available, we need a method to resample and propagate the
uncertainty through the system. In case of a large ensemble
with Ne>S (Ne being the number of members of the ensem-
ble), calculating the ensemble statistics and then using the
UT is more efficient than providing the ensemble members
directly to the DSS system and then estimating the output
uncertainty. Moreover, the data transfer from a remote

Fuzzy classifier Risk calculator
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Fig. 3 The schematic of the
fuzzy/Bayesian action risk
calculator
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METOC centre would benefit if only the statistics are trans-
mitted through the network. Furthermore, in the case where
an SE model with assimilated measurements is used, prop-
agating each single model used in the SE and then estimat-
ing the output uncertainty is different than propagating the
statistics of the SE which are a combination of models and
measurements. This paper presents the system taking into
account the more general scenario even though the number
of models available to the SE is less than S and no measure-
ments can be assimilated into the SE. The DSS concept
provided in this work is valid in any case, independently
of the quality of the input statistics. In case of poor quality
statistics, the operator may still be interested, for example, in
performing a what-if or sensitivity analysis by testing dif-
ferent levels of uncertainty and bias to compare different
future scenarios. The user can either trust the system if the
scenarios are not significantly different, for example, or
decide on the basis of experience and constraints of a
different nature, beyond those considered in the DSS.

The estimated risk mean vector, rtij ¼ ½rða1 xtij

��� Þ; . . . ;

rðaL xtij

��� Þ�T ¼ ½rt
ij1
; :::; rtijL�T and the risk covariance matrix,

Rt
ij, at the output of the UT (recall that for an action list of

two actions, which is the case examined in this work, the
risk mean vector is 2×1 while the covariance matrix is 2×2)
are used in the action selection and confidence level calcu-
lation steps as described in the following sub-section.

2.2.3 Action selection and decision confidence

As originally proposed in Grasso et al. (2010b), the system
chooses, according to the classical Bayesian decision theory
(Duda et al. 2000), the action having the minimum condi-
tional risk:

bat
ij � arg min

al2A
½rðal x

t
ij

��� Þ�; ð4Þ

This step is postponed, as proposed in Grasso et al.
(2011), until the UT (see Fig. 2) in order to propagate the
input uncertainty as described in the previous section. The
final architecture is then able to exploit information from
multiple METOC centres and the uncertainty associated
with METOC forecasts so as to improve the SA of the
mission planners.

The final decision law is obtained by substituting

rðal xtij

��� Þ in (4) with the mean risk vector components,

rðal xtij

��� Þ ¼ rtijl, at the output of the UT:

bat
ij � arg min

al2A
½rðal xtij

��� Þ�: ð5Þ

The decision confidence step detects those cases in which
the actions are not statistically separable as a consequence of
too much uncertainty in the METOC forecast inputs. As
proposed in Grasso et al. (2011), the system estimates a
decision confidence measure, cmt

ij , by comparing the 95%

action risk confidence intervals, which are calculated by
using the diagonal elements of the risk covariance matrix,
Rt

ij and the mean vector, rtij, both estimated by the UT. The

confidence measure cmt
ij is a heuristic index which was

inspired by methods like the Tukey’s multiple comparisons
procedure or the Gabriel’s test, which find application in
testing if several groups of samples belong to the same
statistical population (Hayter 1984; Benjamini and Braun
2002). Future developments of the system will improve the
confidence measure by considering a formal hypothesis test
procedure and correlation among risks. If rtij Up ¼ rtijσð1Þ þ
$σð1Þ is the upper limit of the confidence interval associated

to the chosen action and rtij Lo ¼ min
p>1

rtijσðpÞ � $σðpÞ
� �

is the

minimum of the lower limits associated to the remaining
actions (p01,…,L and σ(p) is the permutation of the action
indexes, l01,…,L, induced by the rank of the mean risks in
ascending order), the difference cmt

ij ¼ rtij Up � rtij Lo or its

normalised value, for example by the square root of the sum
of risk variances, is the confidence given to the decision.
Confidence to the selected action is given for positive values
of cmt

ij , meaning that the confidence intervals of the action

risks are not overlapped (see Fig. 4 for an example with two
actions). In addition, a binary confidence map, ctij, is produced

as well by detecting negative and positive values of cmt
ij:

ctij ¼
0 cmt

ij � 0
1 cmt

ij > 0

�
; ð6Þ

1( )ir α x

2( )ir α x

95% confidence levels action α1

95% confidence levels action α2

i

R
is

k

Fig. 4 One-dimensional spatial example of action risk 95% confidence

levels. In this case, rða1 xtij

��� Þ < rða2 xtij

��� Þ 8i and the system selects the

action α1 in the entire spatial region. A region with no confidence is
detected due to overlapping risk confidence intervals (see shaded area)
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helping the mission planner to easily locate confident and non-
confident decisions in space and time. In this way, the system
provides an additional level of decision, the confidence map,
ctij, to inform the user that the system itself is not able tomake a

final decision due to statistically contradicting information.
The user, in these cases, can either accept the proposed action
or distrust the system and decide on the basis of his experi-
ence, different criteria and the operational context.

2.2.4 Considerations with respect to decision theory
and future improvements of the DSS

The system presented in this paper chooses the action with
the minimum expected cost (or loss) with respect to the set
of environmental classes. A negative action/class cost is also
allowed meaning that a gain is achieved when the action is
performed under that specific class. In the present work, the
costs are not elicited, but are chosen to be consistent with
monotonicity constraints 1(α1|ω1)<1(α1|ω2)<1(α1|ω3) and
1(α2|ω1)>1(α2|ω2)>1(α2|ω3) as reported in Subsection 3.4
(Grasso et al. 2011). In case real costs are provided (cost of
assets and equipment for instance) the system is risk neutral.
The cost of each action/class pair, if intended in a broader
sense, could also reflect the subjective judgement of human
experts even though the correct formulation to integrate user
risk preferences into the system is given by the maximisa-
tion of the expected utility (Kreps 1990). Due to the flexi-
bility of the proposed DSS architecture, several other
approaches to decision under risk could easily be integrated,
not only the expected utility theory, but also alternatives
such as a generalisation of expected value with mode or
median of payoffs (Yager 2004) and prospect theory
(Kahneman and Tversky 1979). Future versions of the
system may include these principles to further improve
operator efficiency and effectiveness.

In order to achieve this goal, the challenging issue of
modelling the decision maker’s risk attitude and eliciting his
preferences as utility or prospect value functions has to be
faced. Perception of risk by humans depends on the context
and the application domain. In a military context, for exam-
ple, in which extreme situations have to be handled, Haerem
et al. (2010) observed a risk-seeking behaviour in both loss
and gain domains due to self-efficacy of the decision maker,
deviating from prospect theory original findings (Tversky
and Kahneman 1981) in which decision makers are
influenced by the gain and loss framing. In general,
no final consensus has been reached on risk preferences
in a military context and specifically, the authors of the
study suggest further investigation to confirm their con-
clusions. Moreover, no clear understanding exists on
how METOC operators make decisions under conditions
of uncertainty.

During the REP10 experiment, a preliminary investiga-
tion (Grasso et al. 2010d) was conducted in collaboration
with METOC officers of national navies with the aim of
providing information on their operational working proce-
dures and testing the present system. GIS clients were used
as a tool to overlay DSS product grids. The METOC officer
activity was automatically tracked using web-logging in
order to have data on utilisation of METOC forecasts and
DSS products, to be analyzed during the post-experiment
phase. In general, DSS products, such as traffic light maps,
are able to reduce the information overload, improving
METOC officer performance in generating hypotheses on
the course of action in space and time over the area of
interest. The experiment was not able to produce definitive
results on the cognitive behaviour of METOC officers and
on their preferences versus risk, but it provided the founda-
tion for further investigation. A future long-term effort is
envisioned to develop requirements for future DSSs and
include risk preferences of METOC operators and final
decision makers. The investigation will adopt a cognitive
engineering approach which includes subject matter expert
interviews and knowledge audits, task and sense making
analyses and collection of METOC operator performance
in situ data.

3 The DSS experiment within REP10

The DSS experiment within REP10 demonstrated the archi-
tecture presented in Section 2 in a real operational context
and showed how METOC information can be used to pro-
vide value-added products to the decision makers. The
experiment focused on supporting underwater glider oper-
ations for several reasons. Firstly, gliders were an important
component of REP10, the success of which was largely
dependent on how well the vehicles were operated. In gen-
eral, glider missions are at risk for several reasons and
specifically designed decision support tools provided to
the mission planners and vehicle pilots contribute to the
mission success by mitigating the risk. In this sense, the
REP10 experiment provides a valuable data set that can be
exploited to study, design and implement integrated decision
support systems for glider mission planning and control.
Secondly, the system’s ability to support several phases
typically involved in operations with gliders can be tested
including deployment, recovery, navigation, surfacing and
data transmission, each one affected by the environment in a
different way, demonstrating the flexibility of the proposed
decision support architecture. Moreover, the operational
phases are affected by several critical factors such as wind
velocity, sea current speed, wave height and period, rain and
maritime traffic, which have to be simultaneously fused to
support a particular operation phase. Supporting glider
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operations during REP10 provides an opportunity to show
the architecture working with multiple inputs and outputs.
Finally, the personnel operating the vehicles during REP10
and previous NURC experiments (Grasso et al. 2011),
which includes experienced pilots and engineers, provided
valuable feedback to help define the system rule base and
parameters. Input from experienced pilots and engineers
contributes to understanding the psychological aspects and
human factors related to the use of METOC information in
decision support (Grasso et al. 2010d), a topic which will be
further investigated in future work.

3.1 The glider operating area

Figure 5 shows the area of interest and in particular the 60×
90 km boundary (see the rectangle in blue) in which a fleet
of seven underwater gliders was allowed to operate during
the trial. The vehicles were required by the local maritime
authority to navigate in the highlighted area. Given these
physical limitations, it was important to monitor the mission
over the entire experiment and predict possible strong cur-
rents with enough notice for the pilots to keep the gliders
within the allowed area. Two gliders navigated along recti-
linear transects (black lines in Fig. 5) to collect measure-
ments to initialize and validate METOC forecast models.
The rest of the fleet was exploited to adaptively sample the
area and measure those regions where the METOC models
were affected by a greater estimated prediction error. The
measurements, when possible, were assimilated into those
models to refine the forecast and reduce the prediction error.

3.2 Glider operations

During the experiment, a set of glider operations was con-
sidered including glider deployment, recovery and surfacing

for data transmission. Two other kinds of operations, diver
operations and naval refuelling, were also considered to
further demonstrate the general purpose capabilities of the
system.

The METOC critical factors affecting glider operations
and associated operational constraints were elicited by
means of an informal pre-analysis of the problem with the
collaboration of domain experts. A formal knowledge elic-
itation process, using questionnaires submitted to a group of
experts (Acosta et al. 2010), will be implemented in future
works. An initial formalisation of this process was started
during REP10 (Grasso et al. 2010d), but it needs further
improvements and testing. For this reason, the DSS rule
base and conditional cost matrix used during REP10 to
support glider operations are likely to be updated in future
work.

Glider deployment and recovery operations using small
rubber boats either starting from a glider port or a mother
ship, expose humans and equipment to serious risk. The
critical factors affecting the operations are both non-
METOC and METOC related. The experience of the crew
and the type of the boat are typical non-METOC informa-
tion that should be taken into account during the planning of
the mission. METOC factors include the significant wave
height, the dominant wave period, the wind speed, the rain
intensity and thunderstorm probability. High values of the
significant wave height are conditions that should be
avoided as they significantly impact the rubber boat naviga-
tion and the operations to load and unload them from a
mother ship. Additionally, the presence of high wind speed
might cause the overturning of a boat, depending on the
relative direction of the wind with respect to the rubber
boat’s course over-ground.

Data transmission after glider surfacing allows the trans-
fer of measurements and their near-real-time assimilation

Fig. 5 REP10 area of
operations in the Ligurian Sea.
The blue box is the allowed area
for glider operations. Glider
paths along two rectilinear
transects (black) are shown in
red and magenta. An example
of adaptive sampling path is
shown in green
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into METOC forecast models to improve prediction skills.
Typically, the glider is programmed to periodically surface,
for example every 3 h, and transmit data to the command
and control centre. During the transmission phase, in which
the glider cannot be manoeuvred except for stopping the
transmission and re-starting the survey, the glider may drift
for long distances if strong currents and winds are present.
Moreover, depending on the volume of data, the speed of
the communication link and near-real-time requirements, the
glider can be at the surface for long periods (more than
30 min) and at risk of collision with other vessels. Finally,
reliability of the data link may be strongly affected by the
sea state.

3.3 Additional operations: naval refuelling and diver
operations

Critical factors and operational constraints for naval refuel-
ling and diver operations were gathered from specialised
handbooks on standard METOC operation support, issued
by national navy forces (JMH 2000).

Naval refuelling underway, for example of an aircraft
carrier by a tanker ship, exposes humans and vessels to
serious risk of injuries or damage. The two vessels are
connected by steel cables with fuelling pipes alongside.
Rough sea state makes it difficult to navigate along parallel
routes and keep a secure distance, and thus increases the risk
of a cable breaking with disastrous consequences for refuel-
ling personnel.

Diver operations are significantly affected by current
speed, temperature, wave height and water visibility. Swim-
mer capabilities are reduced in strong currents and wave
height could impact the diver deployment phase. Depending
on the temperature, diver performance can be significantly
degraded; for example, in cold water, lack of concentration
and hypothermia can occur. Vertical and horizontal water
visibility affects diver detection as well as the ability of
divers to operate. In general, diver operation support is
mainly of interest on a local scale rather than in the open
sea, such as the REP10 study area. Nevertheless, in this
work, examples of products for diver operation support will

be provided to demonstrate the flexibility of the system in
fusing information from heterogeneous sources including
remote sensing. The DSS can provide operation support at
a local scale if local METOC forecast models and high
resolution satellite data are available, without modifying
the system architecture.

3.4 Setting up the DSS

The setup of the general purpose DSS consists of (1) spec-
ifying fuzzy sets and associated membership functions of
the input and output variables, (2) populating the rule base,
(3) deciding the fuzzy inference method, (4) determining the
action list and (5) setting the action conditional cost matrix.
These steps need to be completed for each of the supported
operations, which are defined during the expert knowledge
elicitation phase. The system parameter setup can be found
in Grasso et al. (2010b) and Grasso et al. (2011). In partic-
ular, the cost matrix was chosen as follows:

0 ¼ 10 70 200
100 30 10

� �
: ð7Þ

The configuration of the costs is such that in the
limiting cases the conditional probability vector is

ptij ¼ Pðw1 xtij

��� Þ Pðw2 xtij

��� Þ Pðw3 xtij

��� Þ
h iT

¼ 1 0 0½ �T

and ptij ¼ 0 0 1½ �T, the preference is given to the actions

runOp and notRunOp, respectively, while for ptij ¼
0 1 0½ �T the decision is notRunOp. When the classes
are equiprobable, the preference is given to notRunOp.

The METOC variables used to support operations during
REP10 are reported in Table 1 for each operation. The
variables include the wind speed from the atmospheric
component, the current speed and the water temperature
from the oceanographic component and the significant wave
height from the surface gravity wave component. The vessel
traffic density was estimated from a long series of automatic
identification system data. Water visibility to support diver
operations was estimated from satellite multi-spectral pas-
sive sensor images.

Table 1 Operations supported during REP10 and DSS input METOC variables

Operation METOC/non-METOC input fields

Sea surface
temperature (T)

Current
speed (CS)

Significant wave
height (HS)

Wind speed
(WS)

Horizontal water
visibility (HV)

Vessel traffic
density (VTD)

Glider deployment/recovery ×

Glider surfacing and data Tx × × × ×

Diver operations × × × ×

Naval refuelling × ×
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As previously mentioned, METOC ensemble predictions
were available each day with reference time 00:00:00 for a
72-h forecast period with a sampling interval of 1 h. The
DSS was set to provide operational products on the same
forecast period with a sampling interval of 6 h. DSS prod-
ucts were ready to be published on the REP10 web site and
available to the experiment partners in less than 1 h after
receiving the SE predictions. The experimental period
includes 15 days from 18 August to 1 September 2010
covering the entire period of active glider operations.

4 The scenario

The previously described DSS has been tested on a subset of
data extracted from the REP10 experiment. While the DSS
was run for the duration of the REP10 experiment in near
real-time, in this work a single case is shown and analysed.
The case is considered sufficiently representative of the
operating conditions and highlights most of the behaviours
experienced during the entire REP10 cruise.

It is worthwhile to note that the proposed DSS assumes
that the uncertainty is provided together with the METOC
forecasts, no matter how they are generated. This section
provides a qualitative description of the environmental sce-
nario for the period under consideration by analysing the
statistical, spatial and temporal variability of relevant
METOC variables forecast by the super-ensemble. DSS
results for the considered operations are then shown and
interpreted in the subsequent section.

Figures 6, 7, 8 and 9 show the spatial and temporal
evolution of the SE mean of a set of METOC variable
forecasts during a 12-h period in the REP10 operational
area. The figures also show the position at 43.83°N and
9.11°E of an Ocean Data Acquisition System (ODAS) buoy
available to sample local conditions. Sea surface temperature
(see Fig. 6) shows some diurnal heating and the existence of a
warm pool to the east, associated with the intrusion of south-
ern warm water masses. The temperature ranges between
23°C and 26°C with higher values (25–26°C) in the eastern

part of the basin. Figure 7 shows surface currents. Qualitative-
ly, the water circulation in the area is characterised by an
overall cyclonic circulation with a main flow from the south-
west (west Corsican current) turning counter-clock wise along
the Italian coastline and exiting the Ligurian Sea in the north-
western part (the Ligurian current;Millot 1999). The existence
of an anticyclonic eddy can also be noted to the southeast. In
the forecast considered here as an example, the current speed
is found to be approximately 0.2 m/s at +30 h since base time,
with maximum values in the southern part of the area around
9°E reaching 0.35 m/s at +42 h. The significant wave height
from the corresponding snapshots progressively grows from
values less than 1 m to values greater than 1.5 m at +42 h in
open sea (see Fig. 8), as southwesterlies grow in intensity
(from about 5 m/s at +30 h to values larger than 15 m/s at
+42, see Fig. 9).

Figure 10 shows the temporal behaviour of METOC SE
forecasted mean and associated 95% confidence interval for
a grid point in the area of interest located at the position of
the ODAS buoy (43.83°N and 9.11°E) during the entire
3-day forecast period. The sea surface temperature ranges
between 24.5°C and 25.5°C with a first period of increase
and a second phase of decrease starting from +15 h since
base time with a peak temperature of 25.3°C. The minimum
95% confidence lower limit is about 23°C while the maxi-
mum higher limit is about 27°C. Surface current speed has
an oscillating behaviour around 0.10 m/s with maximum
peak-to-peak amplitude of about 0.15 m/s. Minimum lower
confidence limit and maximum higher confidence limit are 0
and 0.6 m/s, respectively. The mean significant wave height
(Fig. 10c) is less than 1 m and decreasing until +20 h since
base time after which values increase and reach 2.0 m at
+51 h, and then decrease to between 2.0 and 1.5 m. Confi-
dence limits ranges between 0 and about 3 m. The wind
speed, depicted in Fig. 10d, is correlated (based on visual
inspection) with the significant wave height in Fig. 10c with
values starting from 1.3 m/s and increasing to reach 10 m/s
at +41 h since base time. A decreasing phase then starts with
wind speed reaching 2.0 m/s at +58 h followed by a second
increasing phase with a value of about 10 m/s at the end of

Fig. 6 Mean sea surface temperature (degree Celcius) 3DSE forecast. Forecast times at +30, +36 and +42 h since base time 26 August 00:00:00+
00 UTC. The red marker shows the position of the ODAS buoy at 43.83°N, 9.11°E
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the forecast period. The 95% confidence interval ranges
between 0 and 18 m/s. Even if the full validation of SE
outputs is beyond the scope of this paper, temperature and
wind speed observations from the ODAS buoy, which are
displayed in Fig. 10a and d, show that the SE prediction
gives a reasonable estimation of the environmental varia-
bles. No co-located observations were available to under-
take a similar comparison for significant wave height and
current speed.

Figure 11 reports the coefficient of variation (the ratio
between the standard deviation and the mean) of the four
METOC variables in the same spatial grid point as in Fig. 10
over the entire forecast period so as to compare the range of
variability on a normalised scale. The coefficient of varia-
tion for sea surface temperature (see Fig. 11a) ranges be-
tween 0.015 and 0.04. The surface current speed shows
higher variability with a mean of about 0.7 and with peaks
reaching 1.25 (see Fig. 11b). The significant wave height
coefficient of variation ranges roughly from 0.04 to 0.5
reaching the highest statistical variability at +40 h since base
time. The wind speed coefficient of variation has a maxi-
mum value of 1.4 at +3 h since base time and values of
approximately 0.4 between +20 and +30 h, and +50 and
+60 h.

Based on this analysis, the dynamic variability of the
DSS output is driven mainly by the current, the significant
wave height and the wind speed, as these factors present the
most dynamic and uncertain statistical behaviour (within the

temporal window considered). In the following section, we
will try to empirically correlate the METOC behaviour with
the action statistical separation and the action confidence
levels.

Other data provided as input to the DSS include variables
not predicted by forecast systems and non-METOC infor-
mation. For example, to support diver operations no forecast
models are available to predict sea water optical properties,
therefore, water visibility is estimated by using the visible
bands of a multi-spectral satellite sensor and updated as new
satellite data are available. Figure 12 shows an example
from the National Aeronautics and Space Administration
Moderate Resolution Imaging Spectro-Radiometer sensor
on board the satellite Aqua acquired 26 August 2010 at
12:05:08+00 UTC (see Fig. 12a for the false colour image).
The horizontal visibility (see Fig. 12b) was estimated using
the spectral beam attenuation coefficient for a wavelength in
the green light region (Zaneveld and Pegau 2003). As a rule
of thumb, 10% of the calculated value is used to estimate the
standard deviation associated with water visibility (Zaneveld
and Pegau 2003), which is then propagated through the DSS.
In the future work, this error estimate may be improved by
comparing simultaneous measurements of water optical prop-
erties with satellite estimates.

Non-METOC data include information on the vessel
traffic in the area of interest, which is used in support of
glider operations. This information is retrieved by process-
ing a long sequence (such as 1 year) of automatic

Fig. 7 Mean horizontal surface current velocity (meter per second) 3DSE forecast. Forecast times at +30, +36 and +42 h since base time 26 August
00:00:00+00 UTC. The red marker shows the position of the ODAS buoy at 43.83°N, 9.11°E

Fig. 8 Mean significant wave height (meter) 3DSE forecast. Forecast times at +30 h, +36 h and +42 h since base time 26 August 00:00:00+00
UTC. The red marker shows the position of the ODAS buoy at 43.83°N, 9.11°E
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identification system (AIS) contacts acquired in the area of
interest and for a long time period (Baldacci et al. 2008).
Figure 13a shows an example of an AIS contact data set
acquired over the Mediterranean Sea while Fig. 13b shows
the AIS coverage estimation over the area of interest (unit-
less number between 0 and 1, 0 meaning no coverage, 1
maximum coverage), which is related to the vessel traffic

density (Baldacci et al. 2008). As can be expected, areas of
high-traffic density are located close to major ports in the SE
and NW parts of the region of interest. The density map can
be updated as new AIS contacts become available, but
compared with the dynamic variability of involved METOC
variables, this map can be considered stationary over several
forecast periods.

Fig. 9 Mean 10 m wind (meter per second) 3DSE forecast. Forecast times at +30, +36 and +42 h since base time 26 August 00:00:00+00 UTC.
The red marker shows the position of the ODAS buoy at 43.83°N, 9.11°E

Fig. 10 Temporal graphs of super-ensemble/3DSE METOC forecasts
and associated 95% confidence level at position of the ODAS buoy
43.83°N, 9.11°E (see the red marker in Figs. 6, 7, 8 and 9); a sea

surface temperature (T), b horizontal surface current velocity (CS), c
significant wave height (HS), d 10 m wind (WS)
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It is important to recall that the description of the scenario
in this section to evaluate the DSS products only uses

forecasts, thus resembling the considerations made by the
DSS user (typically a METOC officer) in so far as possible.

Fig. 11 Temporal graphs of the super-ensemble/3DSE METOC forecasts coefficient of variation at position 43.83°N, 9.11°E; a sea surface
temperature (T), b horizontal surface current velocity (CS), c significant wave height (HS), d 10 m wind (WS)

Fig. 12 Water visibility retrieved from multi-spectral satellite images. a MODerate resolution Imaging Spectro-radiometer aqua image of the
Ligurian Sea. Acquisition time, 20100826T120508Z. b Horizontal visibility on the area of interest
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The evaluation can in no case be considered a statistical
analysis of the expected behaviour over the considered area,
as this implies the use of a long historical dataset.

5 Results

This section reports examples of operational products from
the fuzzy/Bayesian DSS in support of a glider surfacing for
data transmission operation and a diver operation outlined in
the scenario described in the previous section. During
REP10, the DSS was run every day, as soon as a new SE
forecast was available. At each run, hourly maps on latitude/
longitude grids for 3 days ahead were generated (at +1, +2,
…, +72 h). For the sake of clarity, only three sets of products
are shown (those at +30, +36 and +42 h since base time 26
August 00:00:00+00 UTC), since they represent an inter-
esting case study. In addition, temporal plots reporting
results for a particular spatial point are provided with the
full temporal resolution (1 h) over the whole forecast period
of 72 h.

5.1 Glider surfacing for data transmission operation

Figure 14a and b show maps of suggested actions and maps
of fused action/confidence, respectively, as provided by the
DSS. At +30 h since base time, the recommended action is
runOp over the entire area of interest. The system decision
is confident on the whole grid except for a small region in
the SW part of the area.

On average, the risk associated to action runOp progres-
sively grows from +30 to +42 h since base time (see
Fig. 15a) while the risk associated to action notRunOp
decreases (see Fig. 15b). Mean significant wave height and
wind speed increase approaching marginal/unfavourable
conditions, as modelled by fuzzy system membership func-
tions and rules (see Appendix 2 and Fig. 26 for the

specification of rules and the membership functions). Mean
current and vessel traffic density values are in a favourable/
marginal condition over the temporal span of 12 h.

The standard deviation of the risks increases (see Fig. 16a
and b) due to increasing significant wave height uncertainty
as depicted in Figs. 10c and 11c (the tendency is roughly the
same over the entire area of interest, the temporal plot on a
single spatial point facilitates the interpretation by the read-
er) with average value and coefficient of variation increasing
between +30 and +42 h since base time, meaning that the
standard deviation increases too.

The situation just described explains the evolution of the
action map going progressively from runOp to notRunOp
on the whole spatial grid (see Fig. 14a) passing through an
intermediate situation at +36 h. In this intermediate situa-
tion, the confidence intervals of the action risks overlap both
due to the mean risks being close to each other and the
uncertainty increase. The total effect is the presence of a no
confidence state over much of the western half of the area of
interest (see Fig. 14b). The decision is confident again at
+42 h, even if the risk standard deviation is greater than at
+36 h, because the values of the action mean risks are
sufficiently separated to not allow the overlap of the 95%
risk confidence intervals. Across the boundary between
runOp and notRunOp regions, the action mean risks are
closer to each other and the risk confidence intervals natu-
rally tend to overlap. This gives rise to a no confidence area
along the borders (see Fig. 14a and b), whose width depends
on the amplitude of the confidence intervals themselves.

Figure 17 shows the confidence measure used to classify
the area of interest in regions with confidence and no con-
fidence. At +30 h since base time, positive confidence is
given for the whole area except for a small SW region as
previously highlighted. The negative confidence area grows
as expected to roughly cover the western half of the region
of interest at +36 h. The confidence increases, reaching
positive values over almost the entire region at +42 h. The

Fig. 13 a A data set of AIS contacts on the Mediterranean Sea. b Map of vessel traffic density (normalised between 0 and 1) in the area of interest
estimated from AIS data

482 Ocean Dynamics (2012) 62:469–493



+ 42h+ 36h+ 30ha 

b 

Fig. 14 a Action and b fused Action/Confidence maps for glider surfacing and data transmission operation support

+42h+36h+30ha 

b 

Fig. 15 a Mean risk for action runOp, b mean risk for action notRunOp for glider surfacing and data transmission operation support
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confidence measure is extremely useful to locate regions in
space and time that are characterised by imprecise and
contradicting information. The index synthesises the effect
of uncertainty of several input factors, an important feature
toward the reduction of the user cognitive work load.

Figure 18 shows the temporal evolution of the minimum
risk associated with the recommended action over the region
of interest. These maps are also useful during the operation
planning phase when an area of low risk has to be identified
to run the operation in the safest possible condition. In the
examined case, the recommended action at +30 h since base
time is runOp in the whole region, but the best conditions
with lower risk are present in the eastern part toward the

Italian coast. This is consistent with the input METOC
variable situation as depicted in Figs. 6, 7, 8 and 9, where
there are lower values (associated with most favourable
operational conditions) of current speed, significant wave
height and wind speed in the eastern part of the basin. The
situation is symmetric when the decision is notRunOp. In
this case, the minimum risk is lower when the METOC
conditions are most unfavourable as in the case depicted at
+42 h since base time for which the system decision is
notRunOp almost everywhere in the area considered. Again,
the minimum risk map is consistent with the METOC values
which are higher in the western part of the basin than in the
eastern.

+42h+36h+30ha 

b 

Fig. 16 a Risk standard deviation for action runOp, b risk standard deviation for action notRunOp for glider surfacing and data transmission
operation support

+30h +36h +42h

Fig. 17 Confidence measure along the 12 h time span for glider surfacing and data transmission operation support
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Figure 19 reports DSS outputs over the entire forecast
period for the spatial point at 43.83°N and 9.11°E as in
Figs. 10 and 11 for the input METOC variable statistics. The
temporal graph is useful to better understand the effect of
the input data uncertainty on action risk statistics and con-
sequent decisions. As depicted in Fig. 19a, the recommen-
ded action is runOp from +00 to +38 h since base time;
whereas the action is notRunOp for the rest of the time span
considered. The decision is not confident in much of the
time interval between +38 h to the end of the forecast
interval as depicted in Fig. 19b. These outputs are consistent
with the risk statistics and the confidence measure values
reported in Fig. 20. In the first 37 h, the 95% risk confidence
intervals are clearly separated giving rise to a positive con-
fidence measure (see Fig. 20b). The mean risk associated
with the runOp action is less than the risk associated to
action notRunOp because the input METOC values in this
period are consistent with a favourable operational environ-
ment. After +37 h since base time, the situation is inverted
as the significant wave height and the wind speed evolve
toward marginal/unfavourable conditions (increasing their
values), and remain so until the end of the forecast period.

The negative confidence between +38 and +39 h is due to
the overlap of the risk confidence intervals (see Fig. 20a)
occurring during a transition phase in which mean risks are
close to each other and the associated standard deviation
slightly increases, mainly due to an increase in the signifi-
cant wave height uncertainty (see Figs. 10c and 11c). After
this transition phase, risk standard deviations further in-
crease, but confidence intervals do not overlap, giving rise
to a positive confidence measure until +45 h. The risks start
to decrease while the associated uncertainties increase until
the confidence limits start to overlap giving rise to a nega-
tive confidence measure in most of the remaining interval.

5.1.1 Glider surfacing/transmission and integration
with glider path prediction

Support to glider operations is further improved by integrat-
ing the fuzzy/Bayesian DSS with a glider path prediction
system changing the context in which risk assessment and
decision making have been treated from the Eulerian to the
Lagrangian. This allows pilots to display the variability of
fuzzy/Bayesian DSS products and input METOC variables

+30h +36h +42h

Fig. 18 Minimum risk along the 12 h time span for glider surfacing and data transmission operation support

Fig. 19 a Decided action and associated minimum risk, b fused decided action and confidence and associated minimum risk for glider surfacing
and data transmission operation support at position 43.83°N, 9.11°E
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in one dimension along predicted glider paths, decreasing
cognitive burden and so improving awareness and their
ability to make informed decisions. In the specific case of
glider surfacing, the transmission of the large amount of
acquired measurements can be planned to occur at specific
locations in which the environment allows the maximum
chance of successful data transfer.

In this work, a stochastic glider path prediction, first
proposed in Grasso et al. (2010a, c), is used to estimate
tracks of gliders operating during the REP10 experiment
given a probabilistic prediction of the 3D current field over
the area of interest. The system inputs consist of predicted
current speed mean vector and covariance matrix from the
3DSE forecast model, mission way point list, last known
glider position and glider parameters. The system is based
on a three-dimensional non-linear kinematic glider model
with 3D stochastic current speed as input. Currents are
modelled as a bi-variate Gaussian random vector (the two
components being the meridional and zonal currents) with a
given mean and covariance matrix. Uncertain model param-
eters (such as heading as measured by an electronic com-
pass) are modelled as Gaussian random variables with mean
and standard deviation estimated from glider parameter
measurements. The glider position statistics (path estimate
and associated covariance matrix) are predicted from the last
known GPS position by using the kinematic model input
into the prediction step of an unscented Kalman filter (Julier
and Uhlmann 2004; Van der Merwe 2004), which is able to
deal with model non-linearity in a more efficient way than
Monte Carlo-based techniques. The algorithm runs every
time a new GPS position is acquired and new current fore-
casts are produced by the SE system.

Figure 21 shows an example of the output of the path
prediction algorithm. The glider (named Laura) was
programmed to run a mission along a rectilinear transect in
the NW–SE direction (see the desired path in black) within

the allowed REP10 area. The picture shows the mean glider
path prediction (see the line in magenta) with associated
99% position error ellipses. The ellipse major axis grows
from a few metres due to GPS position uncertainty to
roughly 7 km after about 60 h of navigation due to accumu-
lated uncertainty originated by the current field prediction
error and glider parameters uncertainty. The second-order
statistical characterisation of the glider position can be used
to estimate risk indices, such as the probability of crossing a
denied area, which can help glider pilots to reschedule
mission parameters sufficiently in advance to avoid unsafe
navigation conditions (Grasso et al. 2010c).

Figure 22 depicts SE METOC forecasts along the pre-
dicted glider mean path with associated 95% confidence
intervals. The comparison of Fig. 22 with Fig. 10, showing

Fig. 20 a Action mean risk and associated risk confidence levels, b measure of confidence in decision for glider surfacing and data transmission
operation support at position 43.83°N, 9.11°E

Fig. 21 Prediction of Laura glider track and associated 99% error
ellipses within the allowed operational area. Starting simulation time,
20100826T135500Z. Starting position, 43.86°N, 9.04°E; SE model
base time, 20100826T000000Z. Predicted mission duration, 57 h
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predicted METOC conditions for a specific point of the
spatial grid as a function of time, reveals a similar temporal
variability between the two cases, though each temporal
sample in Fig. 22 is associated with a different spatial point
along the glider path. In particular, similar to Fig. 10c and d,
the significant wave height and the wind speed (see Fig. 22c
and d) are strongly correlated, with values progressively
increasing in the interval +20 and +50 h since the base time
and transitioning from favourable/marginal environmental
conditions to unfavourable ones. The variability of DSS
products for the surfacing and transmission operation along
the predicted glider path is expected to be similar to the case
in Figs. 19 and 20 for the single spatial point.

Figure 23a and b show the graphs of the recommended
action and the fused decision/confidence, respectively,
along the predicted glider path for the surfacing and

transmission operation. The decided action is runOp be-
tween +10 and +40 h since base time. From +40 h since
base time to the end of the prediction temporal interval, the
action is notRunOp due to values of significant wave height
and wind speed, which are marginal/unfavourable condi-
tions. The fused decision/confidence graph shows four cases
in which the final decision is marked with no confidence.

An in-depth retrospective analysis of action risk and
METOC statistics can reveal main factors causing the sys-
tem to not be confident about its decisions. Figure 24a and b
depict mean risks associated to each action with 95% con-
fidence intervals and the confidence measure, respectively,
along the predicted path. The mean risk and the associated
uncertainty between +10 and +40 h since base time are such
that associated actions can be statistically discriminated, as
confirmed by the confidence measure in the same interval.

Fig. 22 Super-ensemble/3DSE METOC forecasts along predicted glider path; a sea surface temperature (T), b horizontal surface current velocity
(CS), c significant wave height (HS), d 10 m wind (WS)
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METOC values are compatible with a favourable environ-
mental condition and the associated prediction is not uncer-
tain enough to degrade the confidence measure it remains
positive except for a short period between +30 and +40 h
since base time. In this period, the environment is transition-
ing to a marginal/unfavourable condition, mainly due to
increasing significant wave height and wind speed. The
mean risks associated to the actions converge, and even if
the risk standard deviation does not increase significantly,
the risk confidence intervals overlap each other giving a
negative confidence measure to the system decision. After
the transition, from +40 h since base time, the decision
switches to the action notRunOp having the minimum
risk. Between +40 and +60 h the confidence measure is
negative during short periods due to increasing risk

uncertainty, which is mainly related to an increase in
significant wave height and wind speed confidence inter-
vals (see Fig. 22).

5.2 Diver operations

This section provides examples of DSS products to support
a diver operation. The results reported are limited, for the
sake of brevity, to action and fused action/confidence maps.
Additional white regions within the maps are due to cloud
coverage in passive multi-spectral data used to estimate
water visibility.

Figure 25a and b present a temporal series of suggested
actions and fused action/confidence maps, respectively, as
provided by the DSS for a diver operation that could be

Fig. 23 a Action map and b fused action/confidence map with associated minimum risk for glider surfacing and data transmission operation
support along the predicted glider path

Fig. 24 a Mean risk associated to action runOp and notRunOp with 95% confidence intervals along predicted glider path and b confidence
measure along the predicted glider path for glider surfacing and data transmission operation support
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conducted in the REP10 region. At +30 h since base time,
the recommended action is runOp over the entire area and
the system decision is confident on the whole grid. A
transient condition between a favourable and a completely
unfavourable situation is present at +36 h since base time,
for which the system decides for notRunOp in a region
between 8°30′E and 9°E. This change is driven mainly by
an increase in significant wave height from values around
0.5 m at +30 h to values greater than 1 m at +36 h. The
confidence measure is positive over the entire area except
along the border between the regions labelled runOp and
notRunOp. A no-confidence label is assigned by the system
in this area as depicted in Fig. 25b. Negative confidence is
due to action risks being close to each other during a
transition phase such as this, and the risk standard deviation
increasing with respect to the condition at +30 h due to an
increase in significant wave height prediction uncertainty.
At +42 h since base time predicted significant wave height
reaches values of approximately 2 m, which are highly
unfavourable. A regime condition is reached where the
decided action is notRunOp over the whole region of inter-
est (see Fig. 25a) with high confidence over the entire
domain (see Fig. 25b).

6 Conclusions

This paper has shown the products that a recently developed
DSS can provide to the decision maker during a real exper-
iment at sea: the REP10 experiment. Key features of the
DSS are (1) the ability to deal with generic operations, (2)
the tolerance to uncertainties on its inputs and (3) the ability
to propagate such uncertainties to its outputs (using the
unscented transform). In this way, the DSS is able to provide
not only a recommended action but a confidence level for
that action. In particular, when the costs associated with
different actions are not statistically separable, the decision
maker is informed and has to make a decision based on
intuition or other external factors.

A complex scenario with a number of factors playing
different roles and influences has been shown. The cognitive
workload that a human decision maker has to handle is
significant, particularly when planning 3 days in advance.
The DSS significantly simplifies this task, by providing the
decision maker with a single run/not run/no confidence
map. This has the potential to add a significant value to
the environmental forecasts themselves by improving the
responsiveness of METOC officers and decision makers

+30h +36h +42ha 

b 

Fig. 25 a Action and b fused action/confidence maps for diver operation support. White no data available (e.g., due to overcast conditions or
missing forecast)
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through the provision of more options than those a human
operator can assess manually.

The usefulness of the system has been judged positively
by glider pilots and other decision makers during the exper-
iment. However, in the future, the system needs to be further
validated using human experts more extensively in upcom-
ing experiments at sea.
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Appendix 1

The forecast models used during REP10 in the super ensemble
system are described for each environmental component:
atmosphere, surface gravity waves and ocean.

Atmospheric models

The IFS ECMWF atmospheric deterministic model T1279
(Miller et al. 2010; http://www.ecmwf.int/) is a global model
with horizontal resolution of 0.125° and output data available
every 3 h.

The atmospheric model COSMO-ME (Bonavita and Torrisi
2005): provided by the Italian Air Force National Meteorolog-
ical Center (Centro Nazionale per la Meteorologia e
Climatologia Aeronautica, CNMCA) COSMO-ME is a non-
hydrostatic model with 7 km horizontal resolution covering
the European region and nested in IFS ECMWF atmospheric
model. Output data is available every 1 h.

Surface gravity wave models

The IFS ECMWF wave model (Miller et al. 2010; http://
www.ecmwf.int) is based on the WAM model (Komen et al.
1994) and coupled to the IFS ECMWF atmospheric model.
The horizontal resolution is 1/4°. Output data are available
every 3 h.

The NETTUNO wave forecasting system is provided by
UGM (http://www.meteoam.it/). It is based on the WAM
model (Komen et al. 1994) and forced using COSMO-ME
atmospheric model. The horizontal resolution is 1/20°.

Output data are available every 3 h. The domain is the entire
Mediterranean Sea.

The WW3MED wave forecasting system is provided by
PREVIMER (www.previmer.org). It is based on the wave
model Wave Watch III (Tolman 2009). Atmospheric forcing
is provided by IFS ECMWF. The horizontal resolution is 1/
10°. Output data are available every 3 h. The domain is the
entire Mediterranean Sea.

The WW3MENOR wave forecasting system is provided
by PREVIMER (www.previmer.org). It is based on the
wave model Wave Watch III (Tolman 2009). The atmo-
spheric forcing is provided by IFS ECMWF. The horizontal
resolution is 4 km. Output data are available every 3 h. The
domain covers the northwestern Mediterranean Sea.

Ocean models

The MARS3DMENOR: ocean forecasting system is provid-
ed by PREVIMER (http://www.previmer.org/). It is based
on the ocean model MARS (Lazure and Dumas 2008). The
horizontal resolution is 1 km. Output data available every
3 h. The domain is the northwestern Mediterranean Sea and
it is nested in the Mediterranean forecasting system (MFS,
Oddo et al. 2009). The surface forcing is provided by MM5
run at ACRI-ST.

The NRL NCOM operational ocean forecasting system is
provided by NRL-SSC. It is based on the ocean model
NCOM (Martin 2000) with set up for the REP10 trial
framework only. The horizontal resolution is ∼1 km. Output
data is available every 1 h. The domain is the Ligurian Sea
and nested with multiple downscaling in the Mediterranean
NCOM model. Meteorological forcing is provided by
COAMPS model (Hodur 1997).

The NURC ROMS is an operational ocean forecasting
system based on the ocean model ROMS (Haidvogel et al.
2008), set up for the REP10 trial framework only. The hori-
zontal resolution is 2 km. Output data is available every 3 h.
The domain is the Ligurian Sea and it is nested inMFSmodel.
Meteorological forcing is provided by COSMO-ME model.

Appendix 2

A fuzzy rule-based classifier (Cordon et al. 1999) is made
up of two parts: the knowledge base (KB) and the fuzzy
reasoning method (FRM). The KB, in turn, is made of a data
base (DB) and a rule base (RB). The DB contains the
information about the fuzzy sets used to partition each input
and output variable, i.e., the parameters associated with the
membership functions which describe a fuzzy set. Figure 26
depicts the fuzzy sets for METOC input variables used to
support a glider surfacing and transmission operation. Each
variable domain is covered by three fuzzy sets with
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associated linguistic terms low, medium and high and trap-
ezoidal membership functions. Each membership function
ranges between 0 and 1 and specifies to which extent a value
in the domain belong to a fuzzy set.

The RB is a set of if-then rules expressed by combining
linguistic terms of each input/output variable in the premise
and the consequence of a rule. A rule can easily be specified
by using natural language words as in the example below:

R1: If current speed0 low And wind speed0 low And
significant wave height0 low And vessel traffic density0
low Then favourable0high And marginal0 low And
unfavourable0 low.

The fuzzy inference engine combines the METOC input
values (which are the UT sigma points as the UT wraps the
fuzzy classifier and the risk calculator) with the fuzzy sets in
the premise and then in the consequence of each rule. The
rule outputs are then combined to calculate the output pos-
terior probabilities of environmental classes.

There are many ways to design the KB, mostly distin-
guished by knowledge-driven and data-driven approaches.
Our system supports a knowledge-driven approach, which
means that it allows the user to define both the DB (i.e., the
membership function values) and the RB. This approach
allows the system to integrate past experience of human
experts for each operation at sea, and to run the system even
when few or no historical data exist.

Under the knowledge-driven approach, the user is asked to
provide a DB and a RB, both consistent with the maritime
operation under consideration. Once done, the system is able
to perform the classification. The use of a fuzzy RB instead of
a non-fuzzy RB allows a greater flexibility in defining the DB,
instead of using crisp thresholds on input forecasts.

Elicitation of fuzzy set parameters was performed by first
agreeing on input and output operational limits with METOC

operators and glider pilots involved in the REP10 experiment,
then using these limits to define fuzzy set membership func-
tions with a certain degree of overlap as in Fig. 26. The authors
are envisioning the use of a technique adapted from the
Interval Approach (IA) method (Feilong and Mendel 2007)
to formally elicit input and output variable limits and trans-
form them into fuzzy sets.

With regards the fuzzy reasoning method, we have used a
First Inference Then Aggregate approach based on the sin-
gleton “fuzzification”method (i.e., we have used real numb-
ers as inputs for our fuzzy system) and the Mamdani
inference method (Mamdani and Assilian 1975). More pre-
cisely, the minimum has been used to model the AND
operator in if-then rules. The same operator has been used
to model the implication for deducing the consequents of
each rule. The output fuzzy sets obtained after implication
have been aggregated using the maximum, while the poste-
rior probability associated with each output class has been
computed as the centre-of-gravity method.

Appendix 3

The UT is a technique used to propagate mean and covari-
ance of a random vector through any kind of non-linearity
with accuracy up to the second order (Julier and Uhlmann
2004; Van der Merwe 2004). Given a random vector x and a
vector function f(•) the problem of estimating the mean and
the covariance of y0f(x) from the mean and covariance of x
is solved by using a set of so called weighted sigma points:

spi � wi; cif g i ¼ 0; :::; 2F; ð8Þ
where, wi is a weight factor, χi is a point in the original input
space and F is the input space dimensionality. The χi are

a) b) 

c) d) 

]s/m[SW]s/m[SC

HS [m/s] VTD

low medium high

0.1 0.5 1 5

1
low medium high

5 10 12.5 20

1

157.5

low medium high

0.5 1 5

1

1.5

low medium high

0.25 0.5 1

1

0.75

Fig. 26 Fuzzy variables and
membership functions for the
glider surfacing and data
transmission operation. a
Horizontal surface current
velocity (CS), b 10 m wind
speed (WS), c significant wave
height (HS), d vessel traffic
density (VTD)
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deterministic points that capture the mean and the covari-
ance of the variable x in the input space. Points and the
associated weights are chosen as follows (Julier and Uhl-
mann 2004; Van der Merwe 2004):

c0 ¼ mx; w0 ¼ ς
Lþς i ¼ 0; ð9Þ

ci ¼ mx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ ςð Þ � Rx

ph i
i

wi ¼ ς
2 � Lþ ςð Þ

i ¼ 1; :::;F;

ð10Þ

ci ¼ mx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ ςð Þ � Rx

ph i
i

wi ¼ ς
2 � Lþ ςð Þ

i ¼ F þ 1; :::; 2F;

ð11Þ

where,mx and Rx are the mean and the covariance matrix of
x, respectively, ς is a scaling parameter used to control the
error in the estimated statistics due to higher order moments
(in this work ς00),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ ςð Þ � Rx

p	 

i
is the ith column of the

matrix square root of (F+ς)·Rx which is usually calculated
by through the Cholesky factorization.

The χi points are propagated through the function f(•) to
calculate the set of points γi in the output space:

g i ¼ f cið Þ i ¼ 0; :::2F: ð12Þ
These points, together with the weights, wi, are subse-

quently used to estimate the second-order statistics of the

output random vector y, that is mean bmy, covariance bRy and

cross-covariance bRxy:

bmy ¼
X2F
i¼1

wi � g i; ð13Þ

bRy ¼
X2F
i¼1

wi � g i � bmy

� � � g i � bmy

� �T
; ð14Þ

bRxy ¼
X2F
i¼1

wi � ci � bmxð Þ � g i � bmy

� �T
: ð15Þ
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