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Abstract
Using finiteness-related results for non-abelian tensor products, we prove finiteness condi-
tions for the homotopy groups πn(X) in terms of the number of tensors. In particular, we
establish a quantitative version of the classical Blakers–Massey triad connectivity theorem.
Moreover, we study other finiteness conditions and equivalence properties that arise from the
non-abelian tensor square. Finally, we give applications to homotopy pushouts, especially in
the case of Eilenberg–MacLane spaces.
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1 Introduction

In [8] Brown and Loday presented a topological significance for the non-abelian tensor
product of groups. The non-abelian tensor product is used to describe the third relative
homotopy group of a triad as a non-abelian tensor product of the second homotopy groups
of appropriate subspaces. More specifically, in [8, Corollary 3.2], the third triad homotopy
group is

π3(X , A, B) ∼= π2(A,C) ⊗ π2(B,C),
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where X is a pointed space and {A, B} is an open cover of X such that A, B and C = A∩ B
are connected and (A,C), (B,C) are 1-connected.

In [12], Ellis gives a finiteness criterion for the triad homotopy group in terms of the
finiteness of the involved groups (see also [2,3]). More generally, finiteness conditions on
πn(X) when the excision theorem holds are given by the finiteness of πn(A), πn(B) and
πn−1(C). However, when the excision property does not hold, the failure is measured by
the triad homotopy groups πn(X , A, B) with n ≥ 3. Therefore, the finiteness of πn(X)

also depends on the triad homotopy groups πn(X , A, B). Thus, in order to give a bound for
πn(X), it is needed to study finiteness conditions on πn(X , A, B). In [9], another application
of the non-abelian tensor product is given by Brown and Loday, where they extended the
classical Blakers–Massey triad connectivity theorem, which states that if A, B and A ∩ B
are connected, {A, B} is an open cover of X , (A, A ∩ B) is p-connected, and (B, A ∩ B) is
q-connected, then πp+q+1(X , A, B) is isomorphic to the non-abelian tensor product

πp+1(A, A ∩ B) ⊗ πq+1(B, A ∩ B).

The hypothesis p, q ≥ 2 is broadened to p, q ≥ 1, and the hypothesis π1(A ∩ B) = 0 is
removed.

For the convenience of the reader we repeat the relevant definitions (cf. [2,3,16]). Let G
and H be groups each of which acts upon the other (on the right),

G × H → G, (g, h) �→ gh; H × G → H , (h, g) �→ hg

and on itself by conjugation, in such a way that for all g, g1 ∈ G and h, h1 ∈ H ,

g(hg1 ) =
((

gg
−1
1

)h)g1
and h

(
gh1

)
=

((
hh

−1
1

)g)h1
.

In this situation we say that G and H act compatibly on each other. Let Hϕ be a copy of H ,
isomorphic via ϕ : H → Hϕ, h �→ hϕ , for all h ∈ H . Consider the group η(G, H) defined
in [16] as

η(G, H) = 〈G ∪ Hϕ |[g, hϕ]g1 = [gg1 , (hg1)ϕ], [g, hϕ]hϕ
1 = [gh1 , (hh1)ϕ],

∀g, g1 ∈ G, h, h1 ∈ H〉.
It is a well-known fact (see [16, Proposition 2.2]) that the subgroup [G, Hϕ] of η(G, H)

is canonically isomorphic with the non-abelian tensor product G ⊗ H , as defined by Brown
and Loday in their seminal paper [8], the isomorphism being induced by g ⊗ h �→ [g, hϕ]
(see also Ellis and Leonard [13]). It is clear that the subgroup [G, Hϕ] is normal in η(G, H)

and one has the decomposition

η(G, H) = ([G, Hϕ] · G) · Hϕ,

where the dots mean (internal) semidirect products. We observe that when G = H and all
actions are conjugations, η(G, H) becomes the group ν(G) introduced in [20]. Recall that
an element α ∈ η(G, H) is called a tensor if α = [a, bϕ] for suitable a ∈ G and b ∈ H . We
write T⊗(G, H) to denote the set of all tensors (in η(G, H)). When G = H and all actions
are by conjugation, we simply write T⊗(G) instead of T⊗(G,G). A number of structural
results for the non-abelian tensor product of groups (and related constructions) in terms of
the set of tensors were presented in [2–5,21].

Our contribution is to give finiteness conditions and bounds on the triad homotopy groups
πn(X , A, B). Furthermore, a finiteness condition and bound is given to πn(X). We establish
the following related results.
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Theorem A Let X be a union of open subspaces A, B such that A, B andC = A∩B are path-
connected, and the pairs (A,C) and (B,C) are, respectively, p-connected and q-connected.
Suppose that πn(A), πn(B), πn−1(C) and the set of tensors T⊗(πp+1(A,C), πq+1(B,C))

are finite, where n = p+q+1. Then πn(X) is a finite group with {a, b, c,m}-bounded order,
where |πn(A)| = a, |πn(B)| = b, |πn−1(C)| = c and m = |T⊗(πp+1(A,C), πq+1(B,C))|.

An application of Theorem A is that π3(K (Cr∞ , 2) ∨ K (Cs∞ , 2)) is trivial, where “∨”
is the wedge sum, r and s are primes, and K (G, n) is an Eilenberg–MacLane space (i.e., a
topological space having just one non-trivial homotopy group πn(K (G, n)) ∼= G). See also
Remark 2.1 and Corollary 2.2.

In [8], Brown and Loday show that the third homotopy group of the suspension of an
Eilenberg–MacLane space K (G, 1) satisfies

π3(SK (G, 1)) ∼= J2(G),

where J2(G) denotes the kernel of the derived map κ : [G,Gϕ] → G ′, given by
[g, hϕ] �→ [g, h] (cf. [21, Chapter 2 and 3]). Many authors have studied bounds on the
order of π3(SK (G, 1)) (cf. [1,6,7,17]). We deduce a finiteness criterion for π3(SX) in terms
of π2(X) and the number of tensors T⊗(G), where π1(X) ∼= G and SX is the suspension of
the space X (see Remark 2.4).

Theorem B Let X be a connected space and π1(X) = G. Suppose that the set of tensors
T⊗(G) has exactly m tensors in ν(G) and π2(X) is finite with |π2(X)| = a. Then π3(SX) is
a finite group with {a,m}-bounded order.

It is well known that the finiteness of the non-abelian tensor square [G,Gϕ] does not
imply the finiteness of the group G (see Remark 2.7(b)). In [18], Parvizi and Niroomand
prove that if G is a finitely generated group and the non-abelian tensor square [G,Gϕ] is
finite, then G is finite. We obtain equivalent conditions (see the following theorem) and a
related topological result (see Corollary 3.4).

Theorem C Let G be a finitely generated group. The following properties are equivalent.

(a) The group G is finite;
(b) The set of tensors T⊗(G) is finite;
(c) The non-abelian tensor square [G,Gϕ] is finite;
(d) The derived subgroup G ′ is locally finite, and the kernel J2(G) ∼= π3(SK (G, 1)) is

periodic;
(e) The derived subgroup G ′ is locally finite, and the diagonal subgroup �(G) is periodic;
(f) The derived subgroup G ′ is locally finite, and the subgroup �̃(G) = 〈[g, hϕ][h, gϕ] |

g, h ∈ G〉 is periodic;
(g) The non-abelian tensor square [G,Gϕ] is locally finite.
In algebraic topology, the non-abelian tensor product arises from a homotopy pushout,

see [8,10]. The homotopy pushout (or homotopy amalgamated sum) is well known for its
application in the classical Seifert–vanKampen theoremaswell asHigherHomotopySeifert–
van Kampen theorem in the case of a covering by two open sets. Our contribution is to apply
the ideas of Theorem A and of constructions related to tensor products in order to obtain
finiteness results related to the homotopy pushout. For instance, see Proposition 4.2 in the
fourth section for an application to homotopy pushout of Eilenberg–Maclane spaces.

The paper is organized as follows. In the next section we describe finiteness criteria for
the group πn(X) in terms of the number of tensors. In particular, we establish a quantitative

123



2084 R. Bastos et al.

version of the classical Blakers–Massey triad connectivity theorem. In the third section we
examine some necessary conditions on finiteness for the group G in terms of certain torsion
elements of the non-abelian tensor square [G,Gϕ]. In the final section, as an application we
obtain finiteness criteria for the homotopy pushout that depends on the number of tensors in
the non-abelian tensor product of groups.

2 Finiteness conditions

Let (X , A, B) be a triad, that is, A and B are subspaces of X , containing the base point in
C = A ∩ B, such that the triad homotopy group πn(X , A, B) for n ≥ 3 fits into a long exact
sequence

· · · → πn(B,C) → πn(X , A) → πn(X , A, B) → πn−1(B,C) → · · · .

Let X be a pointed space and {A, B} an open cover of X such that A, B and C = A ∩ B are
connected and (A,C), (B,C) are 1-connected, see [22].

Using the relative homotopy long exact sequences and the third triad homotopy group,
Ellis and McDermott obtain an interesting bound on the order of π3(X) (cf. [14, Proposition
5]). We have obtained (as a consequence of Theorem A) a more general version. In contrast
to the bound in [14], we do not require that π2(A,C) and π2(B,C) be finite groups and we
do not need to estimate π2(X ,C).

Following the same setting, we apply the extended Blakers–Massey triad connectivity [9,
Theorem 4.2]

πp+q+1(X , A, B) ∼= πp+1(A, A ∩ B) ⊗ πq+1(B, A ∩ B),

in order to present a finiteness condition and a bound to πn(X) in terms of the set of tensors
T⊗(πp+1(A,C), πq+1(B,C)), where n = p + q + 1.

Proof of TheoremA Consider the relative homotopy long exact sequences, as in [22],

πn(B) → πn(B,C) → πn−1(C)

πn(A) → πn(X) → πn(X , A)

πn(B,C) → πn(X , A) → πn(X , A, B).

By the first exact sequence, we deduce that πn(B,C) is a finite group with {b, c}-
bounded order. According to Brown–Loday’s result [9, Theorem 4.2], the group πn(X , A, B)

is isomorphic to the non-abelian tensor product M ⊗ N , where M = πp+1(A,C) and
N = πq+1(B,C). As |T⊗(πp+1(A,C), πq+1(B,C))| = m, we have πn(X , A, B) finite
with m-bounded order ([3, Theorem B]). From this we conclude that the group πn(X , A) is
finite with {b,m}-bounded order. In the same manner we can see that πn(X) is finite with
{a, b, c,m}-bounded order. The proof is complete. ��

Remark 2.1 Adirect application of TheoremA is thatπ3(K (G, 2)∨K (H , 2)) is a finite group
withm-bounded order, wherem = |T⊗(G, H)|. In particular,π3(K (Cr∞ , 2)∨K (Cs∞ , 2)) is
trivial, where s and r are primes and K (G, n) is an Eilenberg–MacLane space (a topological
space having just one non-trivial homotopy group πn(K (G, n)) ∼= G).

Using the same idea as in the previous remark, we have the following corollary.
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Corollary 2.2 Let A and B be p-connected and q-connected locally contractible spaces,
respectively. Suppose that |πn(A)| = a, |πn(B)| = b and |T⊗(πp+1(A), πq+1(B))| = m,
where n = p + q + 1. Then πn(A ∨ B) is finite with {a, b,m}-bounded order.

The previous corollary is an example where we can use the non-abelian tensor product
to overcome the failure of the excision property, which reflects the fact that πn(A ∨ B) is
different from πn(A) ⊕ πn(B) in general, for n ≥ 2.

The following result provides a finiteness criterion for the group G in terms of the number
of tensors in the non-abelian tensor square [G,Gϕ].
Corollary 2.3 Let X be a connected space and π1(X) = G. Suppose that the first homology
group of X, H1(X ,Z), is finitely generated and the set of tensors T⊗(G) ⊆ ν(G) has exactly
m tensors. Then both H1(X ,Z) and π1(X) = G are finite with m-bounded orders.

Proof By Theorem A, the non-abelian tensor square [G,Gϕ] is finite withm-bounded order.
Consequently, the derived subgroup G ′ is finite with m-bounded order. Since Gab is finitely
generated, we deduce that the abelianization Gab is isomorphic to a subgroup of the non-
abelian tensor square [Gab, (Gab)ϕ]. On the other hand, [Gab, (Gab)ϕ] is finite with m-
bounded order because [Gab, (Gab)ϕ] is an homomorphic image of [G,Gϕ]. Therefore the
abelianizationGab is finite withm-bounded order. Consequently,G is finite withm-bounded
order. The proof is complete. ��

In the case of the suspension triad (SX;C+X ,C−X), see [8,22], we can obtain finiteness
criteria and bounds to the order of π3(SX), where C−X and C+X are the two cones of X in
SX .

Proof of Theorem B Consider the long exact sequence

· · · → π2(X) → π3(SX) → π2(	SX , X) → · · ·
where 	SX is the space of loops in SX , maps from the circle S1 to SX , equipped with
the compact–open topology. By Brown–Loday’s result [8, Proposition 3.3], π2(	SX , X) is
isomorphic to the non-abelian tensor square [G,Gϕ] and by hypothesis |T⊗(G)| = m; hence
[G,Gϕ] is finite with m-bounded order ([3, Theorem B]). Since |π2(X)| = a, it follows that
π3(SX) is finite with {a,m}-bounded order. ��
Remark 2.4 In the above result, it is worth noting that π2(X) does not need to be trivial;
therefore, the result is more general compared to the bounds for π3(SK (G, 1)) when X =
K (G, 1). However, in [8] it is proved that if π1(X) = G and π2(X) is trivial, then π3(SX) ∼=
J2(G) = ker(κ), where κ : [G,Gϕ] → G ′ is given by [g, hϕ] �→ [g, h].

Combining the above bounds to the order of the non-abelian tensor square and [8, Propo-
sition 4.10] we obtain, under appropriate conditions on the set of tensors T⊗(G), some
finiteness criteria and bounds to the orders of π3(SK (G, 1)) and π S

2 (K (G, 1)), the second
stable homotopy group of an Eilenberg–MacLane space.

Corollary 2.5 Let G be a group. Suppose that the set T⊗(G) has exactly m tensors in ν(G).
Then

(a) The second stable homotopy group π S
2 (K (G, 1)) is finite with m-bounded order;

(b) π3(SK (G, 1)) is finite with m-bounded order.
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In particular, when G is a Prüfer group Cp∞ in the previous corollary, then π S
2 (K (G, 1))

and π3(SK (G, 1)) are trivial.
Next we give a necessary and sufficient condition for the finiteness of the third homotopy

group of the suspension of an Eilenberg–Maclane space.

Proposition 2.6 Let G be a BFC group such that Gab is finitely generated. Then,
π3(SK (G, 1)) is finite if and only if π1(K (G, 1)) is finite.

Proof Assume that J2(G) ∼= π3(SK (G, 1)) is finite and consider the following short exact
sequence

0 → J2(G) → [G,Gϕ] → G ′ → 1.

Since G ′ is finite by Neumann’s theorem [19, 14.5.11], we have that the non-abelian tensor
square [G,Gϕ] is finite. Since Gab is finitely generated, we deduce that the abelianization
Gab is isomorphic to a subgroup of the non-abelian tensor square [Gab, (Gab)ϕ]. On the other
hand, [Gab, (Gab)ϕ] is finite because [Gab, (Gab)ϕ] is a homomorphic image of [G,Gϕ].
From this we deduce that the abelianization Gab is finite and so G is finite as well.

Conversely, suppose that π1(K (G, 1)) is finite. Consequently, the non-abelian tensor
square [G,Gϕ] is finite and so, π3(SK (G, 1)) is finite. The proof is complete. ��
Remark 2.7 (a) Assume that G is a BFC group and the abelianization Gab is finitely gener-
ated. Consider the following short exact sequence (cf. [21, Section 2]),

1 → �(G) → J2(G) → H2(G) → 1,

where J2(G) is isomorphic to π3(SK (G, 1)) and H2(G) is the second homology group.
Recall that the diagonal subgroup�(G) is given by�(G) = 〈[g, gϕ] | g ∈ G〉. The subgroup
�(G) is finite if and only if π1(K (G, 1)) is finite (if and only if the group π3(SK (G, 1)) is
finite). See [8, Section 2] for more details.
(b) Note that the equivalences above are no longer guaranteed without the hypothesis that
Gab is a finitely generated group. For instance, the Prüfer group G = Cp∞ is an infinite
group such that the non-abelian tensor square [G,Gϕ] is trivial and so, finite. In particular,
J2(G) ∼= π3(SK (G, 1)) is also trivial.

A direct application of Corollaries 2.3 and 2.5 to the suspension of an Eilenberg–Maclane
space K (G, 1) and the second stable homotopy group of K (G, 1) is the following finiteness
condition.

Corollary 2.8 Let G be a group. Then, π3(SK (G, 1)) and G ′ are finite if and only if T⊗(G)

is finite. Moreover, if G is perfect then π S
2 (K (G, 1)) and G are finite if and only if T⊗(G) is

finite.

3 Torsion elements in the non-abelian tensor square

This section will be devoted to obtain some finiteness conditions for the group G in terms
of the torsion elements in the non-abelian tensor square. Specifically, our proofs involve
looking at the description of the diagonal subgroup�(G) � [G,Gϕ]. Such a description has
previously been used by the authors [2,21].

It is well known that the finiteness of the non-abelian tensor square [G,Gϕ] does not
imply the finiteness of the group G (see Remark 2.7, above). In [18], Parvizi and Niroomand
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prove that if G is a finitely generated group and the non-abelian tensor square [G,Gϕ] is
finite, then G is finite. Later, in [2], the authors prove that if G is a finitely generated locally
graded group and the exponent of the non-abelian tensor square exp([G,Gϕ]) is finite, then
G is finite. The next result can be viewed as a generalization of the above results.

Theorem C Let G be a finitely generated group. The following properties are equivalents.

(a) The group G is finite;
(b) The set of tensors T⊗(G) is finite;
(c) The non-abelian tensor square [G,Gϕ] is finite;
(d) The derived subgroup G ′ is locally finite, and the kernel J2(G) ∼= π3(SK (G, 1)) is

periodic;
(e) The derived subgroup G ′ is locally finite, and the diagonal subgroup �(G) is periodic;
(f) The derived subgroup G ′ is locally finite, and the subgroup �̃(G) is periodic;
(g) The non-abelian tensor square [G,Gϕ] is locally finite.
Proof (a) ⇒ (b) and (c) ⇒ (d) ⇒ (e) ⇒ (f) are direct.
(b) ⇒ (c). Suppose that T⊗(G) is finite. By [2, Theorem A], the non-abelian tensor square
[G,Gϕ] is finite.
(f) ⇒ (g). By Schmidt’s theorem [19, 14.3.1], it suffices to prove that the abelianization Gab

is finite.
Since Gab is finitely generated, we deduce that

Gab = T × F,

where T is the torsion part and F the free part of Gab (cf. [19, 4.2.10]). If the abelianization
Gab is not periodic, then there exists an element of infinite order x ∈ G such that xG ′ ∈ F .
In particular, [x, xϕ][x, xϕ] = [x, xϕ]2 is an infinite element in �̃(G). Consequently, F is
trivial and Gab = T is finite.

(g) ⇒ (a). First we prove that the abelianization Gab is finite. Arguing as in the above
paragraph, we deduce that Gab = T × F, where T is the torsion part and F the free part of
Gab. From [21, Remark 5] we conclude that �(Gab) is isomorphic to

�(T ) × �(F) × (T ⊗Z F),

where T ⊗Z F is the usual tensor product of Z-modules. In particular, the free part of
�(Gab) is precisely�(F). Now, the canonical projectionG � Gab induces an epimorphism
q : �(G) � �(Gab). Since �(G) is locally finite, it follows that �(Gab) is also locally
finite. Consequently, F is trivial and thus Gab is periodic and, consequently, finite.

It remains to prove that the derived subgroup G ′ is finite. Since G is finitely generated and
Gab is finite, it follows that the derived subgroup G ′ is finitely generated ([19, 1.6.11]). As
G ′ is an homomorphic image of the non-abelian tensor square [G,Gϕ], we have G ′ is finite.
From this we deduce that G is finite. The proof is complete. ��
Remark 3.1 Note that in the above result the finitely generated hypothesis is essential. For
instance, if p is an odd prime, consider the Prüfer group A = Cp∞ . Define the semidirect
product Dp∞ = A · C2, where C2 = 〈c〉 and

ac = a−1,

for every a ∈ A. Hence, the groupDp∞ is a locally finite group in which the abelianization is
finite. By Moravec’s result [15], the non-abelian tensor square [Dp∞ ,Dϕ

p∞] is locally finite,
but Dp∞ is infinite.
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Proposition 3.2 Let G be a polycyclic-by-finite group. Suppose that the non-abelian tensor
square [G,Gϕ] is periodic. Then G is finite.

Proof Since the derived subgroupG ′ is an epimorphic image of the non-abelian tensor square
[G,Gϕ], it follows thatG ′ is also periodic. In particular, we can deduce thatG ′ is finite. Now,
arguing as in the proof of Theorem C, we deduce that Gab is finite. The proof is complete.��

It is well known that if G is a group with exponent exp(G) ∈ {2, 3, 4, 6}, then G is locally
finite (Burnside, Levi–van der Waerden, Sanov, M. Hall see [19, Section 14.2] for more
details). We also examine the finiteness of the group G when the non-abelian tensor square
[G,Gϕ] has small exponent.

Corollary 3.3 Let n ∈ {2, 3, 4, 6} and let G be a finitely generated group. Assume that the
exponent of the non-abelian tensor square exp([G,Gϕ]) is exactly n. Then G is finite.

Proof It suffices to see that the non-abelian tensor square [G,Gϕ] is locally finite (see [19,
Section 14.2] for more details). By Theorem C, the groupG is finite. The proof is complete.��

The following corollary is a topological version of Theorem C.

Corollary 3.4 Let G be a finitely generated group, and let X be a topological space such
that π1(X) = G and π2(X) is trivial. Assume that π3(SX) is finitely generated. Then the
following properties are equivalent.

(a) The group π1(X) = G is finite;
(b) The derived subgroup G ′ is locally finite, and π3(SX) is periodic;
(c) The derived subgroup G ′ is locally finite, and F(π3(SX)) ∼= F(H2(G)), where F(H)

is the free part of a group H;
(d) The derived subgroup G ′ is locally finite, and F(π3(SX)) ∼= F(π4(S2X)), where F(H)

is the free part of a group H.

Proof Since π2(X) is trivial, it follows that J2(G) ∼= π3(SX) (cf. [8, Proposition 3.3]). As
J2(G) is finitely generated, we have that H2(G) and π4(S2X) are finitely generated groups.
Consider the short exact sequences, as in [8],

1 → �(G) → J2(G) → H2(G) → 1,

1 → �̃(G) → J2(G) → π4(S2X) → 1,

1 → J2(G) → [G,Gϕ] → G ′ → 1.

Therefore, the result follows by applying Theorem C. ��

4 Application to homotopy pushout

We end this paper by proving some finiteness criteria for the homotopy pushout. Consider
the following commutative square of spaces

C

g

f
A

a

B
b

X
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and denote by F( f ), F(g) and F(a) the homotopy fibers of f , g and a, respectively, and
let F(X) be the homotopy fiber of F(g) → F(a). The previous square is called a homotopy
pushoutwhen the canonical map of squares from the double mapping cylinder M( f , g) to X
is a weak equivalence of spaces at the four corners, for more details see [8]. For the homotopy
pushout, we have an analogous of Theorem A.

Proposition 4.1 Let the following square of spaces be a homotopy pushout

C

g

f
A

a

B
b

X

Suppose that π3(A), π2(F(g)) and the set of tensors T⊗(G, H) are finite, where G =
π1(F( f )) and H = π1(F(g)). Then π3(X) is a finite group with {na, nb,m}-bounded order,
where |π3(A)| = na, |π2F(g)| = nb and |T⊗(G, H)| = m.

Proof By [8, Theorem 3.1] we have that π1(F(X)) � π1(F( f )) ⊗ π1(F(g)). Since
|T⊗(π1(F( f )), π1(F(g)))| = m thenπ1(F(X)) is finite withm-bounded order ([3, Theorem
B]). Using |π3(A)| = na , |π2F(g)| = nb and the long exact sequences of the fibrations

F(X) → F(g) → F(a)

F(a) → A → X ,

it follows that π3(X) is a finite group with {na, nb,m}-bounded. ��
Many authors have studied some finiteness conditions for the non-abelian tensor product

of groups (cf. [2,4,11,12,15,18]). For instance, in [15], Moravec proved that if G, H are
locally finite groups acting compatibly on each other, then so is G ⊗ H . In [11], Donadze,
Ladra and Thomas proved interesting finiteness criteria for the non-abelian tensor product
in terms of the involved groups. In [2,3], the authors prove a finiteness criterion for the non-
abelian tensor product of groups in terms of the number of tensors. In the case of homotopy
pushout for Eilenberg–Maclane spaces it is possible to obtain results direct from the study
of the non-abelian tensor product of groups. We obtain the following related result.

Proposition 4.2 Let M, N be normal subgroups of a groupG and form the homotopy pushout

K (G, 1) K (G/N , 1)

K (G/M, 1) X

(a) Suppose that the subgroups M and N are locally finite. Then π2(X) and π3(X) are
locally finite.

(b) Suppose that M is a non-abelian free group of finite rank and N is a finite group. Then
π2(X) and π3(X) are finite.

(c) Suppose that the set of tensors T⊗(M, N ) ⊆ η(M, N ) is finite. Then π3(X) is a finite
group with m-bounded order, where |T⊗(M, N )| = m.

Proof According to Brown and Loday’s result [8, Corollary 3.4], the group π3(X) is isomor-
phic to a subgroup of the non-abelian tensor product [M, Nϕ] and π2(X) is isomorphic to
(M ∩ N )/[M, N ]. In particular, the group π2(X) is a homomorphic image of M ∩ N .

123



2090 R. Bastos et al.

(a) As M ∩ N is locally finite, we have that π2(X) is locally finite. Now, since M and N are
locally finite, it follows that the non-abelian tensor product [M, Nϕ] is locally finite [15].
Consequently, the group π3(X) is locally finite.
(b) Since M is finite and N is a non-abelian free group, we deduce that π2(X) is finite.
According to Donadze, Ladra and Thomas’ result [11, Corollary 4.7], we conclude that the
non-abelian tensor product [M, Nϕ] is finite and so π3(X) is finite.
(c)According toTheoremA, thenon-abelian tensor product [M, Nϕ] is finitewithm-bounded
order. In particular, the group π3(X) is finite withm-bounded order. The proof is complete.��
Remark 4.3 Note that Proposition 4.2 (c) in a certain sense cannot be improved. For instance,
if M = N = Cp∞ then the group π2(X) ∼= Cp∞ is infinite, whereas π3(X) is trivial.

As an interesting consequence of Proposition 4.2 we obtain that, if G = MN such that
M ∩ N and [M, Nϕ] are trivial, then X is 3-connected, i.e., πn(X) is trivial for n = 1, 2 and
3; see the following example.

Example 4.4 When G = Cr∞ ×Cs∞ in Proposition 4.2 with r and s primes (not necessarily
distinct), we have that X is 3-connected. In fact, π1(X) is trivial by van Kampen theorem
and π2(X) = 0 as a consequence of the van Kampen theorem for maps. Finally, the triviality
of π3(X) follows from the proposition above.
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