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Abstract
In this paper, we prove some Liouville-type theorems for weak stable or finite Morse index
solutions to the following equation:

�u + eu + |x |αeβu = 0 in R
N ,

which arises from the study of selfgravitating cosmic strings for a massive W -boson model
coupled with Einstein’s equation.

Mathematics Subject Classification 35J15 · 35J60 · 35J61

1 Introduction

In this short paper, we study and classify the stable or finite Morse index weak solutions of
the semi-linear partial differential equation

�u + eu + |x |αeβu = 0 in R
N , N ≥ 2. (1.1)

The motivation to study Eq. (1.1) on this type comes from the selfgravitating strings for a
massiveW -boson model coupled to Einstein theory in account of gravitational effects. More
precisely, for the superconducting cosmic string model (see [1]), Yang in [33] introduced
a set of ansatz so that the string configuration of the original model satisfies a system of
Bogomolyni-type (selfdual) first-order equation coupled with Einstein’s equation, based on
this governing string’s system, by making full use of the boundary condition, we find that a
term which involves the conformal factor and the strength of theW -boson field is a constant,
and it reduces the system to a single equation, which is (1.1), where α

2 ∈ N represents the
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string’s multiplicity and β > 0 is a physical parameter, see [1,20,32,33] for the derivation of
(1.1) and the physical background from the corresponding Einstein–Weinberg–Salam theory.

For Eq. (1.1), some answer on the solvability of (1.1) in the context of radially symmetric
solution of dimension 2 has been investigated by Poliakovsky and Tarantello recently, see
[20]. When α = 0, (1.1) is related to the description of turbulence flows first proposed by
Onsager [19], in the case in which all vortices have the same orientation. We refer the readers
to [12,17–19,23,24] and references therein for more background on it. It is also interesting
to point out that, when α = 2β − 2, problem (1.1) shares many properties with either the
Liouville equation or the “singular” Liouville equation. Indeed, Chen, Guo and Spirn [5]
show that, if α > −2 and u is a solution to (1.1), then

(i)
∫
R2(eu + |x |αeβu)dx = 4π(α+2)

β
,

(ii) uλ(x) = u(λx) + 2 log λ, û(x) = u( x
|x |2 ) + 4 log 1

|x | are also solutions for (1.1).

In this special case, the radial solutions can be expressed in terms of some elliptic integrals,
and we can only get the explicit formula when α = 2, that is

u(x) = log
( �2

1 + 1
4�

2|x |2 + 5
64�

4|x |4
)
, � > 0,

see (2.15) in [20]. While for non-radial solutions, until now we still have no results on that.
For the case α �= 2β − 2, then the existence result is very subtle, even for the radially
symmetric solutions, and it may depend on the choices of α, β and the total integration of the
nonlinear term, see the results in [5,20]. Apart from the existence result of (1.1), Tarantello
in [26] studied the blow up behavior of the bubbling solution of (1.1) in R

2. For the related
work, we refer the readers to [2–4,15,21,22,27] and references therein.

The purpose of this paper is to consider the stable solutions of this problem, which can
be seen as the continuation of the work of Dancer–Farina [7] on Liouville equation and
Wang–Ye [28] on Hénon-type elliptic equation. There is an extensive literature concerning
the stable solutions of the second-order or fourth-order elliptic equations. By the Moser’s
iteration method, Farina [14] completely classified all finite Morse index classical solutions
of the Lane–Emden equation

�u + |u|p−1u = 0 in R
N ,

provided p ∈ (1, pJ L ) with pJ L given by

pJ L =
⎧
⎨

⎩

+∞, if N ≤ 10,

(N−2)2−4N+8
√
N−1

(N−2)(N−10) , if N ≥ 11.

Based on the method and techniques developed in [14], Dancer–Farina undertake the classi-
fication of solutions of the equation

�u + eu = 0 in R
N ,

and obtained the above equation does not admit any solution stable for 2 ≤ N ≤ 9 or with
finite Morse index for 3 ≤ N ≤ 9. By a completely different approach, Dávila, Doupaigne,
Wang and Wei [11] classify the stable and finite Morse index solutions to the fourth-order
supercritical problem in full exponent range on the basis of monotonicity formula. For the
fourth-order problem with exponential nonlinearity, unlike the corresponding second-order
problem, no Liouville-type theorem holds, unless we get more information on the asymp-
totic behavior of solutions at infinity, see [13]. For the nonautonomous case, Wang and Ye
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On the classification of solutions of cosmic strings equation 2185

obtained a similar Liouville-type results both for the Hénon-type Lane–Emden equation and
Liouville equation, in the spirit of Farina [14] for Lane–Emden equation and Dancer–Farina
for Liouville equation, respectively. For the other related works, we refer the readers to
[6,8–10,16,30,31] and references therein.

As addressed before, Eq. (1.1) shares the scale invariant property if α = 2β − 2, and we
can obtain the monotonicity formula for (1.1):

E(u, 0, λ) = λ2−N
∫

B(0,λ)

(
1

2
|∇u|2 − eu − 2

2 + α
|x |αe 1

2 (2+α)u
)

dx

+ 2λ1−N
∫

∂B(0,λ)

(u(x) + 2 log λ)dσ, (1.2)

and one can easily check that

d

dλ
E(u, 0, λ) = λ1−N

∫

∂B(0,λ)

(

∂r u + 2

r

)2

dσ ≥ 0. (1.3)

Using this monotonicity formula (1.2), one may be able to obtain some nonexistence results
for the stable solutions of Eq. (1.1) when α = 2β − 2, in the spirit of the work [11,29].
Instead of using the monotonicity formula, we shall apply the modified techniques in [28],
to classify the stable or finite Morse index solutions of the problem (1.1) in more general
situation (including the scale invariant case).

To state our results, let us give the precise definition of weak solution and stable or finite
Morse index solutions in the following

Definition We say that u is a weak solution of−�u = f (x, u) in domain
 ⊂ R
N (bounded

or not), if u ∈ H1
loc(
) verifies the equation with f (x, u) ∈ L1

loc(
) and
∫




(∇u∇φ − f (x, u)φ) = 0, ∀φ ∈ C1
c (
),

where Ck
c (
) denotes the set of Ck functions with compact support in 
, we say this weak

solution u

• is stable if ∂u f (x, u) ∈ L1
loc(
) and

Qu(φ) :=
∫




[|∇φ|2 − ∂u f (x, u)φ2] ≥ 0, ∀φ ∈ C1
c (
), (1.4)

• has Morse index equal to K ≥ 1 if K is the maximal dimension of a subspace XK of
C1
c (
) such that Qu(φ) < 0 for any φ ∈ XK \{0},

• is stable outside a compact set K ⊂ 
 if Qu(φ) ≥ 0 for any φ ∈ C1
c (
\K).

We should remark that any finite Morse index solution u is stable outside a compact set
K ⊂ 
. Indeed, for any finite Morse index solution, there exists a number � such that for the
span of {φ1, . . . , φ�}, Qu(φ) < 0 for any φ ∈ X\{0}. So Qu(φ) ≥ 0 for all φ ∈ C1

c (
\K),
where K = ⋃�

j=1 supp(φ j ).

The main results of this paper are the following:

Theorem 1.1 Let α > −2, β > 0 and 
 = R
N . For 2 ≤ N < 2 + 4(α+2)

max{1,β} , there is no
weak stable solution of (1.1).

Remark 1 When α = 0, β = 1, from Theorem 1.1 we get that there is no weak stable
solution of the Liouville equation provided 2 ≤ N ≤ 9, which coincides with the result
obtained in [7].
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2186 W. Ao, W. Yang

Remark 2 Based on Theorem 1.1, we can show that all the radially symmetric solutions
obtained in [20] are unstable.

Theorem 1.2 Letα > −2, β > 0 and
 = R
N . Ifα+2 ≥ 2β and 2 < N < 2+8min{β, 1

β
},

there is no weak solution to (1.1) which is stable outside a compact set.

Remark 3 FromTheorem1.2 and the fact that any finiteMorse index solution is stable outside
a compact set K ⊂ 
, we directly obtain that under the same assumption of Theorem 1.2,
there is no weak finite Morse index solution to (1.1).

Let us close this introduction by making some comments that the techniques used in this
paper can also be used to treat the following equation

�u + |u|p−1u + |x |α|u|q−1u = 0, (1.5)

and it is also interesting to notice that above equation also enjoys the scale invariant property
provided α = 2q−2p

p−1 .
In next section, we shall provide the proof of our main results, Theorems 1.1 and 1.2.

2 Proof of Theorem 1.1 and Theorem 1.2

At the beginning of this section, we shall show that α > −2 is necessary, due to the following
nonexistence result:

Lemma 2.1 For α ≤ −2, Eq. (1.1) with β > 0 admits no weak solutions for any domain

 ⊂ R

N which containing 0.

Proof Suppose u is a weak solution of (1.1) with 0 ∈ 
. Let B(0, R) ⊂ 
 and v be the
average of u over spheres centered at 0. By Jensens inequality,

− �v = eu + rαeβu ≥ ev + rαeβv. (2.1)

By the equation satisfied by v,

−r N−1ωNv′(r) = −
∫

∂B(0,r)

∂v

∂ν
dσ = −

∫

B(0,r)
�vdx =

∫

B(0,r)

[
eu + rαeβu] dx > 0,

and it gives that v′(r) < 0 for r ∈ (0, R). HereωN denotes the surface area of N -dimensional
unit ball.

Integrating (2.1) from r1 to r , we have

−r N−1v′(r) + r N−1
1 v′(r1) ≥

∫ r

r1
sN−1

[
ev(s) + |s|αeβv(s)

]
ds.

Since ev, rαeβv ∈ L1
loc(
), we can send r1 to 0 in the integration. Together with the fact

that v′(r) is negative for r ∈ (0, R), one has

−r N−1v′(r) ≥
∫ r

0
sN−1

[
ev(s) + |s|αeβv(s)

]
ds > Ceβv(r)r N+α,

and it implies that

e−βv(r) ≥ C
∫ r

r1
s1+αds → ∞

as r1 → 0 if α ≤ −2. This is a contradiction. So the lemma is proved. 
�
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Next we state the following estimate in the spirit of [28], which is crucial in the proof of
the main theorems.

Proposition 2.1 Let
 be a domain inRN , N ≥ 2. Let u be aweak and stable solution of (1.1)
with α > −2, β > 0. Then for any integer m ≥ 1 + 4

max{β,1} and any γ ∈ (0,min{2, 2β}),
there exists C > 0 depending on m, α, β and γ such that

∫




[
e(2γ+1)u + |x |αe(β+2γ )u

]
ψ2mdx ≤ C

∫




|x |− 2αγ
β

(
|∇ψ |2 + |ψ ||�ψ |

) β+2γ
β

dx (2.2)

for all functions ψ ∈ C∞
0 (
) with ‖ψ‖∞ ≤ 1.

Proof Let γ > 0, k ∈ N and k ≥ γ −1. Define three functions τk(t), ηk(t) and ξk(t) such that
they satisfy η′

k(t) = [τ ′
k(t)]2 and ξ ′

k(t) = ηk(t) where

τk(t) =
⎧
⎨

⎩

eγ t , t ≤ k,

eγ k

k t, t ≥ k,
ηk(t) =

⎧
⎨

⎩

γ
2 e

2γ t , t ≤ k,

e2γ k

k2
(t − k) + γ

2 e
2γ k, t ≥ k,

and

ξk(t) =

⎧
⎪⎨

⎪⎩

e2γ t
4 , t ≤ k,

e2γ k

2k2
(t − k)2 + γ

2 e
2γ k(t − k) + e2γ k

4 , t ≥ k.

Since u ∈ H1
loc(
), it follows that τk(u) and ηk(u) ∈ H1

loc(
) for any k ∈ N.
Since u is a weak stable solution, applying (1.4) with the test function τk(u)φ where

φ ∈ C1
0 (
), we have

∫




[eu + β|x |αeβu]τ 2k (u)φ2dx ≤
∫




|∇(τk(u)φ)|2dx

=
∫




|∇(τk(u))|2φ2 + τ 2k (u)|∇φ|2 − τ 2k (u)

2
�(φ2)dx . (2.3)

Since φ ∈ C1
0(
) and τk ∈ H1

loc(
), the last term is finite in the above inequality, which
implies that euτ 2k (u) and |x |αeβuτ 2k (u) ∈ L1

loc(
).
Moreover, using the fact that η′

k = (τ ′
k)

2, ηk = ξ ′
k ,

∫




|∇(τk(u))|2φ2dx =
∫




|τ ′
k(u)∇u|2φ2dx =

∫




∇ηk(u) · ∇uφ2dx

=
∫




∇u∇(ηk(u)φ2)dx −
∫




ηk(u)∇u∇φ2dx

=
∫




[eu + |x |αeβu]ηk(u)φ2dx +
∫




ξk(u)�(φ2). (2.4)

By the definition of ξk and ηk , one can easily check that

ηk(t) ≤
(

γ

2
+ 1

4k

)

τ 2k (t). (2.5)

Combining (2.3), (2.4) and (2.5),

(1 − γ

2
− 1

4k
)

∫




euτ 2k (u)φ2dx + (β − γ

2
− 1

4k
)

∫




|x |αeβuτ 2k (u)φ2dx

≤
∫




[ξk(u) − 1

2
τ 2k (u)]�(φ2)dx +

∫




τ 2k (u)|∇φ|2dx . (2.6)
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2188 W. Ao, W. Yang

Now set φ = ψm with ψ ∈ C∞
0 (
) and ‖ψ‖∞ ≤ 1. Using the fact that τk(u) ≤ eγ u and

Hölder inequality, one has
∫




τ 2k (u)|∇φ|2dx = m2
∫




τ 2k (u)ψ2(m−1)|∇ψ |2dx

≤ C
∫




[eβuτ 2k (u)] 2γ
β+2γ ψ2(m−1)|∇ψ |2dx

≤ C
( ∫




|x |αeβuτ 2k (u)ψ
(m−1)(β+2γ )

γ dx
) 2γ

β+2γ
( ∫




|x |− 2αγ
β |∇ψ | 2(β+2γ )

β dx
) β

β+2γ
. (2.7)

Choosem ≥ 1+ 4
max{1,β} which implies that (m−1)(β+2γ )

γ
≥ 2m for any 0 < γ < min{2, 2β}.

Together with |ψ | ≤ 1, we get ψ
(m−1)(β+2γ )

γ ≤ ψ2m and
∫




τ 2k (u)|∇φ|2dx ≤ C
( ∫




|x |αeβuτ 2k (u)ψ2mdx
) 2γ

β+2γ
( ∫




|x |− 2αγ
β |∇ψ | 2(β+2γ )

β dx
) β

β+2γ
.

(2.8)

Furthermore, there exists C > 0 independent of k such that (see [28])

∣
∣
∣ξk(u) − τ 2k (u)

2

∣
∣
∣ ≤ C[eβuτ 2k (u)] 2γ

β+2γ .

Direct calculation shows that�(φ2) = 2mψ2m−1�ψ +2m(2m−1)ψ2m−2|∇ψ |2, applying
Hölder inequality again,

∫




[
ξk(u) − τ 2k (u)

2

]
�(φ2)dx

≤ C
∫




[eβuτ 2k (u)] 2γ
β+2γ

[
ψ2m−1|�ψ | + ψ2m−2|∇ψ |2

]
dx

≤ C
( ∫




|x |αeβuτ 2k (u)ψ2mdx
) 2γ

β+2γ
( ∫




|x |− 2αγ
β (|∇ψ |2 + |ψ ||�ψ |) β+2γ

β dx
) β

β+2γ
.

(2.9)

Combining (2.6), (2.8), (2.9),
(
1 − γ

2
− 1

4k

) ∫




euτ 2k (u)φ2dx +
(
β − γ

2
− 1

4k

) ∫




|x |αeβuτ 2k (u)φ2dx

≤ C

(∫




|x |αeβuτ 2k (u)ψ2mdx

) 2γ
β+2γ

(∫




|x |− 2αγ
β (|∇ψ |2 + |ψ ||�ψ |) β+2γ

β dx

) β
β+2γ

.

(2.10)

If 1 − γ
2 − 1

4k > δ > 0 and β − γ
2 − 1

4k > δ > 0 for some δ > 0, which is independent of
large k, then there exists C > 0 such that

∫




[eu + |x |αeβu]τ 2k (u)ψ2mdx ≤ C
∫




|x |− 2αγ
β (|∇ψ |2 + |ψ ||�ψ |) β+2γ

β dx . (2.11)

Fixing γ ∈ (0,min{2, 2β}) and let k → ∞,
∫




[e(2γ+1)u + |x |ae(β+2γ )u]ψ2mdx ≤ C
∫




|x |− 2αγ
β (|∇ψ |2 + |ψ ||�ψ |) β+2γ

β dx . (2.12)

The proof is completed. 
�
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2.1 Nonexistence of stable solutions

We prove here Theorem 1.1. Suppose u is a weak and stable solution to (1.1) with 
 = R
N

and 2 ≤ N < 2+ 4(α+2)
max{1,β} . Fix m ≥ 1+ 4

max{1,β} , and choose γ ∈ (0,min{2, 2β}) such that
N − 2αγ

β
− 2(β+2γ )

β
< 0.

Let φ ∈ C∞
0 (RN ) be a cutoff function such that φ(x) = 1 for |x | ≤ 1 and φ(x) = 0 for

|x | ≥ 2. Applying Proposition 2.1 with ψ = φR(x) where φR(x) = φ( x
R ) and R > 0,

∫

B(0,R)

[e(2γ+1)u + |x |αe(β+2γ )u]dx ≤
∫

RN
[e(2γ+1)u + |x |αe(β+2γ )u]ψ2mdx

≤ C
∫

RN
|x |− 2αγ

β

(
|∇ψ |2 + |ψ ||�ψ |

) β+2γ
β

dx

≤ CRN− 2αγ
β

− 2(β+2γ )
β for ∀R > 0. (2.13)

Letting R → ∞, one has
∫

RN
[e(2γ+1)u + |x |αe(β+2γ )u]dx = 0,

which is impossible.

2.2 Nonexistence for finite Morse index solutions

We prove here Theorem 1.2. Suppose u is a weak solution of (1.1 ) which has finite Morse
index. There exists a compact set K such that u is stable in RN\K. There exists R0 > 0 such
that K ⊂ B(0, R0). Therefore, we can apply Proposition 2.1 with 
 = R

N\B(0, R0).
First we have the following estimates:

Lemma 2.2 For any γ ∈ (0,min{2, 2β}) and any R > 2R0, there holds
∫

2R0<|x |<R
e(2γ+1)u + |x |αe(β+2γ )udx ≤ A + BRN− 2αγ

β
− 2(β+2γ )

β , (2.14)

where A, B > 0 are constants independent of R. Moreover, for B(y, 2r) ⊂ R
N\B(0, R0),

there holds ∫

B(y,r)
e(2γ+1)u + |x |αe(β+2γ )udx ≤ CrN− 2αγ

β
− 2(β+2γ )

β (2.15)

for some C > 0 independent of r > 0.

Proof Let R > 2R0. Define ψR = φR − φR0 with φr being defined as before. Notice
that ψR ∈ C∞

0 (RN\K), 0 ≤ ψR ≤ 1 and it is a fixed function η0 in B(0, 2R0) which is
independent of R. Hence, we can apply Proposition 2.1 here,

∫

2R0<|x |<R
e(2γ+1)u + |x |αe(β+2γ )udx

≤
∫

RN \K
[e(2γ+1)u + |x |αe(β+2γ )udx]ψ2m

R dx

≤ C
∫

RN \K
|x |− 2αγ

β (|∇ψR |2 + |ψR ||�ψR |) β+2γ
β dx
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2190 W. Ao, W. Yang

≤ C
∫

R0<|x |<2R0

|x |− 2αγ
β (|∇η0|2 + |η0||�η0|)

β+2γ
β dx

+C
∫

R<|x |<2R
|x |− 2αγ

β (|∇ψR |2 + |ψR ||�ψR |) β+2γ
β dx

≤ A + BRN− 2αγ
β

− 2(β+2γ )
β , (2.16)

where A, B > 0 are two positive constants depending on α, β, γ, R0 but independent of R.
Thus we have

∫

2R0<|x |<R
e(2γ+1)u + |x |αe(β+2γ )udx ≤ A + BRN− 2αγ

β
− 2(β+2γ )

β . (2.17)

Similarly, for B(y, 2r) ⊂ R
N\B(0, R0), we can apply Proposition 2.1 with the test function

φr (x − y), one can obtain the following:
∫

B(y,r)
e(2γ+1)u + |x |αe(β+2γ )udx ≤ CrN− 2αγ

β
− 2(β+2γ )

β (2.18)

for some C > 0 independent of r > 0. We are done. 
�
Lemma 2.3

lim|x |→∞ |x | α+2
β eu(x) = 0. (2.19)

Proof Let |y| > 4R0 such that B(y, 2R) ⊂ R
N\B(0, R0). We denote f (x, u) = eu +

|x |αeβu . If N
2 < 1+ 2γ

max{1,β} , i.e., N < 2+ 4γ
max{1,β} (N < 2+ 8min{β, 1

β
}), then by Hölder

inequality,
∫

B(y,R)

f (x, u)θdx ≤ Cθ

∫

B(y,R)

eθu + |x |αθeβθudx

≤ C
( ∫

B(y,R)

e(2γ+1)udx
) θ

2γ+1
( ∫

B(y,R)

1dx
) 2γ+1−θ

2γ+1

+C
( ∫

B(y,R)

|x |αe(β+2γ )udx
) βθ

β+2γ
( ∫

B(y,R)

|x | 2αγ θ
β+2γ−βθ dx

) β+2γ−βθ
β+2γ

≤ C

(

R

(
N− 2αγ

β
− 2(β+2γ )

β

)
θ

2γ+1+ N (2γ+1−θ)
2γ+1 + R

(
N− 2αγ

β
− 2(β+2γ )

β

)
βθ

β+2γ +
(
N+ 2αγ θ

β+2γ−βθ

)
β+2γ−βθ

β+2γ

)

≤ C

(

RN−2θ 2γ+αγ+β
(2γ+1)β + RN−2θ

)

≤ CRN−2θ , (2.20)

when α+2
β

≥ 2, where we used (2.15). So we have
∫

B(y,R)

f (x, u)θdx ≤ CRN−2θ for |y| > 4R0, R = |y|
4

. (2.21)


�
In order to prove Lemma 2.3, we need the following result of Serrin [25].

Lemma 2.4 Let θ = N
2−ε0

, ε0 ∈ (0, 2), q ∈ (1,∞] and δ > 0. For any weak solution of
−�u = a(x)u in B(y, 2R), if

Rε0‖a(x)‖Lθ (B(y,2R)) ≤ δ, (2.22)
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On the classification of solutions of cosmic strings equation 2191

there holds,

‖u‖L∞(B(y, R)) ≤ CR− N
q ‖u‖Lq (B(y,2R)) (2.23)

where C is a constant depending on N , q, θ and δ. Moreover, the above estimate also holds
for any nonnegative weak solution of −�u ≤ a(x)u in B(y, 2R) provided (2.22) holds.

Let us continue the proof of Lemma 2.3. Set

β1 = (N − 2)β

2(α + 2)
, λ = β + 2β1

2
> 0, w = eλu . (2.24)

In this case, β1 ∈ (0,min{2, 2β}) since N ∈ (2, 2+ 4(α+2)
max{1,β} ) and N − 2αβ1

β
− 2(β+2β1)

β
= 0.

Letting R → 0 in (2.14), we have
∫

|x |>2R0

|x |αeβ+2β1dx =
∫

|x |>2R0

|x |αw2dx ≤ C < ∞, (2.25)

with some generic constant C which is independent of R0 and R. We also have that

�w + λ(eu + |x |αeβu)w = λ2eλu |∇u|2 ≥ 0. (2.26)

So Lemma 2.4 can be applied for this equation. Applying this lemma with a(x) = λ(eu +
|x |αeβu), q = 2, one can check that by (2.21)

Rε0‖a(x)‖Lθ (B(y,2R)) ≤ CRε0+ N−2θ
θ ≤ C, (2.27)

for all |y| > 8R0 and R = |y|
4 .

Applying Lemma 2.4 with δ = C in the above estimate, one has

w(y) ≤ CR− N
2 ‖w‖L2(B(y,2R)) ≤ CR− N

2 − α
2 ‖|x | α

2 w‖L2(B(y,2R)) = o
(
R− N+α

2

)
(2.28)

as |y| → ∞ by (2.25). By the definition of w,

eu(y) = w
1
λ = o

(
R− N+α

2λ

)
= o

(
R− α+2

β

)
= o

(
|y|− α+2

β

)
as |y| → ∞. (2.29)

We are done. 
�
In the end of this section, let us finish the proof of Theorem 1.2.

Proof of Theorem 1.2 To finish the proof, consider v, the average of u over sphere. First fix
M > 0 such that α+2

β
− 2

(N−2)M > 0. By (2.19), there exists RM > 0 such that

− �v = eu + |x |αeβu ≤ 1

2Mr
α+2
β

+ 1

2Mr2
≤ 1

Mr2
, ∀r ≥ RM , (2.30)

where we used α+2
β

≥ 2.
Integrating from RM to r , we have

v′(r) ≥ − C

rN−1 − 1

(N − 2)Mr
, ∀r ≥ RM .

As N > 2, there exists R′ > RM such that

v′(r) ≥ − 2

(N − 2)Mr
, ∀r ≥ R′.

Integrating from R′ to r ,
r

α+2
β ev(r) ≥ Cr

α+2
β

− 2
(N−2)M ,

123



2192 W. Ao, W. Yang

which implies

sup
|x |=r

(
r

α+2
β eu(x)

)
≥ r

α+2
β ev(r) ≥ Cr

α+2
β

− 2
(N−2)M → ∞, (2.31)

and it contradicts with (2.19). Thus we finish the proof. 
�
Acknowledgements The research of the first author is supported by NSFCNos.11801421 and 11631011. The
research of the second author is supported by NSFC Nos.11801550 and 11871470.

References

1. Ambjorn, J., Olesen, P.: Anti-screening of large magnetic fields by vector bosons. Phys. Lett. B 214,
565–569 (1988)

2. Bartolucci, D., Castorina, D.: Self-gravitating cosmic strings and the Alexandrov’s inequality for
Liouville-type equations. Commun. Contemp. Math. 18(4), 26 (2016)

3. Chae, D.: Existence of a semilinear elliptic system with exponential nonlinearities. Discrete Contin. Dyn.
Syst. 18, 709–718 (2007)

4. Chae, D.: Existence of multistring solutions of a selfgravitating massive Wboson. Lett. Math. Phys. 73,
123–134 (2005)

5. Chen, R.M., Guo, Y., Spirn, D.: Asymptotic behaviour and symmetry of condensate solutions in elec-
troweak theory. J. Anal. Math. 117, 47–85 (2012)

6. Dancer, E.N.: Finite Morse index solutions of exponential problems. Ann. Inst. H. Poincaré Anal Non
Linéaire 25, 173–179 (2008)

7. Dancer, E.N., Farina, A.: On the classification of solutions of −�u = eu on R
N : stability outside a

compact set and applications. Proc. Am. Math. Soc. 137(4), 1333–1338 (2009)
8. Dancer, E.N., Du, Y., Guo, Z.M.: Finite Morse index solutions of an elliptic equation with supercritical

exponent. J. Differ. Equ. 250, 3281–3310 (2011)
9. Dávila, J., Dupaigne, L., Farina, A.: Partial regularity of finite Morse index solutions to the Lane–Emden

equation. J. Funct. Anal. 261(1), 218–232 (2011)
10. Dávila, J., Ye, D.: On finite Morse index solutions of two equations with negative exponent. Proc. R. Soc.

Edinb. Sect. A 143(1), 121–128 (2013). (preprint)
11. Dávila, J., Dupaigne, L., Wang, K.L., Wei, J.C.: A monotonicity formula and a Liouville-type theorem

for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)
12. De Marchis, F., Ricciardi, T.: Existence results for turbulent flows with arbitrary intensities. Nonlinear

Anal. Real. 38, 222–244 (2017)
13. Dupaigne, L., Ghergu, M., Goubet, O., Warnault, G.: The Gel’fand problem for the biharmonic operator.

Arch. Ration. Mech. Anal. 208, 725–752 (2013)
14. Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains ofRN .

J. Math. Pures Appl. 87, 537–561 (2007)
15. Gui, C., Jevnikar, A., Moradifam, A.: Symmetry and uniqueness of solutions to some Liouville-type

equations and systems. Comm. PDEs 43(3), 428–447 (2018)
16. Hajlaoui, H., Harrabi, A.A., Ye, D.: On stable solutions of biharmonic problem with polynomial growth.

Pac. J. Math. 270(1), 79–93 (2014)
17. Jevnikar, A., Yang,W.: Amean field equation involving positive supported probability measures: blow-up

phenomena and variational aspects. Proc. R. Soc. Edinb. A (2018). https://doi.org/10.1017/prm.2018.30
18. Ohtsuka, H., Ricciardi, T., Suzuki, T.: Blow-up analysis for an elliptic equation describing stationary

vortex flows with variable intensities in 2D-turbulence. J. Differ. Equ. 249, 1436–1465 (2010)
19. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento Suppl. 6, 279–287 (1949)
20. Poliakovsky, A., Tarantello, G.: On a planar Liouville-type problem in the study of self-gravitating strings.

J. Differ. Equ. 252(5), 3668–3693 (2012)
21. Poliakovsky, A., Tarantello, G.: On Singular Liouville Systems, Analysis and Topology in Nonlinear

Differential Equations. PNDLE 85 Birkhauser, Cham (2014)
22. Poliakovsky, A., Tarantello, G.: On non-topological solutions for planar Liouville systems of Toda-type.

Commun. Math. Phys. 347(1), 223–270 (2016)
23. Ricciardi, T., Zecca, G.: Blow-up analysis for some mean field equations involving probability measures

from statistical hydrodynamics. Differ. Integral Equ. 25(3–4), 201–222 (2012)

123

https://doi.org/10.1017/prm.2018.30


On the classification of solutions of cosmic strings equation 2193

24. Sawada, K., Suzuki, T.: Derivation of the equilibrium mean field equations of point vortex and vortex
filament system. Theor. Appl. Mech. Jpn. 56, 285–290 (2008)

25. Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)
26. Tarantello, G.: Blow-up analysis for a cosmic strings equation. J. Funct. Anal. 272(1), 255–338 (2017)
27. Tarantello, G.: Analytical issues in the construction of self-dual Chern–Simons vortices. Milan J. Math.

84(2), 269–298 (2016)
28. Wang, C., Ye, D.: Some Liouville theorems for Hénon type elliptic equations. J. Funct. Anal. 262(4),

1705–1727 (2012)
29. Wang, K.L.: Stable solutions for Toda system. (preprint)
30. Wei, J.C., Xu, X., Yang, W.: On the classification of stable solutions to biharmonic problems in large

dimensions. Pac. J. Math. 263(2), 495–512 (2013)
31. Wei, J.C., Ye, D.: Liouville theorems for finite Morse index solutions of biharmonic problem. Math. Ann.

356(4), 1599–1612 (2013)
32. Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)
33. Yang, Y.: Self duality of the gauge field equations and the cosmological constant. Commun. Math. Phys.

162, 481–498 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On the classification of solutions of cosmic strings equation
	Abstract
	1 Introduction
	2 Proof of Theorem 1.1 and Theorem 1.2
	2.1 Nonexistence of stable solutions
	2.2 Nonexistence for finite Morse index solutions

	Acknowledgements
	References




