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Abstract We prove some global, up to the boundary of a domain � ⊂ R
n , continuity and

Lipschitz regularity results for almost minimizers of functionals of the form

u �→
∫

�

g(x, u(x),∇u(x)) dx.

The main assumption for g is that it be asymptotically convex with respect its third argument.
For the continuity results, the integrand is allowed to have some discontinuous behavior with
respect to its first and second arguments. For the global Lipschitz regularity result, we require
g to be Hölder continuous with respect to its first two arguments.

Keywords Regularity · Asymptotic convexity · Almost minimizer
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1 Introduction

Let n and N be positive integers, and let p > 2 be given. These numbers are fixed for
the rest of the paper. In the sequel � ⊂ R

n always denotes an open and bounded set. Put
R := R ∪ {+∞}. Additional notation is collected in Sect. 2.

To facilitate the presentation of the main results and ideas, we will make some simplifying
assumptions for this section. Suppose that � has a smooth boundary ∂�. In Sect. 3, we
provide a more precise description of the types of domains that we consider and recall some
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264 M. Foss

standard material on boundary transformations. Let g ∈ C∞(RN×n; R) be given, and define
the functional K : W 1,1(�; R

N ) → R by

K [u] :=
∫

�

g(∇u(x)) dx.

Also define H ∈ C∞(RN×n; R) by H(F) := (
1 + ‖F‖2

) p
2 . The primary assumption that we

make for g is that it possesses the following property: for each ε > 0, there exists a σε < +∞
such that ∥∥∥∥ ∂2

∂F2 g(F) − ∂2

∂F2 H(F)

∥∥∥∥ < ε‖F‖p−2, (A)

whenever ‖F‖ > σε. Property (A) implies that g is convex when the norm of its argument is
sufficiently large. In fact, for all ξ ∈ R

N×n , we find that

∂2

∂F2 g(F) :: [ξ ⊗ ξ
] ≥ (p − ε)

(
1 + ‖F‖2) p−2

2 ‖ξ‖2,

whenever ‖F‖ > σε. Thus, we say that g is asymptotically convex. Several other implications
of assumption (A) are provided in Sect. 5. For our main results, assumption (A) will be
significantly relaxed (see Definitions 10, 11), but the essential feature is that we require g to
possess some asymptotic convexity.

Given the function g satisfying the condition in (A), one can establish local bounds for
the norm of the gradient of a minimizer. In [3], Chipot and Evans showed that minimizers
for J must belong to L∞

loc(�; R
N ), in the case where p = 2 (for our results, we require

p > 2). This result was later generalized, by Giaquinta and Modica [15], to allow p > 2.
Raymond [23] extended Giaquinta and Modica’s work obtaining local bounds for the gradient
of a minimizer to functionals of the form

u �→
∫

�

{g(∇u(x)) + h(x, u(x))} dx,

where h : � × R
N → R is a Carathédory function satisfying some regularity and growth

conditions. Since g is not necessarily convex, or even quasiconvex, minimizers for K may
not exist. For the case with p = 2, Müller considered perturbed functionals of the form

u �→
∫

�

{
g(∇u(x)) + ε2 (�u(x))2} dx,

where ε > 0 is small. For these functionals, one obtains approximate minimizers of K ,
and Müller [22] provided local Lipschitz estimates, for the approximate minimizers, that are
uniform with respect to ε. In [11], Fuchs established local Lipschitz regularity for minimizers
of the functional K , where g(F) = ‖F‖p outside some ball but is otherwise only required to
be Lipschitz continuous. Later, Fuchs and Li [12] considered such functionals as

u �→
∫

�

{‖∇u(x)‖2 + f (‖∇u(x)‖) + h(∇u(x))
}

dx,

with h a continuous function with compact support and f : [0,+∞) → R a convex,
non-decreasing, subquadratic function that is in C1([L ,+∞)) for some L > 0. Fuchs and
Li showed that minimizers for such functionals, subject to sufficiently regular boundary
conditions, are globally Lipschitz. For all, but this last result, the estimates obtained are local
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Global regularity of almost minimizers 265

in nature. The results presented in this article are valid up to the boundary for appropriate
Dirichlet boundary conditions.

The arguments for our results are similar in spirit to those used in [23] by Raymond.
More precisely, we first establish that a minimizer must be in some Morrey space and then
show that the minimizer is actually Lipschitz. Ultimately, all the arguments involve making
comparisons between minimizers of K and minimizers of the functional

v �→
∫

U
H(∇v(x)) dx,

with an appropriate domain U and boundary conditions on v.
There is, however, another strategy that has been successful in establishing local Lipschitz

regularity. This strategy is based on the observation that if the relaxed functional

K [u] := inf

⎧⎪⎨
⎪⎩lim inf

k→+∞

∫

�

g(∇uk(x)) dx

∣∣∣∣uk ⇀ u in W 1,p(�; R
N )

⎫⎪⎬
⎪⎭

can be represented by

K ∗∗[u] :=
∫

�

g∗∗(∇u(x)) dx,

where g∗∗ is the convex envelope of g, then a minimizer for K is also a minimizer for K ∗∗.
In which case, regularity for minimizers of K is obtained by instead establishing regular-
ity for minimizers of K ∗∗. In [1], Benedetti and Mascolo follow this approach to obtain
local regularity for minimizers of nonconvex, nonhomogeneous functionals satisfying a p–q
growth condition (see [4,9] for the convex setting). Under certain conditions, the regularity
results actually yield existence of minimizers; for such results in the case where N = 1
and additional references, we refer to the work of Fonseca et al. [10]. In [5], Cupini and
Migliorini also consider the case where N = 1 and establish local Hölder continuity results
for minimizers of nonhomogeneous functionals that depend on the minimizer itself as well
as its gradient. In many respects, the results in Sect. 8 provide an extension of the results
in [5] to the vectorial setting and up to the boundary.

Before describing the main results, we introduce the following notion of an almost mini-
mizer.

Definition 1 Suppose that a functional K : W 1,1(�; R
N ) → R and a non-decreasing func-

tion ω : [0,+∞) → [0,+∞) satisfying ω(0) = 0 are given. Further suppose that a family
of functions {νε}ε>0 ⊂ L1(�) and constants {Tε}ε>0 ⊂ [0,∞) are given. We will say that
u ∈ W 1,1(�; R

N ) is a (K , ω, {νε, Tε})-minimizer at x0, if K [u] < +∞ and there is a t > 1
such that for each ε > 0 and every ρ > 0, we find that

K [u] ≤ K [u + ϕ] + (ω(ρ) + ε)

∫

supp(ϕ)

(
1 + ‖∇u‖p + ‖∇ϕ‖p) dx

+ Tε

⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

t

+
∫

supp(ϕ)

|νε(x)| dx + ρn |νε(x0)|, (1)
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266 M. Foss

for all ϕ ∈ W 1,1
0 (�x0,ρ; R

N ), whenever x0 is a Lebesgue point for νε . If a mapping u is a
(K , ω, {νε, Tε})-minimizer at each x0 ∈ �, then we will call it a (K , ω, {νε, Tε})-minimizer.
Moreover, a (K , ω, {νε, 0})-minimizer will be called a (K , ω, {νε})-minimizer.

We also define

Definition 2 Suppose that a functional K : W 1,1(�; R
N ) → R and a non-decreasing

function ω : [0,+∞) → [0,+∞) satisfying ω(0) = 0 are given. We will say that
u ∈ W 1,1(�; R

N ) is a (K , ω)-minimizer at x0, if K [u] < +∞ and for every ρ > 0,
we find that

K [u] ≤ K [u + ϕ] + ω(ρ)

∫

supp(ϕ)

(
1 + ‖∇u‖p + ‖∇ϕ‖p) dx, (2)

for all ϕ ∈ W 1,1
0 (�x0,ρ; R

N ). Whenever a mapping u is a (K , ω)-minimizer at each x0 ∈ �,
then we will simply call it a (K , ω)-minimizer. Also, a (K , 0)-minimizer will be called a
K -minimizer, or just minimizer.

Clearly, any (K , ω, {0})-minimizer is a (K , ω)-minimizer. Our definition for the (K , ω)-
minimizers is similar to Giusti’s definition of ω-minimizers in [16], to which we refer for
further references.

The first main result is established in Sect. 6. It provides Morrey regularity, up to the
boundary of �, for the gradient of (K , ω, {νε, Tε})-minimizers. (It should be mentioned that
Morrey regularity for a minimizer itself, not its gradient, was considered in [6] in a more
general setting.) For simplicity, we state here a special case in terms of the function g and H
given above and then describe the actual result.

Theorem 1 Let 0 ≤ κ < n and u ∈ W 1,p(�; R
N ), with ∇u ∈ L p,κ (�; R

N ) be given.
Also, let {νε}ε>0 ⊂ L1,κ (�) be given. If u ∈ W 1,1(�; R

N ) is a K -minimizer satisfying
[u − u] ∈ W 1,1

0 (�; R
N ), then ∇u ∈ L p,κ (�; R

N×n) and u ∈ L p,p+κ (�; R
N ).

Here L p,κ (�; R
N×n) and L p,p+κ (�; R

N ) denote, respectively, Morrey and Campanato
spaces (Definitions 3, 4). The actual result is stated for mappings that are almost minimizers,
in the sense of Definition 1, for a family of functionals parameterized by points in a given
subset of �. Moreover, the integrands for these functionals are only required to satisfy a
much weaker version of assumption (A). For a precise statement of the result, we refer to
Theorem 8.

With this level of generality, we are able to establish global Morrey regularity for mini-
mizers of non-homogeneous functionals in Sect. 8. To illustrate the types of functionals to
which our results are applicable, let κ and u, satisfying the hypotheses of the above theorem,
be given.

Example 1 Let q ≥ 1 and α < n−κ
q be given. Suppose that u ∈ W 1,1(B; R

N ) is a minimizer
for the functional

u �→
∫

B

{(
1 + ‖∇u(x)‖2) p

2 − 1

‖x‖α

(
1 + ‖∇u(x)‖2) p(q−1)

2q

}
dx (3)

satisfying [u − u] ∈ W 1,1
0 (B; R

N ). Then we find that ∇u ∈ L p,κ (B; R
N×n) and u ∈

L p,p+κ (B; R
N ).
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Global regularity of almost minimizers 267

To see why we should expect u to possess this amount of regularity, observe that for each
ε > 0, there is a Cε < +∞ such that

∫

B

1

‖x‖α

(
1 + ‖∇u‖2) p(q−1)

2q dx ≤ ε

∫

B

(
1 + ‖∇u‖2) p

2 dx + Cε

∫

B

1

‖x‖n−κ−δ
dx,

for some δ > 0. Thus, the functional in (3) is coercive with respect to the norm in
W 1,p(B; R

N ), from which we conclude that u ∈ W 1,p(B; R
N ). Moreover, at any point

x0 ∈ B where

lim sup
ρ→0+

1

ρκ

∫

B∩Bx0,ρ

‖∇u(x)‖p dx = +∞, (4)

we find that

lim sup
ρ→0+

1

ρκ

∫

B∩Bx0,ρ

1

‖x‖n−κ−δ
dx = 0.

Therefore, for sufficiently small ρ > 0, we have that
∫

B∩Bx0,ρ

{(
1 + ‖∇u‖2) p

2 − 1

‖x‖α

(
1 + ‖∇u‖2) p(q−1)

2q

}
dx ∼

∫

B∩Bx0,ρ

H(∇u) dx

and the minimizer u is comparable to a minimizer for the functional

v �→
∫

B∩Bx0,ρ

H(∇v(x)) dx, (5)

satisfying [v − u] ∈ W 1,p
0 (B ∩ Bx0,ρ; R

N ). If Bx0,ρ ⊂ B, then a well known result of
Uhlenbeck’s [25] states that minimizers for this last functional are locally smooth. This
result translates into estimates for the minimizer of (3), which preclude (4), thereby yielding
the local Morrey regularity of the minimizer u. When Bx0,ρ ∩∂B �= ∅, however, Uhlenbeck’s
result is not directly applicable, since it is only valid up to the boundary under homogeneous
Dirichlet conditions. If we have (4), however, then the regularity hypothesis for u implies that
the boundary conditions are, in some sense, negligible relative to ‖∇u(x0)‖. Thus, on the set
B ∩ Bx0,ρ , for sufficiently small ρ > 0, we may compare the minimizer u to a minimizer of
the functional in (5) that satisfies homogeneous Dirichlet conditions on Bx0,ρ ∩ ∂B, and the
regularity result of Uhlenbeck again precludes (4). This is roughly the basis for the argument
behind the results in Sect. 6.

In Sect. 8, we also apply the results in Sect. 6 to obtain global Morrey regularity for
minimizers of functionals that depend on the mapping itself, as well as its gradient. Suppose
that 2 < p ≤ n, and let 0 ≤ κ < n and u ∈ W 1,p(�; R

N ), with ∇u ∈ L p,κ (�; R
N×n), be

given.

Example 2 Let q ≥ 1 and r <
np

q(n−p)
be given. Suppose that u ∈ W 1,p(�; R

N ) is a
minimizer for the functional

u �→
∫

�

{
‖∇u(x)‖p − (1 + ‖u(x)‖)r (1 + ‖∇u(x)‖2) p(q−1)

2q

}
dx
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268 M. Foss

satisfying [u − u] ∈ W 1,p
0 (�; R

N ). Then we find that ∇u ∈ L p,κ (�; R
N×n) and u ∈

L p,p+κ (�; R
N ). Thus a minimizer for this functional has at least as much regularity, in the

sense of Morrey and Campanato spaces, as is compatible with the boundary data. A local
version of Theorem 8, further shows that ∇u ∈ L p,θ

loc (�; R
N×n) and u ∈ L

p,p+θ
loc (�; R

N ),
for each θ ∈ [0, n]. Hence, u ∈ C0,β(�; R

N ) for each β ∈ (0, 1). Moreover, if p + κ > n,

then u ∈ C0,1− n−κ
p (�; R

N ) ∩ C0,β(�; R
N ), for each β ∈ (0, 1).

In Sect. 7, under stronger hypotheses than assumed in Sect. 6, we establish global Lipschitz
regularity for almost minimizers, in the sense of Definition 2. We state a simplified version
here in terms of the functions g and H above; the actual result is contained in Theorem 11.

Theorem 2 Let 0 < β ≤ 1 and u ∈ C1,β(�; R
N ) be given. Also, let the function ω ∈

C0,β([0,∞); [0,∞)) be a non-decreasing function satisfying ω(0) = 0. If u ∈ W 1,1(�; R
N )

is a (K , ω)-minimizer satisfying [u − u] ∈ W 1,1
0 (�; R

N ), then u ∈ W 1,∞(�; R
N ).

The proof for this result relies on the results in Sect. 6 as well as a comparison to a mini-
mizers for functionals to which Uhlenbeck’s result is applicable. Again, the actual result is
sufficiently general to allow applications to non-homogeneous functionals in Sect. 8. In fact,
Theorem 11 can be applied to Example 2 above. Thus, if in that example u ∈ C1,β(�; R

N ),
then, we find that a minimizer must be Lipschtiz continuous in � up to the boundary.

One may also apply the results in Sect. 9 to obtain a partial answer to an open problem
recently described in Sect. 4.3 of Mingione’s extensive survey paper [21]. We recall the
problem here and then describe the result.

Open problem Suppose that g : � × R
N×n → R possesses the following properties:

(i) for each x ∈ �, we have g(x, ·) ∈ C2(RN×n; R);
(ii) there exists �∗ > 0 and �∗ < +∞ such that⎧⎪⎨

⎪⎩
�∗‖F‖p ≤ g(x, F) ≤ �∗ (1 + ‖F‖2) p

2 ;
�∗‖F‖p−2‖ξ‖2 ≤ ∂2

∂F2 g(x, F) :: ξ ⊗ ξ ≤ �∗ (1 + ‖F‖2) p−2
2 ‖ξ‖2;

for all x ∈ � and F, ξ ∈ R
N×n

(iii) there is a δ ∈ C([0,+∞); R) that is non-decreasing and satisfies δ(0) = 0 such that
for each x, y ∈ �, we have

|g(x, F) − g(y, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2 ,

for every F ∈ R
N×n .

Let u ∈ W 1,1
loc (�; R

N ) be a local minimizer for the functional

K [u] :=
∫

�

g(x,∇u(x)) dx.

Determine whether or not there is an open set �0 ⊆ � such that |�\�0| = 0 and u ∈
Cloc(�0; R

N ).

By local minimizer, we mean that

K [u] ≤ K [u + ϕ],
for any ϕ ∈ W 1,1

0 (�; R
N ) satisfying supp (ϕ) is compactly contained in �.
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Global regularity of almost minimizers 269

The main issue for this problem is that the integrand g is only required to be continuous
with respect to the argument x. In Sect. 9, we show that if the function g asymptotically
possesses a radial structure, then under suitable boundary conditions, (K , 0)-minimizers are
actually uniformly continuous in �. A local version of this result can also be obtained for
local minimizers. It is worth noting that the examples provided by Šverák and Yan [24] show
that in general, one can not expect �0 = �.

To conclude our introduction, we mention a couple of potentially interesting directions of
future research.

– Boundary regularity for solutions to elliptic systems In the context of partial regularity,
Growtowski [17] has provided conditions sufficient for the gradient of a weak solution to
an elliptic system to be regular (Hölder continuous) in a neighborhood of a boundary point.
There is no guarantee, however, that the solution satisfies this condition at any boundary
point. More recently, Duzaar et al. [7] have proved that the gradient of solutions to a large
class of elliptic systems are regular at almost every point of the boundary, in the sense of
the n − 1 dimensional Hausdorff measure.
For certain elliptic systems, a subclass of those considered in [7], it may be possible to
establish full regularity at the boundary for a weak solution. To obtain local regularity
for the gradient of a solution u to an elliptic system, in divergence form that depends on
∇u through its modulus, one of the main steps is to show that u ∈ W 1,∞

loc (�; R
N ). In

this article, conditions ensuring that u ∈ W 1,∞(�; R
N ) are provided. This may make it

possible to prove full boundary regularity results for solutions to these types of elliptic
systems.

– Global regularity for minimizers of nonconvex functionals with general growth The
results produced here ultimately depend on Uhlenbeck’s regularity result for solutions
to elliptic systems. This appears to be the primary reason for the restrictions on the type
of growth, with respect to the gradient variable, allowed for the integrands considered.
Esposito et al. [8] and Marcellini and Papi [20] have extended Uhlenbeck’s work to allow
much flexibility in the way the integrand may grow. Utilizing their results, it seems likely
that one can establish analogues of the results in this paper within the setting of functionals
with general growth.

2 Notation

We will use C to denote a generic constant that depends only on n, N and p, unless otherwise
specified. The value of C may change from line to line. To denote the open ball of radius ρ

centered at x0 ∈ R
n , we use Bx0,ρ . Define Bρ := B0,ρ and B := B1. Set

H+ := {
x ∈ R

n | xn > 0
}

and D := {
x ∈ R

n | xn = 0
}
.

Generally, we will attach a subscript “x0, ρ” to a set’s symbol to denote that set’s inter-
section with Bx0,ρ and attach a superscript “+” to denote that set’s intersection with H+.
Given � ⊂ R

n , for example, we will write �x0,ρ for the set � ∩ Bx0,ρ and �+ for the set
� ∩ H+. Unfortunately, this convention leaves some ambiguity about what Bx0,ρ and B+

x0,ρ

actually represent; unless otherwise indicated, we will use Bx0,ρ to denote the open ball of
radius ρ centered at x0 and B+

x0,ρ = H+ ∩ Bx0,ρ . We write |U | for the Lebesgue measure of
U ⊆ R

n . The support of a mapping u is denoted by supp (u). For the characteristic function
of U ⊆ R

n , we use χU .
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270 M. Foss

Suppose that U ⊂ R
n is Lebesgue measurable with |U | < +∞. For the mean value of a

function f ∈ L1(U) on U , we use

−
∫

U
f (x) dx := 1

|U |
∫

U
f (x) dx,

and for brevity,

( f )x0,ρ := −
∫

Bx0,ρ

f (x) dx and ( f )+x0,ρ := −
∫

B+
x0,ρ

f (x) dx.

Analogous notation will be used for vector-valued mappings.
We next recall the definitions for the Morrey, Campanato and Sobolev–Morrey spaces.

For the following definitions, the set U ⊂ R
n is a given measurable set.

Definition 3 For each p ∈ [1,+∞) and 0 ≤ κ ≤ n, we define the Morrey space

L p,κ (U; R
N ) :=

⎧⎪⎨
⎪⎩u ∈ L p(�; R

N )

∣∣∣∣ sup
x0∈U
ρ>0

1

ρκ

∫

Ux0,ρ

‖u(x)‖p dx < ∞

⎫⎪⎬
⎪⎭ .

We will write u ∈ L p,κ
loc (U; R

N ) if u ∈ L p,κ (U ′; R
N ) for each compact U ′ contained in U .

Definition 4 For each p ∈ [1,+∞) and 0 ≤ κ ≤ n + p, we define the Campanato space

L p,κ (U; R
N ) :=

⎧⎪⎨
⎪⎩u ∈ L p(�; R

N )

∣∣∣∣ sup
x0∈U
ρ>0

1

ρκ

∫

Ux0,ρ

∥∥u(x) − ux0,ρ

∥∥p dx < ∞

⎫⎪⎬
⎪⎭ ,

where ux0,ρ := −
∫

Ux0,ρ

u dx. As above, we will also write u ∈ L
p,κ

loc (U; R
N ) whenever u ∈

L p,κ (U ′; R
N ) for each compact U ′ contained in U .

Following [2] (see also [6]), we also introduce the Sobolev–Morrey spaces

Definition 5 For each p ∈ [1,+∞) and 0 ≤ κ ≤ n, we will say that a mapping u ∈
W 1,p(U; R

N ) belongs to the Sobolev–Morrey space W 1,(p,κ)(U; R
N ) if and only if u ∈

L p,κ (U; R
N ) and ∇u ∈ L p,κ (U; R

N×n).

Whenever convenient, the linear mappings from R
n to R

N will be identified with the space
of matrices R

N×n . If A, B, C : R
n → R

N are linear mappings, then A : B := tr(ATB) and
‖A‖ := √

A : A. The mapping A ⊗ B : R
N×n → R

N×n is defined by

[A ⊗ B]C := (B : C)A.

If g ∈ C1(RN×n), then the matrix of first-order partial derivatives of g is denoted by ∂
∂F g :

R
N×n → R

N×n and is that mapping satisfying[
∂

∂F
g(A)

]
: B = lim

ρ→0

g(A + ρB) − g(A)

ρ

for all B ∈ R
N×n . If g ∈ C2(RN×n), then the fourth-order tensor of second-order partial

derivatives of g is denoted by ∂2

∂F2 g : R
N×n → R

(N×n)2
and satisfies

[
∂2

∂F2 g(A)

]
:: [C ⊗ B] = lim

ρ→0

1

ρ

[
∂

∂F
g(A + ρC) : B − ∂

∂F
g(A) : B

]
.
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Global regularity of almost minimizers 271

3 Boundary transformations

We recall the following regarding the regularity of the boundary of �.

Definition 6 We say that a relatively open subset � of ∂� is a C1,β portion of ∂�, for some
0 ≤ β ≤ 1, if for each point x0 ∈ � there is an rx0 > 0 and a function � ∈ C1,β(Rn−1; R)

such that, after rotating and relabeling the coordinate axes if necessary, we have

�x0,rx0
= {

x ∈ Bx0,r0 | xn > �(x1, . . . , xn−1)
}
.

If � is C1,β , then at each point x0 ∈ �, there is a C1,β -diffeomorphism that may be used to
“straighten-out” the portion of � contained in �x0,rx0

. Upon rotating and relabeling the co-

ordinate axes if necessary, we may define such a diffeomorphism � ∈ C1,β(�x0,rx0
; H+) by

�i := xi , for i = 1, . . . , n − 1

and

�n := xn − �(x̂),

with � provided by Definition 6 above and x̂ = (x1, . . . , xn−1). Then the inverse map
�−1 : �(�x0,rx0

) → R
n is given by

�−1
i := xi , for i = 1, . . . , n − 1

and

�−1
n := xn + �(x̂).

So defined, it is clear that �−1 ∈ C1,β(�(�x0,rx0
); R

n), and moreover that

‖∇�(x)‖ ≤ n + ‖∇�(x̂)‖, ‖∇�−1(x)‖ ≤ n + ‖∇�(x̂)‖
and

det ∇�(x) = 1,

at every x ∈ �x0,rx0
. For each x0 ∈ �, we define �x0 and �x0 as above, and put

πx0 := inf
x∈�x0,rx0

1

n + ‖∇�x0(x̂)‖ .

At each x0 ∈ �, we see that πx0 > 0.
Fix x0 ∈ �. From the above definitions, we deduce that

‖�x0(y) − �x0(x)‖ ≥ πx0‖y − x‖,
for every x, y ∈ �x0,rx0

. Consequently, we find that B+
z0,πx0 rx0

⊆ �x0(�x0,rx0
), with z0 =

�x0(x0); i.e. we are guaranteed that the half-ball with radius πx0rx0 centered at z0 is contained
in the image under �x0 of �x0,rx0

.
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We translate and rescale our boundary transformations, so that each one has an image that
contains the unit half-ball B+ and straightens-out a portion of the boundary into the set D.
For each x0 ∈ �, we define the C1,β -diffeomorphism �x0 : �x0,rx0

→ H+ by

�x0(x) := 1

πx0rx0

[
�x0(x) − �x0(x0)

]
.

Note that

sup
x∈�x0,rx0

‖∇�x0(x)‖ ≤ 1

π2
x0

rx0

, and sup
x∈B+

‖∇�−1
x0

(x)‖ ≤ rx0 .

Furthermore, for each x0 ∈ �, we conclude that

det ∇�x0(x) =
(

1

πx0rx0

)n

and

‖y − x‖ ≤ rx0‖�x0(y) − �x0(x)‖
for each x, y ∈ �x0,rx0

.

4 Uhlenbeck’s theorem

In this section, we recall a regularity result due to K. Uhlenbeck.

Definition 7 We will say that a function f ∈ C2(RN×n) has a p-Uhlenbeck structure if and
only if there are �∗,�∗ > 0 and an f̃ ∈ C2([0,∞)) such that for every F, ξ ∈ R

N×n the
following hold

(i) f (F) = f̃ (‖F‖2);
(ii) �∗

(
1 + ‖F‖2) p

2 ≤ f (F) ≤ �∗(1 + ‖F‖2)
p
2 ;

(iii)

∥∥∥∥ ∂

∂F
f (F)

∥∥∥∥ ≤ �∗(1 + ‖F‖2)
p−2

2 ‖F‖; (U)

(iv)

∥∥∥∥ ∂2

∂F2 f (F)

∥∥∥∥ ≤ �∗(1 + ‖F‖2)
p−2

2 ;

(v)
∂2

∂F2 f (F) :: [ξ ⊗ ξ ] ≥ �∗(1 + ‖F‖2)
p−2

2 ‖ξ‖2.

With p > 2 fixed for the remainder of the paper, define

V(F) := (
1 + ‖F‖2) p−2

4 F and H(F) := (
1 + ‖F‖2) p

2 .

Later, we will need to deal with families of functions that satisfy the conditions in (U) in
some uniform manner.

Definition 8 Given a measurable set U ⊂ R
N , we will say that a family of functions

{
fy
}

y∈U
has a uniform p-Uhlenbeck structure if and only if there are measurable �∗,�∗ : U →
(0,+∞] such that �∗+1

�∗ ∈ L∞(U) and for each y ∈ U the function fy has a p-Uhlenbeck
structure, with �∗ = �∗(y) and �∗ = �∗(y).
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Remark 1 If
{

fy
}

y∈U has a uniform p-Uhlenbeck structure, then 1
�∗ ∈ L∞(U) and 1

�∗ ∈
L∞(U). Thus there exists a l > 0 such that

ess inf
y∈U

�∗(y), ess inf
y∈U

�∗(y) ≥ l.

We start with Uhlenbeck’s regularity result for elliptic systems, which can be found in [15]
or [18], with suitable modifications.

Theorem 3 Let G0 ∈ R
n×n, an invertible matrix, and f ∈ C2(RN×n), with a p-Uhlenbeck

structure, be given. Suppose that the mapping u ∈ W 1,p(B; R
N ) is a minimizer for the

functional

J [u] :=
∫

B
f (∇u(x)G0) dx.

Then for every Bx0,R ⊂ B, we have that

sup
x∈B

x0, R
2

f (∇u(x)G0) ≤ c′
0−
∫

Bx0,R

f (∇u(x)G0) dx. (6)

Moreover u ∈ C1,σ0
loc (B; R

N ) for each σ0 ∈ (0, 1) and for every Bx0,R ⊂ B and every ρ < R,
we have

�(x0, ρ) ≤ c′
0

( ρ

R

)2σ0
�(x0, R), (7)

with

�(x0, ρ) := −
∫

Bx0,r

∥∥V(∇u) − (V(∇u))x0,ρ

∥∥2 dx.

The constant c′
0 depends only upon G0, σ0 and the structural parameters n, N , p and �∗

�∗ .

Using a reflection argument and the above theorem, we may state the following version
of Uhlenbeck’s result.

Theorem 4 Let G0 ∈ R
n×n, an invertible matrix, and f ∈ C2(RN×n), with a p-Uhlenbeck

structure, be given. Suppose that ∇u ∈ W 1,p(B+; R
N ) is a minimizer for the functional

J+[u] :=
∫

B+
f (∇u(x)G0) dx

satisfying u = 0 on D0,1, in the sense of traces. Then for every Bx0,R ⊂ B,

sup
x∈B+

x0, R
2

f (∇u(x)G0) ≤ c′′
0−
∫

B+
x0,R

f (∇u(x)G0) dx. (8)

Moreover u ∈ C1,σ0
loc (B+ ∪ D; R

N ) for each σ0 ∈ (0, 1) and for each Bx0,R ⊂ B and every
ρ < R, we have

�+(x0, ρ) ≤ c′′
0

( ρ

R

)2σ0
�+(x0, R), (9)
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with

�+(x0, r) := −
∫

B+
x0,r

∥∥V(∇u) − (V(∇u))+x0,r

∥∥2
dx.

The constant c′
0 depends only upon G0, σ0 and the structural parameters n, N , p and �∗

�∗ . In
particular, it does not depend upon dist(x0, D0,1).

Using the two theorems above, we finally state the following regularity result, which will
be convenient for establishing regularity at the boundary for more general Dirichlet boundary
conditions.

Theorem 5 Let G0 ∈ R
n×n, an invertible matrix, and f ∈ C2(RN×n), with a p-Uhlenbeck

structure, be given. Suppose that ∇u ∈ W 1,p(B+
x0,R0

; R
N ) is a minimizer for the functional

J+
x0,R0

[u] :=
∫

B+
x0,R0

f (∇u(x)G0) dx

satisfying u = 0 on the set Dx0,R0 , in the sense of traces. Then for each By,R ⊂ Bx0,R0 , we
have that

sup
x∈B+

y, R
4

f (∇u(x)G0) ≤ c0−
∫

B+
y, R

2

f (∇u(x)G0) dx. (10)

Moreover u ∈ C1,σ0
loc (B+

x0,R0
∪ Dx0,R0 ; R

N ) for each σ0 ∈ (0, 1) and for every By,R ⊂ Bx0,R0

and every ρ < R
2 , we have

�+(y, ρ) ≤ c0

( ρ

R

)2σ0
�+ (

y, R
2

)
. (11)

The constant c0 depends only upon G0, σ0 and the structural parameters n, N , p and �∗
�∗ . In

particular, it does not depend upon dist(y, Dx0,R0).

Proof Put ŷ := (y1, . . . , yn−1, 0). Let y ∈ B+
x0,R0

and 0 < R < R0 −‖y − x0‖ be given. We

have two cases. If R
2 ≤ yn , then By, R

2
⊂ B+

x0,R0
. Hence (10) and (11) follow from respectively

rescaling and translating (6) and (7). If yn < R
2 , then B+

y, R
2

⊂ B+
ŷ,R ⊂ B+

x0,R0
. For this case

(10) and (11) follow from respectively rescaling and translating (8) and (9). ��

5 Preliminary lemmata

For this section, recall that p > 2 and fix f ∈ C2(RN×n) with a p-Uhlenbeck structure.

Definition 9 Let us say two functions g1, g2 ∈ C2(RN×n; R) are asymptotically related if
and only if for each ε > 0 there exists a σε < +∞ such that∥∥∥∥ ∂2

∂F2 g1(F) − ∂2

∂F2 g2(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2,

whenever ‖F‖ > σε.

Remark 2 Without loss of generality, we will always assume that σε1 ≤ σε2 if ε1 ≥ ε2.
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Remark 3 Clearly, the definition of asymptotically related functions defines an equivalence
relation on the set C2(RN×n; R) × C2(RN×n; R). Thus, for example, if p ≥ 4, then we

find that the functions F �→ (
1 + ‖F‖2

) p
2 and F �→ ‖F‖p are asymptotically related with

σε = 1 + 2
p
2√
ε

√
p(p − 2)(p − 4 + nN ), so any function that is asymptotically related to the

function F �→ ‖F‖p is also asymptotically related to F �→ (
1 + ‖F‖2

) p−2
2 . The point is that

although the lemmas stated below are for functions that are asymptotically related to the
function f which is uniformly convex, they could have also been stated for functions that
are asymptotically related to functions that are degenerately convex.

Lemma 1 Suppose φ : (0,+∞) → R satisfies the following property: there exist A > 1
2 ,

R0 > 0, α > γ > β ≥ 0 and µ ≥ 0 such that for some 0 ≤ ε ≤ ( 1
2A

) α
α−γ , we have

φ(ρ) ≤ A
[( ρ

R

)α + ε
]
φ(R) + B

Rβ+µ

ρµ
, (12)

for each 0 < ρ ≤ R ≤ R0. Then

φ(ρ) ≤ (2A)
α

α−γ

( ρ

R

)γ

φ(R) + B(2A)
β+µ
α−γ

[
(2A)

α
α−γ

(2A)
γ−β
α−γ − 1

+ 1

]
ρβ

for all 0 < ρ ≤ R ≤ R0.

Proof Our proof is a minor modification of the proof for Lemma 2.1 provided on [13, p. 86].

Put τ := ( 1
2A

) 1
α−γ . Let ρ and R satisfying 0 < ρ ≤ R ≤ R0 be given. Choose k ≥ 0 so that

τ k+1 R ≤ ρ ≤ τ k R.
We first observe that ε ≤ τα , so

A
[
τα + ε

] ≤ 2Aτα = τγ .

From (12), we deduce that

φ(ρ) ≤ A
[( ρ

τ k R

)α + ε
]
φ(τ k R) + B

(
τ k R

)β+µ

ρµ

≤ 2Aφ(τ k R) + Bτ−(β+µ). (13)

Using induction, we next argue that

φ(τ k R) ≤ A
[
τα + ε

]
φ(τ k−1 R) + B

(
τ k−1 R

)β+µ

(
τ k R

)µ

≤ τγ φ(τ k−1 R) + B

(
τ k+1 R

)β
τ 2β+µ

...

≤ τ kγ φ(R) + B

(
τ k+1 R

)β
τ 2β+µ

⎡
⎣k−1∑

j=0

τ j (γ−β)

⎤
⎦

≤ 1

τγ

( ρ

R

)γ

φ(R) + B

τβ+µ

[
1

τβ − τγ

]
ρβ.

Plugging this into (13) yields the Lemma’s conclusion. ��
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The proof for the following lemma can be found in [14] or [18], for instance.

Lemma 2 For any E, F ∈ R
N×n, we have

1

c1
≤ ‖V(E) − V(F)‖2

(
1 + ‖E‖2 + ‖F‖2

) p−2
2 ‖E − F‖2

≤ c1,

with c1 = p22
3p+4

2 .

The first statement in the next lemma follows from the convexity of f , property (U)v, and
the previous lemma (see [19] or [23], for example). The second statement follows from the
growth properties of the second derivatives of f , property (U)iv, and another application of
the lemma above.

Lemma 3 For any E, F ∈ R
N×n, we have

�∗
c2

‖V(E) − V(F)‖2 ≤ f (E) − f (F) − ∂

∂F
f (F) : [E − F]

and

c2�
∗‖V(E) − V(F)‖2 ≥ f (E) − f (F) − ∂

∂F
f (F) : [E − F] ,

with c2 = 2
3(p−2)

2 (2 + nN ) c1.

The following lemma is easily verified using (U)ii.

Lemma 4 For any A, B ∈ R
N×n, we have

f (B) ≤ c3

{
1

�∗
f (A) + ‖A − B‖p

}
,

with c3 = 2p−1�∗.

We will use a modified version of Lemma 5.1 in [15].

Lemma 5 Suppose that g ∈ C2(RN×n) is asymptotically related to f . Put

L := 1 + 2�∗ and a := 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗

⎫⎬
⎭ .

Then ∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥ < L
(
a2 + ‖F‖2) p−2

2 , (14)

for each F ∈ R
N×n, and∣∣∣∣∣∣

1∫

0

[
∂2

∂F2 f (tF+(1−t)F0)− ∂2

∂F2 g(tF+(1−t)F0)

]
:: [(F−F0)⊗(F−F0)] dt

∣∣∣∣∣∣
< ε

(‖F−F0‖2+λ2) (a2+‖F0‖2+‖F‖2) p−2
2 , (15)

whenever
‖F0‖2 + λ2 > Q2

ε, (16)

with Qε :=
(

2p+3 L2

ε2 + 2
) 1

2
σε.
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Proof Our statement is different from that given in [15], but the proof is essentially the same.

We first establish the growth estimate for
∥∥∥ ∂2

∂F2 g(F)

∥∥∥. Then we prove the estimate in the

lemma.
By Definition 9, whenever ‖F‖ > σ�∗ , we must have

∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥ ≤ �∗

2
p
2

‖F‖p−2 + �∗ (1 + ‖F‖2) p−2
2 .

Thus ∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥ < L
(
a2 + ‖F‖2) p−2

2 ,

for each F ∈ R
N×n , which is (14).

We now follow the argument given in [15]. Let ε > 0 and F, F0 ∈ R
N×n satisfying the

condition in (16) be given, and set

I := {t ∈ [0, 1] : ‖tF + (1 − t)F0‖ ≤ σε} .

Since f and g are asymptotically related and f has a p-Uhlenbeck structure, we may begin
with the estimate∣∣∣∣∣∣

1∫

0

[
∂2

∂F2 f (tF+(1−t)F0)− ∂2

∂F2 g(tF+(1−t)F0)

]
:: [(F−F0)⊗(F−F0)] dt

∣∣∣∣∣∣
<

(
1

2
ε+2

p−2
2 (L+�∗)|I |

)
‖F−F0‖2 (a+‖F‖2+‖F0‖2) p−2

2 .

We will show that

2
p−2

2 (L + �∗)|I |‖F − F0‖2 ≤ 1

2
ε
(‖F − F0‖2 + λ2) . (17)

To this end, let S be the line segment joining F and F0. Then

|I | = |S ∩ {
P ∈ R

N×n : ‖P‖ ≤ σε

} |
‖F − F0‖ ≤ 2σε

‖F − F0‖ .

If

‖F − F0‖ >
2

p+2
2 L

ε
σε,

then since L ≥ �∗, we deduce that

|I | <
ε

2
p
2 (2L)

,

which implies (17). It only remains to consider the case where

‖F − F0‖ ≤ 2
p+2

2 L

ε
σε.

In this case, condition (16) implies that either

‖F0‖ > Qε or λ > Qε.
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If ‖F0‖ > Qε, then for each t ∈ [0, 1], we argue that

‖tF + (1 − t)F0‖ ≥ Qε − ‖F − F0‖ > σε,

which implies that |I | = 0 yielding (17). On the other hand, if λ > Qε, then

2
p−2

2 (L + 2�∗(2 + nN ))|I |‖F − F0‖2 ≤ 2
p
2 Lσε‖F − F0‖ <

2p+1L2σ 2
ε

εQ2
ε

λ2

<
1

2
ελ2.

In this case we also arrive at (17), and the lemma is proved. ��

The following lemma is an easy consequence of Lemma 5 (see [23]).

Lemma 6 Suppose that g ∈ C2(RN×n) is asymptotically related to f . Put

L := 1 + 2�∗ and a := 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗

⎫⎬
⎭ .

Then

| f (F) − g(F)| < ε2
p+2

2

(
a p + 1

�∗
f (F)

)
,

whenever

‖F‖ >

(
2

ε

) 1
p | f (0) − g(0)| 1

p +
(

2

ε

) 1
p−1

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
1

p−1+ Qε,

with Qε =
(

2p+3 L2

ε2 + 2
) 1

2
σε.

Lemma 6 implies that asymptotically convex functions must be coercive.

Lemma 7 Suppose that g ∈ C2(RN×n) is asymptotically related to f . Then there exists a
constant c4 < +∞ such that

g(F) ≥ �∗
2

(
1 + ‖F‖2) p

2 − c4.

Proof Put

L := 1 + 2�∗ and a := 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗

⎫⎬
⎭ .

For each ε > 0, define

kε :=
(

2

ε

) 1
p | f (0) − g(0)| 1

p +
(

2

ε

) 1
p−1

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
1

p−1+ Qε

with Qε =
(

2p+3 L2

ε2 + 2
) 1

2
σε.
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We may use property (U)ii and Lemma 6, to deduce that for each ε > 0, if ‖F‖ > kε , then

�∗
(
1 + ‖F‖2) p

2 ≤ f (F) = f (F) − g(F) + g(F)

≤ ε2
p+2

2

(
a p + 1

�∗
f (F)

)
+ g(F)

≤ ε2
p+2

2
�∗

�∗
(
1 + ‖F‖2) p

2 + ε2
p+2

2 a p + g(F).

Fixing ε∗ = �2∗
2

p+4
2 �∗

, we conclude that

g(F) >
�∗
2

(
1 + ‖F‖2) p

2 − �2∗
2�∗ a p,

whenever ‖F‖ > kε∗ . Defining

c4 := �∗
2

(
1 + k2

ε∗
) p

2 + �2∗
2�∗ a p − min {g(F) : ‖F‖ ≤ kε∗ } , (18)

the Lemma is proved. ��
Remark 4 To facilitate the proof of Lemma 8 below, we collect and examine some of the
constants defined in Lemmas 5 through 7. Suppose that g ∈ C2(RN×n) is asymptotically
related to a function f ∈ C2(RN×n) with a p-Uhlenbeck structure. First, we defined

L := 1 + 2�∗ and a := 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗

⎫⎬
⎭ .

So defined, in Lemma 5, we showed that∥∥∥∥ ∂2

∂F2 g(F)

∥∥∥∥ ≤ L
(
a2 + ‖F‖2) p−2

2 ,

for every F ∈ R
N×n . Thus∥∥∥∥ ∂

∂F
g(F)

∥∥∥∥ ≤ L
(
a2 + ‖F‖2) p−2

2 +
∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
and

|g(F)| ≤ 2L
(
a2 + ‖F‖2) p

2 +
∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
p

p−1 + |g(0)| (19)

for every F ∈ R
N×n . We also defined

Qε :=
(

2p+3L2

ε2 + 2

) 1
2

σε.

Plugging in the definition for L , we see that

Qε ≤ C

(
1 + �∗

ε
+ 1

)
σε. (20)

In the proof for Lemma 7, we defined

kε :=
(

2

ε

) 1
p | f (0) − g(0)| 1

p +
(

2

ε

) 1
p−1

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
1

p−1+ Qε
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and ε∗ = �2∗
2

p+4
2 �∗

. Property (U)ii and our estimate in (20) imply

kε ≤
(

2

ε

) 1
p
{(

�∗) 1
p + |g(0)| 1

p

}
+
(

2

ε

) 1
p−1

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
1

p−1

+ C

(
1 + �∗

ε
+ 1

)
σε.

Thus

kε∗ ≤ C

(
�∗

�2∗

) 1
p
{(

�∗) 1
p + |g(0)| 1

p

}
+ C

(
�∗

�2∗

) 1
p−1

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
1

p−1

+ C

(
1 + �∗

�∗

)2

σε∗ . (21)

Finally the constant c4 in Lemma 7 is defined by

c4 := �∗
2

(
1 + k2

ε∗
) p

2 + �2∗
2�∗ a p − min {g(F) : ‖F‖ ≤ kε∗ } .

Using the inequalities in (19) and (21), we conclude that

c4 ≤ C (1 + �∗)
{(

�∗

�2∗

) (
�∗ + |g(0)|) +

(
�∗

�2∗

) p
p−1

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
p

p−1

+
(

1 + �∗

�∗

)2p

σ
p
ε∗ +

(
�2∗
�∗ + �∗

)
a p +

∥∥∥∥ ∂

∂F
g(0)

∥∥∥∥
p

p−1 + |g(0)|
}

.

In each estimate above, the constant C depends only on n, N and p.

6 Global Morrey regularity

For this section, let ω ∈ C0([0,+∞)) be a non-decreasing function satisfying ω(0) = 0.
Also fix 0 ≤ κ < n. We will prove a global Morrey regularity result for almost minimizers
of asymptotically convex functionals.

Definition 10 Given a measurable set U ⊂ R
n , we will say that a family of functions{

gy
}

y∈U ⊂ C2(RN×n) is L p,κ -asymptotically related to a family of functions
{

fy
}

y∈U ⊂
C2(RN×n) if and only if for each ε > 0 there exists a σε ∈ L p,κ (U) such that for every y ∈ U ,
we have

∥∥∥∥ ∂2

∂F2 gy(F) − ∂2

∂F2 fy(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2,

whenever ‖F‖ > σε(y).

For this section, given a measurable set U ⊂ R
n and a family of functions

{
gy
}

y∈U ⊂
C2(RN×n) that is L p,κ -asymptotically related to a family of functions

{
fy
}

y∈U ⊂ C2(RN×n)

with a uniform p-Uhlenbeck structure, we will assume the following growth properties:
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(i) there exists an a ∈ Lp,κ (U) such that

a(y) ≥ 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 gy(F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗(y)(y)

⎫⎬
⎭ .

for each y ∈ U; (G)

(ii) there exists a b ∈ Lp,κ (U) such that

b(y) ≥ |gy(0)| 1
p +

∥∥∥∥ ∂

∂F
gy(0)

∥∥∥∥
1

p−1

.

Recall that

H(F) := (
1 + ‖F‖2) p

2

for all F ∈ R
N×n .

Lemma 8 Suppose that
{

fy
}

y∈B+∪D0,1
⊂ C2(RN×n) has a uniform p-Uhlenbeck structure

and that
{
gy
}

y∈B+∪D0,1
⊂ C2(RN×n) possesses the growth properties (G) and is L p,κ -

asymptotically related to
{

fy
}

y∈B+∪D0,1
. For each y ∈ B+ ∪ D0,1, define Ry := 1 − ‖y‖.

Let x0 ∈ B+ ∪ D be given. Let A ∈ L p,κ (B+
x0,Rx0

; R
N×n) and G ∈ C0(B+

x0,Rx0
; R

n×n),

with a matrix inverse G−1 ∈ C0(B+
x0,Rx0

; R
n×n), be given. Define the functional K +

y,Ry
:

W 1,1(B+
y,Ry

; R
N ) → R by

K +
y,Ry

[w] :=
∫

B+
y,Ry

gy([∇w(x) + A(x)]G(x)) dx,

and let {νε}ε>0 ⊂ L1,κ (B+
x0,R0

) and {Tε}ε>0 ⊆ [0,∞) be given. Suppose that the mapping

w ∈ W 1,p(B+; R
N ), satisfying w = 0 on D0,1, in the sense of traces, is a (K +

y,Ry
, ω, {νε, Tε})-

minimizer at each y ∈ B+
x0,Rx0

. Then there are constants c5 and c6, independent of

dist(x0, D0,1), such that for every 0 < ρ ≤ R ≤ Rx0 , we have
∫

B+
x0,ρ

H(∇wG(x0)) dx ≤ c5

( ρ

R

)κ
∫

B+
x0,R

H(∇wG(x0)) dx + c6ρ
κ . (22)

Proof To begin, we have several preliminary definitions and observations to make. By
Lemma 7 and Definition 1, the result is trivial if κ = 0, so we assume that 0 < κ < n.

We first rescale several quantities related to the families { fy} and {gy}. For each y ∈
B+ ∪ D0,1, define

f ∗
y (F) := 1

�∗(y)
fy(F) and g∗

y(F) := 1

�∗(y)
gy(F),

and for each ε > 0 define σ ∗
ε ∈ L p,κ (B+) by σ ∗

ε (y) := σε�∗(y)(y). So defined, from
Definition 10 we see that for each ε > 0, we have

∥∥∥∥ ∂2

∂F2 g∗
y(F) − ∂2

∂F2 f ∗
y (F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2, (23)
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whenever ‖F‖ > σ ∗
ε (y). We further point out that by the growth conditions in (U)ii,

�∗(y)

�∗(y)

(
1 + ‖F‖2) p

2 ≤ f ∗
y (F) ≤ (

1 + ‖F‖2) p
2 ,

for each y ∈ B+ ∪ D0,1.
Put

L∗(y) := 1

�∗(y)
+ 2, (24)

so L∗ ∈ L∞(B+). For each ε > 0, define Q∗
ε ∈ L p,κ (B+) by

Q∗
ε(y) :=

(
2p+3 (L∗(y))2

ε2 + 2

) 1
2

σ ∗
ε (y).

Let a∗ ∈ L p,κ (B+) be given by

a∗(y) := 1 + a(y)

�∗(y)
.

Using (14) in Lemma 5 and (G)ii, for every y ∈ B+ ∪ D0,1 and F ∈ R
N×n we have

∥∥∥∥ ∂

∂F
g∗

y(F)

∥∥∥∥ ≤ L∗(y)
(
a∗(y)2 + ‖F‖2) p−1

2 + b(y)p−1

�∗(y)
(25)

and

|g∗
y(F)| ≤ 2L∗(y)

(
a∗(y)2 + ‖F‖2) p

2 + 2
b(y)p

�∗(y)
. (26)

Furthermore, from (18) in Lemma 7, we deduce that there is a c∗ ∈ L1,κ (B+) such that

g∗
y(F) ≥ �∗(y)

2�∗(y)

(
1 + ‖F‖2) p

2 − c∗(y). (27)

Indeed, from Remark 4, we find that there is a constant C that depends only on n, N and p
such that

|c∗| ≤ C

{(
�∗

�∗

)2 (
1 + |gy(0)|

�∗

)
+
(

�∗

�2∗

) p
p−1

∥∥∥∥ ∂

∂F
gy(0)

∥∥∥∥
p

p−1

+
(

�∗

�∗

)2p (
σ ∗

ε0

)p + (
a∗)p

}
,

with ε0 =
(

�∗
�∗

)2
1

2
p+4

2
, which is essentially bounded from below by a positive number since

�∗
�∗ ∈ L∞(B+).

Let µ ∈ C0((0, 1)) be the modulus of continuity for G; i.e. µ is non-decreasing, concave,
µ(0) = 0 and for each x, y ∈ B+, we have that

‖G(y) − G(x)‖ ≤ µ(‖y − x‖). (28)

Finally, put

M1 := sup
x∈B+

‖G(x)‖ + sup
x∈B+

‖G−1(x)‖ + 1,
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and for each ε > 0, define k∗
ε ∈ L p,κ (B+) by

k∗
ε (y) :=

(
2

ε

) 1
p
(

1 +
( |gy(0)|

�∗

) 1
p
)

+
(

2

ε�∗

) 1
p−1

∥∥∥∥ ∂

∂F
gy(0)

∥∥∥∥
1

p−1+ Q∗
ε(y).

The proof of the lemma, will be split into three steps. Ultimately, we want to use Lemma 1.
In the first step, we make a comparison between w and a minimizer for the functional involving
the integrand H . The resulting estimate involves the point-wise values of functions belonging
to Morrey spaces, such as νε . To take advantage of the fact that these functions are in a Morrey
space, for Step 2, we integrate the estimate from Step 1. In the last step we apply Lemma 1.

Step 1 For this step, fix y ∈ B+
x0,Rx0

, and put Gy := G(y). We will establish the following:
there is a constant C depending on only n, N and p such that for each 0 < ε ≤ 1 and every
0 < ρ < R

4 < R ≤ Ry
2 , we have

∫

B+
y,ρ

H(∇wGy) dx ≤ c′
5

[( ρ

R

)n + {ε + µ(R) + ω(R) + Tελ(R)}
]∫

B+
y,R

H(∇wGy) dx

+ c′′
5

{
1 + k∗

ε (y)p + a∗(y)p + b(y)p

(�∗)
p

p−1
+ c∗(y)

}
Rn

+ c′′
5

{
‖A‖p

L p,κ

ε p−1 Rκ + ‖νε‖L1,κ

�∗ Rκ + |νε(y)|
�∗ Rn

}
. (29)

Here, we have put

c′
5 := C M2p

1 ‖1 + c0‖L∞
∥∥∥∥�∗ + 1

�∗

∥∥∥∥
2

L∞
, c′′

5 := C M2p
1 (1 + µ(1))

∥∥∥∥�∗ + 1

�∗

∥∥∥∥
2

L∞

and

λ(R) := Mtp
1

∥∥∥∥�∗ + 1

�∗

∥∥∥∥
t

L∞

⎡
⎢⎢⎣ sup

z∈B+
x0,R0

⎛
⎜⎜⎝

∫

B+
x0,R0

∩Bz,R

H(∇wG(z)) dx

⎞
⎟⎟⎠

t−1⎤
⎥⎥⎦ , (30)

with t > 1 provided by Definition 1.
Fix R ≤ Ry

2 . Let v ∈ W 1,p(B+
y,Ry

; R
N ) be the minimizer for the functional

J+
y,R[v] :=

∫

B+
y,R

f ∗
y (∇v(x)Gy) dx

satisfying [v − w] ∈ W 1,p
0 (B+

y,R; R
N ). Let 0 < ρ ≤ R

4 and 0 < ε ≤ 1 be given.
Using Lemma 4 and (10) from Theorem 5, we deduce that
∫

B+
y,ρ

f ∗
y (∇wGy) dx ≤ c0c3

( ρ

R

)n
∫

B+
y, R

2

f ∗
y (∇vGy) dx + c3

∫

B+
y, R

2

‖[∇v − ∇w]Gy‖p dx.
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Since v is a J+
y,R-minimizer, the above inequality is preserved with ∇v replaced with ∇w in

the first integral on the right-hand side. Furthermore, v satisfies the Euler–Lagrange system
associated with J+

y,R , so Lemmas 2 and 3 give us

�∗
�∗

∫

B+
y,ρ

H(∇wGy) dx ≤ c0c3

( ρ

R

)n
∫

B+
y,R

H(∇wGy) dx

+ Cc1c3

∫

B+
y,R

‖V(∇wGy) − V(∇vGy)‖2 dx

≤ c0c3

( ρ

R

)n
∫

B+
x0,R

H(∇wGy) dx

+ Cc1c2c3

∫

B+
y,R

{
f ∗
y (∇wGy) − f ∗

y (∇vGy)
}

dx. (31)

Note that due to the definition of f ∗
y , the constants c1, c2 and c3 actually only depend upon n,

N and p. Moreover the constant c0 from Theorem 5, which depends on y, can be uniformly

bounded in terms of n, N , p and
∥∥∥ 1+�∗

�∗

∥∥∥
L∞ .

We will now work to estimate the last integral above. By (1) in our definition of a
(K +

y,Ry
, ω, {νε, Tε})-minimizer at y, for some t > 1 we have that

∫

B+
y,R

{
f ∗
y (∇wGy) − f ∗

y (∇vGy)
}

dx

≤
∫

B+
y,R

{
f ∗
y (∇wGy) − g∗

y(∇wGy)
}

+
{

g∗
y(∇wGy) − g∗

y([∇w + A]G)
}

dx

+
∫

B+
y,R

{
g∗

y([∇v + A]G) − g∗
y(∇vGy)

}
+
{

g∗
y(∇vGy) − f ∗

y (∇vGy)
}

dx

+ ω(R)+ε

�∗

∫

B+
y,R

(
1+‖∇w‖p +‖∇w−∇v‖p) dx + 1

�∗

∫

B+
y,R

|νε| dx + Rn

�∗ |νε(y)|

+ Tε

⎛
⎜⎜⎝
∫

B+
y,R

‖∇w − ∇v‖p dx

⎞
⎟⎟⎠

t

≤ I1 + I2 + I3 + I4 + I5 + Rκ

�∗ ‖νε‖L1,κ + Rn

�∗ |νε(y)|

+ Tε

⎛
⎜⎜⎝
∫

B+
y,R

‖∇w − ∇v‖p dx

⎞
⎟⎟⎠

t

. (32)
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For I1, we deduce from (23), Lemma 6, (U)ii and (27) that

I1 ≤
∫

{x∈B+
y,R : ‖∇wGy‖>k∗

ε }

{
f ∗
y (∇wGy) − g∗

y(∇wGy)
}

dx +
∫

{x∈B+
y,R : ‖∇wGy‖≤k∗

ε }

{
f ∗
y (∇wGy)−g∗

y(∇wGy)
}

dx

≤ εC
�∗

�∗

∫

B+
y,R

H(∇wGy) dx + εCa∗(y)p + C
{
1+k∗

ε (y)p +c∗(y)
} |B|Rn .

Since v is a J+
y,R-minimizer, with (26), we similarly estimate

I4 ≤ εC
�∗

�∗

∫

B+
y,R

H(∇wGy) dx + εCa∗(y)p + C L∗
{

1+k∗
ε (y)p + b(y)p

�∗

}
|B|Rn .

Now for I2, we have by (25) that

I2 =
∫

B+
y,R

1∫

0

∂

∂F
g∗

y(∇wG+t∇w(Gy−G)+(1−t)AG) : [∇w(Gy−G)−AG]dtdx

≤ C M2p−1
1 L∗

∫

B+
y,R

{
a∗(y)p−1+ b(y)p−1

�∗ +‖∇wGy‖p−1+‖A‖p−1
}

× (‖∇wGy‖‖G−Gy‖+‖A‖) dx.

Young’s inequality and the modulus of continuity for G, defined in (28), yields

I2 ≤ C M2p−1
1 L∗ (ε + µ(R))

∫

B+
y,R

(
1 + ‖∇wGy‖2) p

2 dx

+ C M2p−1
1 L∗ (1 + µ(R))

(
a∗(y)p + b(y)p

(�∗)
p

p−1

)
|B|Rn

+ C M2p−1
1 L∗

(
1

ε p−1 + µ(R)

)∫

B+
y,R

‖A‖p dx .

The definition of H and the hypothesis that A ∈ L p,κ (B+
x0,R0

; R
N×n) allow us to write

I2 ≤ C M2p−1
1 L∗(ε + µ(R))

∫

B+
y,R

H(∇wGy) dx

+ C M2p−1
1 L∗ (1 + µ(R))

(
a∗(y)p + b(y)p

(�∗)
p

p−1

)
|B|Rn

+ C M2p−1
1 L∗

(
1

ε p−1 + µ(R)

)
‖A‖p

L p,κ Rκ.
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Since v is a minimizer for J+
y,R , the same estimate is valid for �∗

�∗ I3. Turning to I5 in (32),

we once more use the definition of H and the fact that v is a J+
y,R-minimizer to get

I5 ≤ C
M p

1

�∗ (ω(R) + ε)

∫

B+
y,R

{(
1 + ‖∇wGy‖2) p

2 dx + (
1 + ‖∇vGy‖2) p

2

}
dx

≤ C
M p

1

�∗
(ω(R) + ε)

∫

B+
y,R

H(∇wGy) dx.

Putting our estimates for I1, . . . , I5 into (32), we conclude that

�∗
1 + �∗

∫

B+
y,R

{
f ∗
y (∇wGy) − f ∗

y (∇vGy)
}

dx

≤ C M2p−1
1 L∗ {ε + µ(R) + ω(R)}

∫

B+
y,R

H(∇wGy) dx

+ C M2p−1
1 L∗(1 + µ(R))

{
1 + k∗(y)p

ε + a∗(y)p + b(y)p

(�∗)
p

p−1
+ c∗(y)

}
Rn

+ C M2p−1
1 L∗

(
1

ε p−1 + µ(R)

)
‖A‖p

L p,κ Rκ + ‖νε‖L1,κ Rκ + |νε(y)|Rn

+ Tε

⎛
⎜⎜⎝
∫

B+
y,R

‖∇w − ∇v‖p dx

⎞
⎟⎟⎠

t

. (33)

For the last integral above, we have

∫

B+
y,R

‖∇w − ∇v‖p dx ≤ C M p
∫

B+
y,R

H(∇wGy) dx + C M p �∗

�∗

∫

B+
y,R

f ∗(∇vGy) dx

≤ C M p
∫

B+
y,R

H(∇wGy) dx + C M p �∗

�∗

∫

B+
y,R

f ∗(∇wGy) dx

≤ C M p
(

1 + �∗

�∗

) ∫

B+
y,R

H(∇wGy) dx, (34)

where the fact that v is a minimizer for J+
y,R was used. Since 0 < R ≤ Ry

2 ≤ 1 and µ is
non-decreasing, we arrive at (29) upon incorporating the estimate in (34), the definition of
L∗ in (24) and the definition of λ in (30) into the estimate in (33).
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Step 2 The inequality in (29) is valid for each y ∈ B+
x0,Rx0

, so we may integrate it, with
respect to the center y, obtaining

∫

B+
x0,ρ

∫

B+
y,ρ

H(∇w(x)G(y)) dxdy

≤ c′
5

[( ρ

R

)n + {ε + µ(R) + ω(R) + Tελ(R)}
] ∫

B+
x0,ρ

∫

B+
y,R

H(∇w(x)G(y)) dxdy

+ c′′
5 Rn

∫

B+
x0,ρ

{
k∗
ε (y)p + a∗(y)p + b(y)p

(�∗(y))
p

p−1
+ c∗(y)

}
dy

+ c′′
5

{
‖A‖p

L p,κ

ε p−1 + 2

�∗ ‖νε‖L1,κ

}
Rn+κ. (35)

For the iterated integrals, we apply Fubini’s theorem. We estimate the integral on the left
from below as follows:

∫

B+
x0,ρ

∫

B+
y,ρ

H(∇w(x)G(y)) dxdy

≥ 1

M2p
1

∫

Rn

∫

Rn

H(∇w(x)G(x0))χB+
y,ρ

(x)χB+
x0,

ρ
2

(y) dxdy

≥ 1

M2p
1

∫

Rn

∫

Rn

H(∇w(x)Gx0)χB+
x0,

ρ
2

(x)χB+
x0,

ρ
2

(y) dxdy

≥ ρn

C M2p
1

∫

B+
x0,

ρ
2

H(∇w(x)Gx0) dx, (36)

where C < +∞ depends only on n. For the iterated integral on the right of the inequality in
(35), we estimate from above:

∫

B+
x0,ρ

∫

B+
y,R

H(∇w(x)G(y)) dxdy

≤ M2p
1

∫

Rn

∫

Rn

H(∇w(x)Gx0)χB+
y,R

(x)χB+
x0,ρ

(y) dxdy

≤ M2p
1

∫

Rn

∫

Rn

H(∇w(x)Gx0)χB+
x0,R+ρ

(x)χB+
x0,ρ

(y) dxdy

≤ C M2p
1 ρn

∫

B+
x0,2R

H(∇w(x)Gx0) dx (37)
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For the last integral in (35), recall that a∗, b ∈ L p,κ (B+), c∗ ∈ L1,κ (B+), 1
�∗ ∈ L∞(B+)

and k∗
ε ∈ L p,κ (B+) for each 0 < ε ≤ 1. Therefore, we may write

∫

B+
x0,ρ

{
k∗
ε (y)p + a∗(y)p + b(y)p

(�∗(y))
p

p−1
+ c∗(y)

}
dy

≤
(

‖k∗
ε‖p

L p,κ + ‖a∗‖p
L p,κ +

∥∥∥∥ 1

�∗

∥∥∥∥
p

p−1

L∞
‖b‖p

L p,κ + ‖c∗‖L1,κ

)
ρκ . (38)

Upon collecting our estimates (36–38) into (35), we obtain
∫

B+
x0,

ρ
2

H(∇wGx0) dx (39)

≤ C M4p
1 c′

5

[( ρ

R

)n + {ε + µ(R) + ω(R) + Tελ(R)}
] ∫

B+
x0,2R

H(∇wG0) dx

+ C M2p
1 c′′

5

(
‖k∗

ε‖p
L p,κ + ‖a∗‖p

L p,κ +
∥∥∥∥ 1

�∗

∥∥∥∥
p

p−1

L∞
‖b‖p

L p,κ + ‖c∗‖L1,κ

)
Rn+κ

ρn

+ C M2p
1 c′′

5

(
‖A‖p

L p,κ

ε p−1 Rκ +
∥∥∥∥ 1

�∗

∥∥∥∥
L∞

‖νε‖L1,κ

Rn+κ

ρn

)
.

Step 3 In this step we use Lemma 1. First, note that our estimate in (29) extends to allow any

ρ and R satisfying 0 < ρ ≤ R ≤ Rx0
2 . Since µ, ω and λ are non-decreasing, we deduce that

∫

B+
x0,ρ

H(∇wGx0) dx ≤ C M4p
1 c′

5

[( ρ

R

)n+ {ε+µ(R)+ω(R) + Tελ(R)}
]

×
∫

B+
x0,R

H(∇wGx0) dx + Cc′
6,ε

Rn+κ

ρn
,

with C depending only on n, N and p and

c′
6,ε := M4p

1 c2
1 (1+µ(1))

∥∥∥∥�∗+1

�∗

∥∥∥∥
L∞

(
‖A‖p

L p,κ

ε p−1 +‖k∗
ε‖p

L p,κ +‖a∗‖p
L p,κ

+
∥∥∥∥ 1

�∗

∥∥∥∥
1

p−1

L∞
‖b‖p

L p,κ +‖c∗‖L1,κ +‖νε‖L1,κ

)
.

Put γ := κ+n
2 . Fix ε∗ = 1

2c′
5

(
1

2C M4p
1

) n
n−γ

. Since µ, ω and λ are each continuous and

satisfy µ(0) = ω(0) = λ(0) = 0, we may define

R̃ := min

⎧⎨
⎩R ∈ (0, Rx0 ] : µ(R) + ω(R) + Tε∗λ(R) ≥ 1

2c′
5

(
1

2C M4p
1

) n
n−γ

⎫⎬
⎭ .
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According to Lemma 1, for each 0 < ρ ≤ R ≤ R̃, we have

∫

B+
x0,ρ

H(∇wGx0) dx ≤
(

2C M4p
1

) n
n−γ

( ρ

R

)γ
∫

B+
x0,R

H(∇wGx0) dx

+ Cc′
6,ε∗

(
2C M4p

1

) n+κ
n−γ

⎡
⎢⎢⎣

(
2C M4p

1

) γ
n−γ

(
2C M4p

1

) γ−κ
n−γ − 1

+ 1

⎤
⎥⎥⎦ ρκ .

Defining, for an appropriate C depending on n, N and p only,

c5 := C
n

n−κ M
8np
n−κ

1

(
Rx0

R̃

)κ

and c6 := c′
6,ε∗C

3(n+κ)
n−κ M

12p(n+κ)
n−κ

1 ,

we obtain the conclusion of the Lemma, with c5 and c6 depending on the structural parameters
for the families

{
fy
}

and
{
gy
}
, as well as κ , Rx0 , ω, ‖νε∗‖L1,κ , Tε∗ ‖G‖L∞ , ‖G−1‖L∞ ,

‖A‖L p,κ , and the modulus of continuity for G, but they do not depend upon dist(x0, D0,1). ��

Theorem 6 Suppose that
{

fy
}

y∈B+∪D0,1
⊂ C2(RN×n) has a uniform p-Uhlenbeck structure

and that
{
gy
}

y∈B+∪D0,1
⊂ C2(RN×n) possesses the growth properties (G) and is L p,κ -

asymptotically related to
{

fy
}

y∈B+∪D0,1
. Let A ∈ L p,κ (B+; R

N×n) and G ∈ C0(B+; R
n×n),

with a point-wise matrix inverse G−1 ∈ C0(B+; R
n×n), be given. For each y ∈ B+ ∪ D0,1,

define the functional K +
y : W 1,1(B+; R

N ) → R by

K +
y :=

∫

B+
gy([∇w(x) + A(x)]G(x)) dx.

Let {νε}ε>0 ⊂ L1,κ (B+) and {Tε}ε>0 ⊆ [0,∞) be given. If w ∈ W 1,1(B+; R
N ) satisfies

w = 0 on D0,1, in the sense of traces, and w is a (K +
y , ω, {νε, Tε})-minimizer at each y ∈

B+∪D0,1, then we find that∇w ∈ L p,κ
loc (B+∪D0,1; R

N×n)and w ∈ L
p,p+κ

loc (B+∪D0,1; R
N ).

Proof First, we argue that w ∈ W 1,p(B+; R
N ). Since w is a (K +

0 , ω, {νε, Tε}) minimizer,
the coercivity property (27) of g0 implies ∇w ∈ L p(B+; R

N×n). Extend w to B by reflection;
i.e. define the extension of w by

w̃(x) :=
{

w(x), x ∈ B+;
−w(−x), x ∈ B\B+.

Due to the hypothesis that w = 0, in the sense of traces, on D0,1, we see that ∇w̃ ∈
L p(B; R

N×n). Moreover (w̃)0,1 = 0, and therefore Poincaré’s inequality implies

∫

B+
‖w‖p dx = 1

2

∫

B
‖w̃ − (w̃)0,1 ‖p dx ≤ 2np

∫

B+
‖∇w‖p dx < +∞.

Thus w ∈ W 1,p(B+; R
N ) as claimed.
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290 M. Foss

Now, the result is already proved if κ = 0, so we assume 0 < κ < n. Let y ∈ B+ be given.
With Ry = 1 − ‖y‖, we may use (22) in Lemma 8 to conclude that for every 0 < ρ ≤ Ry
we have

∫

B+
y,ρ

H(∇wG(y)) dx ≤

⎡
⎢⎢⎣c5

(
1

Ry

)κ ∫

B+
y,Ry

H(∇wG(y)) dx + c6

⎤
⎥⎥⎦ ρκ, (40)

with c5 and c6 independent of dist(y, D0,1). Thus ∇w ∈ L p,κ
loc (B+ ∪ D0,1; R

N×n).
By Poincaré’s inequality, we see that
∫

B+
y,ρ

‖w − (w)+y,ρ ‖pdx ≤ 2pnρ p
∫

B+
y,ρ

‖∇w‖pdx ≤ 2pn
[

c6

(
1

Ry

)
K +

y [w] + c7

]
ρ p+κ .

Hence w ∈ L p,p+κ (B+ ∪ D0,1; R
N ). ��

Remark 5 We note that if A ∈ L∞(B+; R
N×n) and {νε}ε>0 ⊂ L∞(B+), then we find that

∇w ∈ L p,ν
loc (B+ ∪ D0,1; R

N×n) and w ∈ L
p,p+ν

loc (B+ ∪ D0,1; R
N ), for each 0 ≤ ν < n.

The following may be proved in a similar fashion, using an obvious analogue of Lemma 8
for the set B.

Theorem 7 Suppose that
{

fy
}

y∈B ⊂ C2(RN×n) has a uniform p-Uhlenbeck structure and

that
{
gy
}

y∈B ⊂ C2(RN×n) possesses the growth properties (G) and is L p,κ -asymptotically

related to the family
{

fy
}

y∈B . Let A ∈ L p,κ (B; R
N×n) and G ∈ C0(B; R

n×n), with a point-

wise matrix inverse G−1 ∈ C0(B; R
n×n), be given. For each y ∈ B, define the functional

Ky : W 1,1(B; R
N ) → R by

Ky[w] :=
∫

B
gy([∇w(x) + A(x)]G(x)) dx.

Let {νε}ε>0 ⊂ L1,κ (B) and {Tε}ε>0 ⊆ [0,∞) be given. If w ∈ W 1,1(B; R
N ) is a

(Ky, ω, {νε, Tε})-minimizer at each y ∈ B, then ∇w ∈ L p,κ
loc (B; R

N×n). We also find that

w ∈ L
p,p+κ

loc (B; R
N ).

Now we use the theorems above and a standard argument to “straighten out” smooth
portions of the boundary to prove the main result for this section.

Theorem 8 Suppose that � ⊂ R
n and that � is a C1,0 portion of ∂�. Suppose that{

fy
}

y∈�∪�
⊂ C2(RN×n) has a uniform p-Uhlenbeck structure. Suppose also that{

gy
}

y∈�∪�
⊂ C2(RN×n) possesses the growth properties (G) and is L p,κ -asymptotically

related to
{

fy
}

y∈�∪�
. Let the mappings A∈ L p,κ

loc (�∪�; R
N×n) and G ∈ C0(� ∪�; R

n×n),

with a point-wise matrix inverse G−1 ∈ C0(� ∪ �; R
n×n), be given. For each y ∈ � ∪ �,

define Ky : W 1,1(�; R
N ) → R by

Ky[w] :=
∫

�

gy([∇w(x) + A(x)]G(x)) dx.
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Let {νε}ε>0 ⊂ L1,κ
loc (� ∪ �) and {Tε}ε>0 ⊆ [0,∞) be given. If w ∈ W 1,1(�; R

N ) satisfies
w = 0 on �, in the sense of traces, and w is a (Ky, ω, {νε, Tε})-minimizer at each y ∈ �∪�,
then ∇w ∈ L p,κ

loc (� ∪ �; R
N×n). In addition, we find that w ∈ L

p,p+κ
loc (� ∪ �; R

N ).

Proof Let �′ ⊂⊂ � ∪ � be given, and set �′ := �′ ∩ ∂�. We note that �′ is a compact
set in R

n and �′ ⊂ �. Since � is a C1,0 portion of ∂�, for each x0 ∈ �′, there is a C1,0-
diffeomorphism �x0 and a relatively open neighborhood in �′ of x0, say Nx0 , such that
�x0(Nx0) = B+.

Suppose that �′ �= ∅, and fix x0 ∈ �′. Put S := 1 +
(

1
π2

x0
rx0

)p

and U := 1 + 1
πn

x0
.

Recalling that t > 1 is provided by Definition 1, for each x ∈ Nx0 and ε > 0 define

x̃ := �x0(x), Ã(̃x) := A(�−1
x0

(̃x))∇x̃�
−1
x0

(̃x), T̃ε := U t T ε
S
,

G̃(̃x) := [∇x̃�
−1
x0

(̃x)
]−1

G(�−1
x0

(̃x)), ν̃ε (̃x) := Uν ε
S
(�−1

x0
(̃x)),

and

w̃(̃x) := w(�−1
x0

(̃x)).

Define ω̃ ∈ C([0,+∞)) by

ω̃(t) := Sω(rx0 t).

Then we find that Ã ∈ L p,κ (B+; R
N×n), G̃ ∈ C0(B+; R

n×n), {̃νε}ε>0 ⊂ L1,κ (B+) and
w̃ ∈ W 1,p(B+; R

N ) with

∇xw(x) = ∇x̃w̃(̃x)
[∇x̃�

−1
x0

(̃x)
]−1

.

Furthermore, we see that sup̃x∈B+ ‖∇�−1
x0

(̃x)‖ ≤ rx0 and that det ∇�x0 =
(

1
πx0 rx0

)n

throughout Nx0 . Hence, the mapping w̃ is a (K̃ +
ỹ , ω̃, {̃νε, T̃ε})-minimizer at each ỹ ∈ B+ for

K̃ +
ỹ [w̃] :=

∫

B+
g
�−1

x0 (̃y)

([∇w̃(̃x) + Ã(̃x)]G̃(̃x)
)

d̃x

and satisfies w̃ = 0 on D0,1, in the sense of traces. By Theorem 6, we conclude that ∇w̃ ∈
L p,κ

loc (B+ ∪ D0,1; R
N×n), and consequently ∇w ∈ L p,κ

loc (Nx0 ; R
N×n).

If �′ = ∅, then set N = ∅. Otherwise, consider the collection of Nx for all x ∈ �′. Since
�′ is compact, there exists a finite subcollection

{Nx j

}m
j=1

such that �′ ⊂ ⋃m
j=1 Nx j . Setting

N = ⋃m
j=1 Nx j , we find ∇w ∈ L p,κ

loc (N , R
N×n).

Next we use Theorem 7 to complete the proof. Put

d := 1

2

(
inf

x∈�′\N
dist(x, ∂�)

)
,

which is positive since �′\N is compactly contained in �. We use Theorem 7 to deduce

for each x ∈ (
�′\N )

that ∇w ∈ L p,κ
loc (Bx,d ; R

N×n). Since
(
�′\N )

is compact, there is

a finite collection
{Bx j,d

}m
j=1

, with x j ∈ (
�′\N )

, such that
(
�′\N ) ⊂ ⋃m

j=1 Bx j ,d and

∇w ∈ L p,κ
loc (

⋃m
j=1 Bx j ,d ; R

N×n). We conclude that ∇w ∈ L p,κ
loc (N ∪ ⋃m

j=1 Bx j ,d ; R
N×n).

Since �′ ⊂⊂ N ∪ ⋃m
j=1 Bx j ,d , the proof is complete. ��
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As a corollary to the above theorem, we have global Morrey regularity for the gradients
of almost minimizers for asymptotically convex variational problems satisfying Dirichlet
conditions that are compatible with a mapping that has a gradient belonging to the Morrey
space L p,κ .

Corollary 1 Let � ⊂ R
n, with a C1,0 boundary, and u ∈ W 1,(p,κ)(�; R

N ) be given. Suppose
that g ∈ C2(RN×n) is asymptotically related to f . If a mapping u ∈ W 1,1(�; R

N ) is a
(K , ω)-minimizer for the functional

K [u] :=
∫

�

g(∇u(x)) dx,

satisfying [u − u] ∈ W 1,p
0 (�; R

N ), then ∇u ∈ L p,κ (�; R
N×n) ∩ L p,θ

loc (�; R
N×n) and u ∈

L p,p+κ (�; R
N ) ∩ L

p,p+θ
loc (�; R

N ), for each θ ∈ [0, n).

Proof Define w ∈ W 1,1
0 (�; R

N ) by w := u − u. Then w is a (K , ω, 0)-minimizer for the
functional

K [w] :=
∫

�

g(∇w(x) + ∇u(x)) dx.

Since ∇u ∈ L p,κ (�; R
N×n), Theorem 8 implies that ∇w ∈ L p,κ (�; R

N×n). Hence ∇u ∈
L p,κ (�; R

N×n) and u ∈ L p,p+κ (�; R
N ). The interior regularity follows from a local

version of Theorem 8 for local minimizers of K , for which we may take A = 0. ��

7 Global Lipschitz regularity

Our objective in this section is to prove global bounds for the gradient of an almost minimizer
of an asymptotically convex functional. As in the previous section, we initially work on the
half-ball B+ and establish bounds for the gradient up to the set D0,1, provided that the almost
minimizer is 0 on D0,1. A similar argument gives local bounds for almost minimizers on a full
ball with general boundary values. The standard program followed in the previous section
then yields the global bounds for almost minimizers with boundary values compatible with
a mapping with a Hölder continuous gradient.

Let ω0 ≥ 0 and 0 < β ≤ 1 be given and define the function ω ∈ C0,β([0,∞)) by
ω(r) := ω0rβ .

Definition 11 Given a measurable set U ⊂ R
n , we will say that a family of functions{

gy
}

y∈U ⊂ C2(RN×n) is uniformly asymptotically related to a family of functions
{

fy
}

y∈U ⊂
C2(RN×n; ) if and only if for each ε > 0 there exists a σε < +∞ such that for every y ∈ U ,
we have ∥∥∥∥ ∂2

∂F2 gy(F) − ∂2

∂F2 fy(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2,

whenever ‖F‖ > σε.

For this section, given a measurable set U ⊂ R
n and a family of functions

{
gy
}

y∈U ⊂
C3(RN×n) that is uniformly asymptotically related to

{
fy
}

y∈U with a uniform p-Uhlenbeck
structure, we will assume the following growth properties:

123



Global regularity of almost minimizers 293

(i) there is an L1 < +∞ such that

sup
y∈U

∥∥∥∥ ∂3

∂F3 gy(F)

∥∥∥∥ ≤ L1
(
1 + ‖F‖2) p−3

2

for all F ∈ R
N×n; (G′)

(ii) there is a b < +∞ such that

b ≥ sup
y∈U

(
|gy(0)| +

∥∥∥∥ ∂

∂F
gy(0)

∥∥∥∥ +
∥∥∥∥ ∂2

∂F2 gy(0)

∥∥∥∥
)

.

Properties (G′)i,ii imply that

sup
y∈U

∥∥∥∥ ∂2

∂F2 gy(F)

∥∥∥∥ ≤ L2
(
1 + ‖F‖2) p−2

2 , (41)

sup
y∈U

∥∥∥∥ ∂

∂F
gy(F)

∥∥∥∥ ≤ L2
(
1 + ‖F‖2) p−1

2 (42)

and
sup
y∈U

|gy(F)| ≤ L2
(
1 + ‖F‖2) p

2 , (43)

for all F ∈ R
N×n , with

L2 := L1 + b.

With

a := 1 + L
1

p−2
2 sup

y∈U

{(
1 + σ 2

�∗(y)

) p−2
2

}
,

we have

a ≥ 1 + sup
y∈U

⎧⎨
⎩max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 gy(F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗(y)

⎫⎬
⎭
⎫⎬
⎭ . (44)

Recall that since
{

fy
}

has a uniform p-Uhlenbeck structure, we must have that
ess infy∈U �∗(y) is strictly positive and thus supy∈U σ�∗(y), and a, is finite.

For each ε > 0, we also define

Qε :=
(

2p+3L2
2

ε2 + 2

) 1
2

σε.

Lemma 9 Suppose that
{

fy
}

y∈B+∪D0,1
⊂ C2(RN×n) has a uniform p-Uhlenbeck structure.

Suppose also that
{
gy
}

y∈B+∪D0,1
⊂ C3(RN×n) possesses the growth properties (G′) and is

uniformly asymptotically related to
{

fy
}

y∈B+∪D0,1
. Let the mappings A ∈ C0,β(B+; R

N×n)

and G ∈ C0,β(B+; R
n×n), with a matrix inverse G−1 ∈ C0,β(B+; R

n×n), be given. For each
0 < α < 1, there exist Rα, εα > 0 with the following property: for every 0 < ε ≤ εα and
Bx0,R ⊂ B, with 0 < R ≤ Rα , if v ∈ W 1,p(B+

x0,R; R
N ) is a minimizer for

J+
x0,R[v] :=

∫

B+
x0,R

fx0(∇v(x)G(x0)) dx
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and w ∈ W 1,1(B+ ∩ Bx0,R; R
N ) is a (K +

x0,R, ω)-minimizer for

K +
x0,R[w] :=

∫

B+
x0,R

gx0([∇w(x) + A(x)]G(x)) dx,

satisfying [w − v] ∈ W 1,1
0 (B+

x0,R; R
N ) and w = 0, in the sense of traces, on Dx0,R, then

‖Fx0,RG(x0)‖2 + λx0,R(Fx0,R)2 > Q2
ε + 1

ε2 sup
x∈B+

‖A(x)‖2 (45)

implies
∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx ≤ α

∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx

+ c8L2

�∗(x0)
Rβ

(
Rn + 1

�∗(x0)
J+

x0,R[w]
)

, (46)

with c8 depending only on A, G, G−1 and the structural constants for
{

fy
}

y∈B+∪D0,1
and{

gy
}

y∈B+∪D0,1
. In particular, the constant c8 is independent of α and R.

Here, for each Bx0,r ⊆ B, the function λx0,r : R
N×n → R provides the unique positive

solution to

|Br |λp
x0,r + |Br |λ2

x0,r

(
1 + ‖F‖2) p−2

2 =
∫

B+
x0,r

‖V(∇w) − V(F)‖2 dx (47)

and
Fx0,r := V−1((V(∇w))+x0,r ). (48)

Proof Let x0 ∈ B+ and 0 < R < 1 − ‖x0‖ be given. Put

M2 := sup
x∈B+

‖G(x)‖ + sup
x∈B+

‖G−1(x)‖ + sup
x∈B+

‖A(x)‖ + 1,

G0 := G(x0) and A0 := A(x0).

Since G ∈ C0,β(B+; R
n×n) and A ∈ C0,β(B+; R

N×n), there exists a constant µ0 < +∞
such that

sup
x∈B+

x0,R

(‖A(x) − A0‖ + ‖G(x) − G0‖) ≤ µ0 Rβ . (49)

For convenience, we will write λ for λx0,R(Fx0,R), F for Fx0,R , f for fx0 and g for gx0 . Let
0 < α < 1 be given, and assume that (45) holds. We will show (46), provided that 0 < ε ≤ εα

and 0 < R ≤ Rα , where εα and Rα will be determined later.
By Lemma 3, we may write

∫

B+
x0,R

‖V(∇w) − V(∇v)‖2 dx ≤ c2 M p
2

�∗

∫

B+
x0,R

{ f (∇wG0) − f (∇vG0)} dx,
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where we used the fact that v is a minimizer for J+
x0,R in the last line. Since w is a

(K +
x0,R, ω)-minimizer, we continue with

∫

B+
x0,R

‖V(∇w) − V(∇v)‖2dx ≤ c2 M p
2

�∗

∫

B+
x0,R

{ f (∇wG0) − g([∇w + A]G)} dx (50)

+ c2 M p
2

�∗

∫

B+
x0,R

{g([∇v + A]G0) − f (∇vG0)} dx

+ c2 M p
2

�∗
ω(R)

∫

B+
x0,R

(
1 + ‖∇w‖p + ‖∇w − ∇v‖p) dx.

Hence ∫

B+
x0,R

‖V(∇w) − V(∇v)‖2 dx ≤ c2 M p
2

�∗
(I1 + I2 + I3 + ω(R)I4), (51)

where

I1 :=
∫

B+
x0,R

{
f (∇wG0)− f (FG0)− ∂

∂F
f (FG0) : [∇w−F]G0

− g([∇w+A]G)+g([F+A]G)+ ∂

∂F
g([F+A]G) : [∇w−F]G

}
dx,

I2 :=
∫

B+
x0,R

{
g([∇v+A]G)−g([F+A]G) − ∂

∂F
g([F+A]G) : [∇v−F]G

− f (∇vG0)+ f (FG0)+ ∂

∂F
f (FG0) : [∇v−F]G0

}
dx,

I3 :=
∫

B+
x0,R

{
∂

∂F
g([F + A0]G0)GT

0 − ∂

∂F
g([F + A]G)GT

}
: [∇w − ∇v] dx,

and I4 is the last integral in (50). We will analyze each of the above integrals in turn.
For I1, we write

I1 =
∫

B+
x0,R

1∫

0

{
∂2

∂F2 f ([t∇w + (1 − t)F]G0) ::([∇w−F]G0)⊗([∇w−F]G0)

− ∂2

∂F2 g([t∇w +(1 − t)F + A]G) ::([∇w−F]G)⊗([∇w−F]G)

}
dtdx,
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and we further split I1 as follows:

I1 =
∫

B+
x0,R

1∫

0

[
∂2

∂F2 f ([t∇w + (1 − t)F]G0) − ∂2

∂F2 g([t∇w + (1 − t)F]G0)

]

:: ([∇w − F]G0) ⊗ ([∇w − F]G0) dtdx

+
∫

B+
x0,R

1∫

0

[
∂2

∂F2 g([t∇w + (1 − t)F]G0)− ∂2

∂F2 g([t∇w + (1 − t)F + A]G)

]

:: ([∇w − F]G0) ⊗ ([∇w − F]G0) dtdx

+
∫

B+
x0,R

1∫

0

∂2

∂F2 g([t∇w + (1 − t)F + A]G)

:: ([∇w − F]) ⊗ ([∇w − F](G0GT
0 − GGT)) dtdx

= I1,1 + I1,2 + I1,3. (52)

For the term I1,1, assumption (45) implies that ‖FG0‖2 + λ2 > Q2
ε , and thus (41) and

Lemma 5 imply that

|I1,1| ≤ ε

∫

B+
x0,R

(‖[∇w − F]G0‖2 + λ2) (a2 + ‖∇wG0‖2 + ‖FG0‖2) p−2
2 dx (53)

Since p > 2 and a ≥ 1, we may write

|I1,1| ≤ εM p
2 a p−2

∫

B+
x0,R

(
1+‖∇w‖2+‖F‖2) p−2

2 ‖∇w−F‖2 dx

+ εC M p−2
2 a p−2λ2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|BR |(1+‖F‖2)
p−2

2 + |BR | 2
p

⎛
⎜⎜⎝

∫

B+
x0,R

‖∇w‖p dx

⎞
⎟⎟⎠

p−2
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Using Lemma 2, we get

|I1,1| ≤ εc1 M p
2 a p−2

∫

B+
x0,R

‖V(∇w)−V(F)‖2dx + εC M p−2
2 a p−2λ2|BR |(1+‖F‖2)

p−2
2

+ εC M p−2
2 a p−2|BR | 2

p λ2

⎛
⎜⎜⎝

∫

B+
x0,R

‖∇w−F‖p dx + |BR | ‖F‖p

⎞
⎟⎟⎠

p−2
p

.
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Hence

|I1,1| ≤ εc1 M p
2 a p−2

∫

B+
x0,R

‖V(∇w)−V(F)‖2dx + εC M p−2
2 a p−2λ2|BR |(1+‖F‖2)

p−2
2

+ εC M p−2
2 a p−2|BR | 2

p λ2

⎛
⎜⎜⎝

∫

B+
x0,R

‖∇w−F‖p dx

⎞
⎟⎟⎠

p−2
p

.

Since p > 2, we may use Young’s inequality on the last term above; then another application
of Lemma 2 yields

|I1,1| ≤ εCc1 M p
2 a p−2

∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx

+ εC M p−2
2 a p−2

{
|BR |λp + |BR |λ2(1 + ‖F‖2)

p−2
2

}
. (54)

The definition of λ in (54) now implies

|I1,1| ≤ εCc1 M p
2 a p−2

∫

B+
x0,R

‖V(∇w) − V(FR)‖2 dx. (55)

For the term I1,2, the growth condition (G′)i and the conditions that a ≥ 1 and L2 ≥ L1

allow us to write

|I1,2| ≤ L2

∫

B+
x0,R

(
a2+‖∇wG‖2+‖∇wG0‖2+‖FG‖2+‖FG0‖2+‖AG‖2) p−3

2

×
[
(‖∇w‖+‖F‖)‖G−G0‖+‖AG‖

]
‖∇w−F‖2‖G0‖2dx. (56)

There are two cases that we consider: 2 < p ≤ 3 and 3 < p.

Case 1 If 2 < p ≤ 3, then we note that

‖∇w‖ ≤ ‖∇wG‖‖G−1‖ ≤ M2‖∇wG‖ and ‖F‖ ≤ M2‖FG‖.

Hence from (56), we deduce that

|I1,2| ≤ C L2 M p
2

∫

B+
x0,R

(
a2 + ‖∇w‖2 + ‖F‖2) p−2

2 ‖∇w − F‖2‖G − G0‖ dx

+ C L2 M p
2

∫

B+
x0,R

‖A‖p−2‖∇w − F‖2 dx,
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where we have used the fact that in this case, p−3
2 < 0. Recalling the Hölder continuity of

G captured in (49), we may write

|I1,2|
L2 M p

2

≤ Cµ0 Rβ

∫

B+
x0,R

(
a2 + ‖∇w‖2 + ‖F‖2) p−2

2 ‖∇w − F‖2 dx

+ C

(
sup

x∈B+
‖A‖2

) p−2
2 ∫

B+
x0,R

‖∇w − F‖2 dx.

Assumption (45), implies that supx∈B+ ‖A‖2 ≤ ε2
(‖FG0‖2 + λ2

)
. Consequently,

|I1,2|
L2 M p

2

≤ Cµ0 Rβ

∫

B+
x0,R

(
a2+‖∇w‖2+‖F‖2) p−2

2 ‖∇w−F‖2dx

+ ε p−2C
(‖FG0‖2+λ2) p−2

2

∫

B+
x0,R

‖∇w−F‖2dx

≤ C
(
µ0 Rβ +M p−2

2 ε p−2
)∫

B+
x0,R

(
a2+‖∇w‖2+‖F‖2) p−2

2 ‖∇w−F‖2dx

+ ε p−2Cλp−2
∫

B+
x0,R

‖∇w−F‖2dx.

Put c̃1 := a p−2c1. Apply Young’s inequality to the last integral and then use Lemma 2 to get

|I1,2|
L2 M p

2

≤ Cc̃1

{
µ0 Rβ + M p−2

2 ε p−2
}∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx + ε p−2Cλp|BR |, (57)

and thus

|I1,2| ≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx (58)

follows from the definition of λ and M2.

Case 2 When p > 3, we get from (56) that

|I1,2| ≤ C L2 M p−1
2

∫

B+
x0,R

(
a2+‖∇w‖2+‖F‖2) p−2

2 ‖∇w−F‖2‖G−G0‖ dx

+ C L2 M p
2

∫

B+
x0,R

(
a2+‖∇w‖2+‖F‖2) p−3

2 ‖∇w−F‖2‖A‖ dx

+ C L2 M p−1
2

∫

B+
x0,R

(‖∇w‖2+‖F‖2) 1
2 ‖∇w−F‖2‖A‖p−3‖G−G0‖ dx

+ C L2 M p
2

∫

B+
x0,R

‖A‖p−2‖∇w−F‖2 dx.
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Recalling (49) and using Young’s inequality yields

|I1,2|
L2 M p

2

≤ C
(

M p−4
2 µ0 Rβ + ε

)∫

B+
x0,R

(
a2 + ‖∇w‖2 + ‖F‖2) p−2

2 ‖∇w − F‖2 dx

+ C

(
1

ε p−3 + 1

)(
sup

x∈B+
‖A‖2

) p−2
2 ∫

B+
x0,R

‖∇w − F‖2 dx.

As in Case 1, we have that supx∈B+ ‖A‖2 ≤ ε2
(‖FG0‖2 + λ2

)
, so

|I1,2|
L2 M p

2

≤ C
(

M p−4
2 µ0 Rβ + ε

)∫

B+
x0,R

(
a2 + ‖∇w‖2 + ‖F‖2) p−2

2 ‖∇w − F‖2 dx

+ C
(
ε + ε p−2) (‖FG0‖2 + λ2) p−2

2

∫

B+
x0,R

‖∇w − F‖2 dx.

Young’s inequality, Lemma 2 and the definition of λ imply

|I1,2| ≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx (59)

+ C
(
ε + ε p−2) λp|BR |

≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx. (60)

Collecting our estimates for each of the cases, (58) and (60), we obtain

|I1,2| ≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx. (61)

We now conclude our analysis of I1 by estimating I1,3. For this integral, we first note that
GGT ∈ C0,β(B+; R

n×n); indeed, by (49)

sup
x∈B+

x0,R

‖G(x)GT(x) − G0GT
0‖ ≤ 2M2µ0 Rβ .

This, (41) and Lemma 2 imply

|I1,3| ≤ C L2

∫

B+
x0,R

(
1 + ‖∇wG‖2 + ‖FG‖2 + ‖AG‖2) p−2

2

‖∇w − F‖2‖G0GT
0 − GGT‖ dx

≤ C L2 M2p−3
2 µ0 Rβ

∫

B+
x0,R

(
1 + ‖∇w‖2 + ‖F‖2) p−2

2 ‖∇w − F‖2 dx

≤ Cc1L2 M2p−3
2 µ0 Rβ

∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx. (62)
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Combining, in (52), our estimates for |I1,1|, |I1,2| and |I1,3| from (55), (61) to (62), we finally
conclude that, under assumption (45),

|I1| ≤ c̃1C L2 M3p
2

{
µ0 Rβ + ε + ε p−2}∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx, (63)

with C depending only on p.
Our analysis of I2 is similar to that of I1. In exact analogy with (52), we find

I2 =
∫

B+
x0,R

1∫

0

[
∂2

∂F2 f ([t∇v+(1−t)F]G0) − ∂2

∂F2 g([t∇v+(1−t)F]G0)

]

::([∇v−F]G0)⊗([∇v−F]G0) dtdx

+
∫

B+
x0,R

1∫

0

[
∂2

∂F2 g([t∇v+(1−t)F]G0) − ∂2

∂F2 g([t∇v+(1−t)F+A]G)

]

::([∇v−F]G0)⊗([∇v−F]G0) dtdx

+
∫

B+
x0,R

1∫

0

∂2

∂F2 g([t∇v+(1−t)F+A]G)

::([∇v−F])⊗([∇v−F](G0GT
0−GGT)) dtdx

= I2,1 + I2,2 + I2,3.

For I2,1, in analogy with (54), we find that

|I2,1| ≤ Cεc̃1 M p
2

∫

B+
x0,R

‖V(∇v) − V(F)‖2 dx

+ εC M p−2
2 a p−2

{
λp|BR | + λ2|BR |(1 + ‖F‖2)

p−2
2

}
.

From this we may deduce that

|I2,1| ≤ εCc̃1 M p
2

∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ εCc̃1 M p
2

∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx (64)

Turning to I2,2, we have 2 cases, as we did for I1,2.

Case 1 If 2 < p ≤ 3, then the same argument that provided (57) leads us to

|I2,2|
L2 M p

2

≤ Cc̃1

{
µ0 Rβ + M p−2

2 ε p−2
}∫

B+
x0,R

‖V(∇v) − V(F)‖2 dx + ε p−2Cλp|BR |,
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and thus

|I2,2| ≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx (65)

Case 2 When p > 3, the analogue for (59) is

|I2,2|
L2 M2p−2

2

≤ Cc̃1
(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇v) − V(F)‖2 dx + C
(
ε + ε p−2) λp|BR |.

From which we conclude that

|I2,2| ≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx. (66)

Comparing estimates (65) and (66), we see

|I2,2| ≤ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ Cc̃1L2 M2p−2
2

(
µ0 Rβ + ε + ε p−2)∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx. (67)

holds in each case. Finally for I2,3, we have

|I2,3| ≤ Cc1L2 M2p−3
2 µ0 Rβ

∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ Cc1L2 M2p−3
2 µ0 Rβ

∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx. (68)

Collecting (64), (67), (68) together gives our final estimate for |I2|:

|I2| ≤ Cc̃1L2 M3p
2

{
µ0 Rβ + ε + ε p−2}∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ Cc̃1L2 M3p
2

{
µ0 Rβ + ε + ε p−2}∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx, (69)

since L2 ≥ L and c̃1 ≥ c1.
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For the integral I3, we first note that AG ∈ C0,β(B+; R
N×n) and by (49) that

sup
x∈B+

x0,R

‖A(x)G(x) − A0G0‖ ≤ 2M2µ0 Rβ .

We begin with the estimate

|I3| ≤
∫

B+
x0,R

∥∥∥∥ ∂

∂F
g([F + A0]G0)

∥∥∥∥ ‖G0 − G‖‖∇w − ∇v‖ dx

+
∫

B+
x0,R

∥∥∥∥ ∂

∂F
g([F + A]G) − ∂

∂F
g([F + A0]G0)

∥∥∥∥ ‖G‖‖∇w − ∇v‖ dx

Recalling the bounds (41) and (42), we have

|I3| ≤ L2
(
1+2M4

2 +2M2
2 ‖F‖2) p−1

2 µ0 Rβ

∫

B+
x0,R

‖∇w−∇v‖ dx

+ L2 M2
(
1+4M4

2 +4M2
2 ‖F‖2) p−2

2 (2M2+‖F‖)µ0 Rβ

∫

B+
x0,R

‖∇w−∇v‖ dx

≤ 4L2 M2
2

(
1+4M4

2 +4M2
2 ‖F‖2) p−1

2 µ0 Rβ

∫

B+
x0,R

‖∇w−∇v‖ dx.

Applying Young’s inequality and Lemma 2, we obtain

|I3| ≤ 4M2
2 L2µ0 Rβ

(
1 + 4M4

2 + 4M2
2 ‖F‖2) p

2 |B+
x0,R |

+ C M2
2 L2µ0 Rβ

∫

B+
x0,R

‖V(∇w) − V(∇v)‖2 dx. (70)

We consider two cases to estimate the first term in (70).

Case 1 If ‖F‖ < M2, then

(
1 + 4M4

2 + 4M2
2 ‖F‖2) p

2 < C M2p
2 . (71)

Case 2 If M2 ≤ ‖F‖, then

(
1 + 4M4

2 + 4M2
2 ‖F‖2) p

2 ≤ C M p
2

(
1 + ‖F‖2) p

2 ≤ C M p
2

(
1 + ‖F‖2) p−2

2 ‖F‖2

= C M p
2 ‖V(F)‖2.

Since V(F) = (V(∇w))+x0,R , Jensen’s inequality implies that

(
1 + 4M4

2 + 4M2
2 ‖F‖2) p

2 ≤ C M p
2 −
∫

B+
x0,R

‖V(∇w)‖2 dx ≤ C M p
2 −
∫

B+
x0,R

(
1 + ‖∇w‖2) p

2 dx

≤ C M2p
2 −

∫

B+
x0,R

(
1 + ‖∇wG0‖2) p

2 dx.
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Recalling (U)ii, we obtain

(
1 + 4M4

2 + 4M2
2 ‖F‖2) p

2 ≤ C
M2p

2

�∗
−
∫

B+
x0,R

f (∇wG0) dx. (72)

Returning to (70), our estimates in (71) and (72) give us

|I3| ≤ C M2p+2
2 L2µ0 Rn+β + C

M p+2
2 L2

�∗
µ0 Rβ J+

x0,R[w] (73)

+ C M2
2 L2µ0 Rβ

∫

B+
x0,R

‖V(∇w) − V(∇v)‖2 dx.

We now turn to the last integral in (51). Plugging in the definition of ω(R) and using
Lemma 2, we get

|I4| ≤ ω0 Rn+β |B| + M p
2 ω0 Rβ

∫

B+
x0,R

(
1 + ‖∇wG0‖2) p

2 dx

+ Cc1ω0 Rβ

∫

B+
x0,R

‖V(∇w) − V(∇v)‖2 dx.

Property (H′)i implies

|I4| ≤ Cω0 Rn+β + M p
2

�∗
ω0 Rβ

∫

B+
x0,R

f (∇wG0) dx

+ Cc1ω0 Rβ

∫

B+
x0,R

‖V(∇w) − V(∇v)‖2 dx (74)

Putting into (51) our estimates for |I1|, . . . , |I4|, from (63), (69), (73), (74), we finally
obtain

∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

≤ C
c̃1 M3p

2 L2

�∗
{
µ0 Rβ + ω0 Rβ + ε + ε p−2}∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx

+ C
c̃1 M3p

2 L2

�∗
{
µ0 Rβ + ε + ε p−2}∫

B+
x0,R

‖V(∇w) − V(F)‖2 dx

+ C
M2p+2

2 L2

�∗
(µ0 + ω0)Rβ

{
Rn + 1

�∗
J+

x0,R[w]
}

,
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where C depends only on p. Define

Rα := min

⎧⎨
⎩1 − ‖x0‖,

(
α�∗

4Cc̃1 M3p
2 L2(1 + µ0 + ω0)

) 1
β

⎫⎬
⎭ .

Since, for each p > 2, the function ε �→ ε+ε p−2 is a strictly increasing function that equals
0 at 0, we may choose εα to be the unique positive solution to the equation

ε + ε p−2 = α�∗
4̃c1C M3p

2 L2

.

So defined, for each 0 < ε ≤ εα and 0 < R ≤ Rα , we have∫

B+
x0,R

‖V(∇v)−V(∇w)‖2dx

≤ α

∫

B+
x0,R

‖V(∇w)−V(F)‖2dx+C
M2p+2

2 L2

�∗
(µ0+ω0)Rβ

{
Rn + 1

�∗
J+

x0,R[w]
}
,

where we again point out that C depends only on p. ��
By exactly the same argument, we also have the following analogue of Lemma 9 for the

interior of a ball.

Lemma 10 Suppose that
{

fy
}

y∈B ⊂ C2(RN×n) which has a uniform p-Uhlenbeck structure.

Suppose also that
{
gy
}

y∈B ⊂ C3(RN×n) possesses the growth properties (G′) and is uni-

formly asymptotically related to
{

fy
}

y∈B ⊂ C2(RN×n) Let the mappings A ∈ C0,β(B; R
N×n)

and G ∈ C0,β(B; R
n×n), with a point-wise matrix inverse G−1 ∈ C0,β(B; R

n×n), be given.
For each 0 < α < 1, there exist Rα, εα > 0 with the following property: for every 0 < ε ≤ εα

and Bx0,R ⊂ B, with 0 < R ≤ Rα , if v ∈ W 1,p(Bx0,R; R
N ) is a minimizer for

Jx0,R[v] :=
∫

Bx0,R

fx0(∇v(x)G(x0)) dx

and w ∈ W 1,1(Bx0,R; R
N ) is a (Kx0,R, ω)-minimizer for

Kx0,R[w] :=
∫

Bx0,R

gx0([∇w(x) + A(x)]G(x)) dx,

satisfying [w − v] ∈ W 1,1
0 (Bx0,R; R

N ), then

‖Fx0,RG(x0)‖2 + λx0,R(Fx0,R)2 > Q2
ε + 1

ε2 sup
x∈B+

‖A(x)‖2 (75)

implies ∫

Bx0,R

‖V(∇v) − V(∇w)‖2 dx ≤ α

∫

Bx0,R

‖V(∇w) − V(F)‖2 dx

+ c8L2

�∗(x0)
Rβ

(
Rn + 1

�∗(x0)
Jx0,R[w]

)
, (76)
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with c8 depending only on A, G, G−1 and the structural constants for
{

fy
}

y∈B and
{
gy
}

y∈B .
In particular, the constant c8 is independent of α and R.

Here, the function λx0,r : R
N×n → R is the same as that defined in (47) and

Fx0,r := V−1((V(∇w))x0,r ). (77)

We now prove a theorem, which provides bounds up to the set D0,1 for the gradient
of a minimizer for an asymptotically convex functional satisfying homogeneous Dirichlet
boundary conditions on D0,1.

Theorem 9 Suppose that the family of functions
{
gy
}

y∈B+∪D0,1
⊂ C3(RN×n)possesses prop-

erty (G′) and is uniformly asymptotically related to the family of functions
{

fy
}

y∈B+∪D0,1
⊂

C2(RN×n) which has a uniform p-Uhlenbeck structure. Let A ∈ C0,β(B+; R
N×n) and

G ∈ C0,β(B+; R
n×n), with a point-wise matrix inverse G−1 ∈ C0,β(B+; R

n×n), be given.
For each y ∈ B+ ∪ D0,1, define the functional

K +
y [w] :=

∫

B+
gy([∇w(x) + A(x)]G(x)) dx

If w ∈ W 1,1(B+; R
N ) is a (K +

y , ω)-minimizer at each y ∈ B+ ∪ D0,1 satisfying w = 0 on

D0,1, in the sense of traces, then w ∈ W 1,∞
loc (B+ ∪ D0,1; R

N ).

Proof With Lemma 9 above, the proof is along the same lines as the one provided for
Theorem 3.1 in [23]. We define

�1 :=

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ B+

∣∣∣∣∣∣∣∣
lim inf
r→0+ −

∫

B+
x0,r

‖∇w − (∇w)x0,r ‖p > 0

⎫⎪⎪⎬
⎪⎪⎭

and

�2 :=
{

x0 ∈ B+
∣∣∣∣ sup

r>0
‖ (∇w)x0,r ‖ = +∞

}
.

Set �̃ := B+\ (�1 ∪ �2). For each x0 ∈ �̃, we have that

lim
r→0+ (∇w)x0,r = ∇w(x0)

and

‖∇w(x0)‖p ≤ ‖V(∇w(x0))‖2 = lim
r→0+ ‖V(Fx0,r )‖2,

where

Fx0,r := V−1((V(∇w))+x0,r ).

It is sufficient to show that there is an M < +∞ such that ‖∇w(x0)‖p ≤ M for every
x0 ∈ �̃.

Put Rx0 := 1 − ‖x0‖, and let x0 ∈ �̃ and 0 < R < Rx0 be given. Let the mapping
v ∈ W 1,p(B+

x0,R; R
N ) be the minimizer for

J+
x0,R[v] :=

∫

B+
x0,R

fx0(∇v(x)G0) dx
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satisfying [∇w − ∇v] ∈ W 1,p
0 (B+

x0,R; R
N ). For each 0 < ρ < R, we have

∫

B+
x0,ρ

‖V(∇w) − V(Fx0,ρ)‖2 dx

≤ 4
∫

B+
x0,ρ

‖V(∇w) − V(∇v)‖2 dx + 4
∫

B+
x0,ρ

‖V(∇v) − (V(∇v))+x0,ρ ‖2 dx

+ 4
∫

B+
x0,ρ

‖ (V(∇v))+x0,ρ − (V(∇w))+x0,ρ ‖2 dx.

We invoke Theorem 5 and Jensen’s inequality to get∫

B+
x0,ρ

‖V(∇w)−V(Fx0,ρ)‖2 dx ≤ 25c0

( ρ

R

)n+2σ0
∫

B+
x0,R

‖V(∇w)−V(Fx0,R)‖2dx

+ 25c0

∫

B+
x0,R

‖V(∇w)−V(∇v)‖2 dx, (78)

for every σ0 ∈ (0, 1).
Fix σ0 ∈ (0, 1), and let 0 < α < 1 be given. Lemma 9 provides Rα, εα > 0 with the

following property: If 0 < R ≤ Rα , then for every 0 < ε ≤ εα

‖Fx0,R‖2 + λ2
x0,R

(
1 + ‖Fx0,R‖2) p−2

2 > Q2
ε + 1

ε2 sup
x∈B+

‖A‖2 (79)

implies ∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx ≤ α

∫

B+
x0,R

‖V(∇w) − V(Fx0,R)‖2 dx

+c8L2

�∗
Rβ

(
Rn + �∗

�∗
J+

x0,R[w]
)

.

Since A ∈ L∞(B+; R
N×n), for each 0 < R ≤ Rα we get from Theorem 6, in particular

(40), that

J+
x0,R[w] ≤ �∗

⎡
⎢⎢⎣c5

(
1

Rx0

)n+2ν−β ∫

B+
x0,Rx0

H(∇wG0) dx + c6

⎤
⎥⎥⎦ Rn+2ν−β,

for each 0 ≤ ν < 1
2β. Hence, whenever (79) is satisfied, we have that

∫

B+
x0,R

‖V(∇v) − V(∇w)‖2 dx ≤ α

∫

B+
x0,R

‖V(∇w) − V(Fx0,R)‖2 dx

+ L2

�∗

(
c′

9 +
(

�∗

�∗

)2 c′
10

Rn−β
x0

)
Rn+2ν,
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with

c′
9 := (1 + c6)c8 and c′

10 := c5

∫

B+
fx0(∇wG0) dx.

Inserting this into (78) yields
∫

B+
x0,ρ

‖V(∇w) − V(Fx0,ρ)‖2 dx ≤ 25(1 + c0)

[( ρ

R

)n+2σ0+ α

]

×
∫

B+
x0,R

‖V(∇w) − V(Fx0,R)‖2 + 25L2c0

�∗

(
c′

9 +
(

�∗

�∗

)2 c′
10

Rn−β
x0

)
Rn+2ν . (80)

Fix ν and γ , so that 0 < 2ν < β < 2γ < 2σ0, and fix α =
(

1
26(1+c0)

) n+2σ0
2(σ0−γ )

, so εα>0 is also

fixed. Define

M2
εα

:= Q2
εα

+ 1

ε2
α

sup
x∈B+

‖A‖2

For each R ∈ (0, Rα], the inequality in(80) must hold whenever

‖Fx0,R‖2 + λ2
x0,R

(
1 + ‖Fx0,R‖2) p−2

2 > M2
εα

(81)

As in [23], we consider three cases.

Case 1 If there is a sequence
{

R j
}∞

j=1 ⊂(0, 1 − ‖x0‖) such that lim j→+∞ R j = 0 and

‖Fx0,R j ‖2 + λ2
x0,R j

(
1 + ‖Fx0,R j ‖2) p−2

2 ≤ M2
εα

,

then

‖∇w(x0)‖p ≤ lim
j→∞ ‖V(Fx0,R j )‖2 ≤ C lim

j→∞
(‖Fx0,R j ‖2 + ‖Fx0,R j ‖p)

≤ C
(
M2

εα
+ M p

εα

)
, (82)

with C depending only on p.

Case 2 There is an R̃ ∈ (0, Rα] such that for each R ∈ (0, R̃) the inequality in (81)
holds, but

‖Fx0,R̃‖2 + λ2
x0,R̃

(Fx0,R̃)2 ≤ M2
εα

. (83)

In this case, we may apply Lemma 1 to obtain

−
∫

B+
x0,ρ

‖V(∇w) − (V(∇w))+x0,ρ ‖2 dx

≤ 2

α

( ρ

R

)2γ −
∫

B+
x0,R

‖V(∇w) − (V(∇w))+x0,R ‖2 dx + c9ρ
2ν, (84)
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for each 0 < ρ ≤ R ≤ R̃. Here, we have put

c9 := 25L2c0

�∗

(
c′

9 +
(

�∗

�∗

)2 c′
10

Rn−β
x0

)(
1

α

) n+2ν
n+2σ0

[
1

α
n+2ν

n+2σ0 − α
n+2γ
n+2σ0

+ 1

]
.

Since the uniform p-Uhlenbeck structure for the family
{

fy
}

y∈B+∪D0,1
implies that L2

�∗ , �∗
�∗ ∈

L∞(B+; R), we conclude that c9 < +∞ at each x0 ∈ B+. Define
{
r j
}∞

j=1 ⊂ [0, R̃) by

r j := 2− j R̃, for each j = 1, 2, . . . From (84), we have

−
∫

B+
x0,r j

‖V(∇w) − (V(∇w))+x0,r j
‖2 dx

≤
(

2

α

)
2−2γ j−

∫

B+
x0,R̃

‖V(∇w) − (V(∇w))+x0,R0
‖2 dx + c92−2ν j R̃2ν .

Since x0 ∈ �̃, it follows that

‖V(∇w(x0))‖ ≤ C
∞∑
j=1

⎛
⎜⎜⎝ −

∫

B+
x0,r j

‖V(∇w)−(V(∇w))+x0,r j
‖2dx

⎞
⎟⎟⎠

1
2

+‖V(Fx0,R̃)‖

≤ C

α
1
2

⎛
⎜⎜⎝ −

∫

B+
x0,R̃

‖V(∇w)−(V(∇w))+
x0,R̃

‖2dx

⎞
⎟⎟⎠

1
2

∞∑
j=1

2−γ j

+ c
1
2
9 R̃ν

∞∑
j=1

2−ν j.

Using the definition of λx0,R̃(Fx0,R̃), which we will denote by λ, yields

‖V(∇w(x0))‖ ≤ C

α
1
2 (2γ − 1)

{
λp + λ2(1 + ‖Fx0,R̃‖2)

p−2
2

} 1
2

+ c
1
2
9 R̃

2ν − 1
+ ‖V(Fx0,R̃)‖

Now (83) implies

‖∇w(x0)‖p ≤ ‖V(∇w(x0))‖2 ≤ C

{
1

α(2γ − 1)2 + (
M p

εα
+ M2

εα

) + c9

}
, (85)

with C depending only on n and p.

123



Global regularity of almost minimizers 309

Case 3 For this case, the inequality in (81) holds for every R ∈ (0, Rα], so we may use (84)
for any ρ and R satisfying 0 < ρ ≤ R ≤ Rα , and arguing as we did in Case 2, we arrive at

‖V(∇w(x0))‖ ≤ C

α
1
2

⎛
⎜⎜⎝ −

∫

B+
x0,Rα

‖V(∇w) − (V(∇w))+x0,Rα
‖2 dx

⎞
⎟⎟⎠

1
2

∞∑
j=1

2−γ j

+ c
1
2
9 Rν

α

∞∑
j=1

2−ν j + ‖V(Fx0,Rα )‖

≤ C

α
1
2 R

n
2
α (2γ − 1)

‖V(∇w)‖L2(B+
x0,Rα

) + c
1
2
9

2ν − 1
.

Hence, by Lemma 7,

‖∇w(x0)‖p ≤ C

{
1

αRα(2γ − 1)2 + 1

�∗
(
K +[w] + c4

) + c9

}
(86)

In each case, we have ‖∇w(x0)‖p ≤ M , where M depends only on K +[w], the struc-
tural constants for { fy}y∈B+∪D0,1 and {gy}y∈B+∪D0,1 , the mappings A, G, and G−1 and
dist(x0, ∂B). In particular, the bound is independent of dist(x0, D0,1). It follows that w ∈
W 1,∞

loc (B+ ∪ D0,1; R
N ). ��

Using Lemma 10 and essentially the same argument provided for Theorem 9, we obtain

Theorem 10 Suppose that the family
{
gy
}

y∈B ⊂ C3(RN×n) possesses property (G′) and is

uniformly asymptotically related to
{

fy
}

y∈B ⊂ C2(RN×n), which has a uniform p-Uhlenbeck

structure. Let A ∈ C0,β(B; R
N×n) and G∈C0,β(B; R

n×n), with a point-wise matrix inverse
G−1∈C0,β(B; R

n×n), be given. For each y ∈ B, define the functional

Ky[w] :=
∫

B
gy([∇w(x) + A(x)]G(x)) dx.

If w ∈ W 1,1(B; R
N ) is a (Ky, ω)-minimizer at each y ∈ B, then w ∈ W 1,∞

loc (B; R
N ).

With Theorems 9 and 10 available, the main result for this section may be proved in the
same manner as Theorem 8.

Theorem 11 Suppose that � ⊂ R
n and that � is a C1,β portion of ∂�. Suppose also that{

gy
}

y∈�∪�
⊂ C3(RN×n) possesses the growth properties in (G′) and is uniformly asymp-

totically related to
{

fy
}

y∈�∪�
⊂ C2(RN×n), which has a uniform p-Uhlenbeck structure.

Let A ∈ C0,β
loc (� ∪ �; R

N×n) and G ∈ C0,β
loc (� ∪ �; R

n×n), with a point-wise matrix inverse

G−1 ∈ C0,β
loc (� ∪ �; R

n×n), be given. For each y ∈ � ∪ �, define the functional

Ky :=
∫

�

gy([∇w(x) + A(x)]G(x)) dx

If w ∈ W 1,1(�; R
N ) satisfies w = 0 on �, in the sense of traces, and w is a (Ky, ω)-minimizer

at each y ∈ � ∪ �, then w ∈ W 1,∞
loc (� ∪ �; R

N ).

123



310 M. Foss

We conclude this section with the following

Corollary 2 Suppose that � ⊂ R
n has a C1,β boundary, for some 0 < β ≤ 1. Let u ∈

C1,β(�; R
N ) be given. If u ∈ W 1,1(�; R

N ) is a (K , ω)-minimizer for the functional

K [u] :=
∫

�

g(∇u(x)) dx,

satisfying [u − u] ∈ W 1,1
0 (�; R

N ), then u ∈ W 1,∞(�; R
N ).

8 Global regularity for nonhomogeneous functionals

In this section, we apply the results from the previous sections to some variational problems
with integrands that are nonhomogeneous. The basic idea is to show that a minimizer for such
problems is a (K , ω, {νε})-minimizer with a suitable choice of ω and family {νε}. We will
not state the most general possible applications. In particular, we will only state the results
for almost minimizers with full Dirichlet conditions.

Fix 0 ≤ κ < n and 0 < β ≤ 1. Recall the Sobolev conjugate exponent defined by

p∗ :=
{ np

n−p , 1 ≤ p < n;
+∞, p = n.

For our first application, we shall prove global Morrey regularity for almost minimizers
for functionals with integrands of the form g(x, F). With an aim to establish regularity for
minimizers of functionals that depend on the mapping itself, as a well as its gradient, we
allow g to possess some discontinuous behavior with respect to the x argument.

Theorem 12 Let � ⊂ R
n, with a C1,0 boundary, and u ∈ W 1,(p,κ)(�; R

N ) be given. Let
ζ ∈ L q,κ (�), for some q ≥ 1, be given. Suppose that δ, η ∈ C0([0,∞)) are non-decreasing
functions satisfying δ(0) = η(0) = 0 and g : � × R

N×n → R possesses the following
properties

(i) for each x ∈ �, we have g(x, ·) ∈ C2(RN×n), and there exists a function b ∈ L p,κ (�)

such that

b(x) ≥ |g(x, 0)| 1
p +

∥∥∥∥ ∂

∂F
g(x, 0)

∥∥∥∥
1

p−1

,

for all x ∈ �;
(ii) there is a family { fx}x∈� ⊂ C2(RN×n) with a uniform p-Uhlenbeck structure such that

for each ε > 0, there exists a σε ∈ L p,κ (�) such that for every x ∈ �

∥∥∥∥ ∂2

∂F2 g(x, F) − ∂2

∂F2 fx(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2

whenever ‖F‖ > σε(x); and there is an a ∈ L p,κ (�) satisfying

a(x) ≥ 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 g(x, F)

∥∥∥∥
1

p−2

: ‖F‖ ≤ σ�∗(x)(x)

⎫⎬
⎭ ,

for all x ∈ �;
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(iii) for each x, y ∈ �, we have

|g(x, F) − g(y, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2 + |ζ(x)|q + |ζ(y)|q

+ (|ζ(x)| + |ζ(y)|) (1 + ‖F‖2) p(q−1)
2q ,

for every F ∈ R
N×n.

If there are {γε}ε>0 ⊂ L1,κ and {Tε}ε>0 ⊆ [0,∞) such that u ∈ W 1,1(�; R
N ) is a

(K , η, {γε, Tε})-minimizer for the functional

K [u] :=
∫

�

g(x,∇u(x)) dx

satisfying [u − u] ∈ W 1,1
0 (�; R

N ), then ∇u ∈ L p,κ (�; R
N×n). In addition, we find that

u ∈ L p,p+κ (�; R
N ).

Proof We only need to show that u is an almost minimizer for a family of functionals with
integrands satisfying the hypotheses of Theorem 8. For each y ∈ �, define the function
gy ∈ C2(RN×n) by

gy(F) := g(y, F),

and define the functional Ky : W 1,1(�; R
N ) → R by

Ky[u] :=
∫

�

gy(∇u(x)) dx.

Clearly the family
{
gy
}

y∈�
is L p,κ -asymptotically related to the family

{
fy
}

y∈�
and satisfies

the growth conditions (G) in Sect. 6.
We now show that there is a family {νε}ε>0 ⊂ L p,κ (�) such that u is a (Ky, ω, {νε, Tε})-

minimizer at each y ∈ � for an appropriate ω. To this end, let ϕ ∈ W 1,1
0 (�y,ρ; R

N ) and
ε > 0 be given. Since u is a (K , η, {γε, Tε})-minimizer, for some t > 1 we have

Ky[u] ≤ Ky[u+ϕ] + K [u+ϕ] − K [u] + Ky[u] − Ky[u+ϕ]
+ {η(ρ) + ε}

∫

supp(ϕ)

(
1+‖∇ϕ‖p+‖∇u‖p) dx

+ Tε

⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

t

+
∫

supp(ϕ)

|γε| dx + ρn |γε(y)|

≤ Ky[u+ϕ] +
∫

supp(ϕ)

|g(x,∇u+∇ϕ)−g(y,∇u+∇ϕ)| dx

+
∫

supp(ϕ)

|g(x,∇u)−g(y,∇u)| dx+{η(ρ)+ε}
∫

supp(ϕ)

(
1+‖∇ϕ‖p +‖∇u‖p) dx

+ Tε

⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

t

+
∫

supp(ϕ)

|γε| dx + ρn |γε(y)|.
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Using the regularity of g with respect to its first argument in property (iii), we may write

Ky[u] ≤ Ky[u + ϕ] + C {η(ρ) + δ(ρ) + ε}
∫

supp(ϕ)

(
1 + ‖∇ϕ‖p + ‖∇u‖p) dx

+ C
∫

supp(ϕ)

(|ζ(x)| + |ζ(y)|) (1 + ‖∇ϕ‖2 + ‖∇u‖2) p(q−r)
2q dx

+ C
∫

supp(ϕ)

(|ζ(x)|q + |ζ(y)|q) dx + Tε

⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

t

+
∫

supp(ϕ)

|γε| dx + ρn |γε(y)|.

Next, we apply Young’s inequality to conclude that for each ε > 0

Ky[u] ≤ Ky[u + ϕ] + {C(n(ρ) + δ(ρ)) + 2ε}
∫

supp(ϕ)

(
1 + ‖∇ϕ‖p + ‖∇u‖p) dx

+ Tε

⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

t

+ C

(
1

εq−1 + 1

)∫

supp(ϕ)

(|ζ(x)|q + |ζ(y)|q) dx

+
∫

supp(ϕ)

|γε| dx + ρn |γε(y)|

≤ Ky[u + ϕ] + {ω(ρ) + 2ε}
∫

supp(ϕ)

(
1 + ‖∇ϕ‖p + ‖∇u‖p) dx

+ Tε

⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

t

+
∫

supp(ϕ)

|νε(x)|dx + ρn |νε(y)|,

with ω(ρ) := C {η(ρ) + δ(ρ)} for each ρ ≥ 0 and νε := C
(

1
εq−1 + 1

)
|ζ |q + |γε|. The

constant C depends only on p and q . The continuity of ω follows from the hypotheses
on δ and η. We also see that {νε}ε>0 ⊂ L1,κ (�). We deduce from Theorem 8 that ∇u ∈
L p,κ (�; R

N×n) and u ∈ L p,p+κ (�; R
N ). ��

It is worth noting that if p + κ is large enough, then we obtain uniform continuity of the
almost minimizer u.

Corollary 3 Suppose that all of the hypotheses of Theorem 12 are satisfied with p + κ > n.

Then u ∈ C0,1− n−κ
p (�; R

N ).

Example 3 Let

(a) y ∈ C0(�; (0,∞));
(b) z ∈ Lq,κ (�; R), for some q ≥ 1
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be given. The function g : � × R
N×n → R defined by

g(x, F) := y(x)‖F‖p + z(x)
(
1 + ‖F‖2) p(q−1)

2q

satisfies the hypotheses of Theorem 12. Indeed, hypotheses (i) and (iii) are easily verified.

For hypothesis (ii), we may use σε(x) := 1 + C
∣∣∣ z(x)

ε

∣∣∣
q
p
, for each ε > 0, and a(x) :=

1 + C

(
1

y(x)
1

p−2
+ y(x)

1
p−2

) ∣∣∣ z(x)
y(x)

∣∣∣
q
p
, where C is a constant that depends only on p and q .

Thus, if u ∈ W 1,(p,κ)(�; R
N ) and u ∈ W 1,p(�; R

N×n) is a minimizer for the functional

u �→
∫

�

{
y(x)‖∇u(x)‖p + z(x)

(
1 + ‖∇u(x)‖2) p(q−1)

2q

}
dx

satisfying [u − u] ∈ W 1,1
0 (�; R

N ), then we may use Theorem 12 to conclude that ∇u ∈
L p,κ (�; R

N×n).

Under stronger hypotheses, we get the Lipschitz continuity of an almost minimizer u. The
proof of the following Theorem is the same as that given for Theorem 12, except that we
invoke Thereom 11 instead of Theorem 8.

Theorem 13 Let � ⊂ R
n, with a C1,β boundary, and u ∈ C1,β(�; R

N ) be given. Suppose
that the functions δ, η ∈ C0,β([0,∞)) are non-decreasing and satisfy δ(0) = η(0) = 0.
Suppose also that g : � × R

N×n → R possesses the following properties

(i) for each x ∈ �, we have g(x, ·) ∈ C3(RN×n) and there exist a, b, L < +∞ such that∥∥∥∥ ∂3

∂F3 g(x, F)

∥∥∥∥ ≤ L
(
a + ‖F‖2) p−3

2

and

b ≥ |g(x, 0)| +
∥∥∥∥ ∂

∂F
g(x, 0)

∥∥∥∥ +
∥∥∥∥ ∂2

∂F2 g(x, 0)

∥∥∥∥
for every x ∈ � and F ∈ R

N×n;
(ii) there is a family { fx}x∈� ⊂ C2(RN×n) with a uniform p-Uhlenbeck structure such

that for each ε > 0, there exists a σε < +∞ such that for every x ∈ �∥∥∥∥ ∂2

∂F2 g(x, F) − ∂2

∂F2 fx(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2

whenever ‖F‖ > σε;
(iii) for each x, y ∈ �, we have

|g(x, F) − g(y, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2 ,

for every F ∈ R
N×n.

If u ∈ W 1,1(�; R
N ) is a (K , η)-minimizer for the functional

K [u] :=
∫

�

g(x,∇u(x)) dx

satisfying [u − u] ∈ W 1,1
0 (�; R

N ), then u ∈ W 1,∞(�; R
N ).
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We next apply our results to the case where the functionals depend on the mapping itself.

Theorem 14 Suppose that p ≤ n and � ⊂ R
n has a C1,0 boundary, and let the mapping

u ∈ W 1,(p,κ)(�; R
N ) be given. Let δ, η ∈ C0([0,∞)) be non-decreasing functions satisfying

δ(0) = η(0) = 0. Let 0 ≤ s < p∗ be given. Suppose that the function g : �×R
N ×R

N×n →
R possesses the following properties:

(i) for each x ∈ � and u ∈ R
N , we have g(x, u, ·) ∈ C2(RN×n), and there exists a

function b ∈ L p,κ (�) and a number B < +∞ such that

B‖u‖ s
p + b(x) ≥ |g(x, u, 0)| 1

p +
∥∥∥∥ ∂

∂F
g(x, u, 0)

∥∥∥∥
1

p−1

,

for all x ∈ � and u ∈ R
N ;

(ii) there is a family { fx}x∈� ⊂ C2(RN×n) with a uniform p-Uhlenbeck structure such
that for each ε > 0, there exists a σε ∈ L p,κ (�) and a �ε < +∞ such that for every
x ∈ � ∥∥∥∥ ∂2

∂F2 g(x, u, F) − ∂2

∂F2 fx(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2

whenever ‖F‖ > �ε‖u‖ s
p +σε(x); and that there is an a ∈ L p,κ (�) and an A < +∞

satisfying

A‖u‖ s
p + a(x)

≥ 1 + max

⎧⎨
⎩
∥∥∥∥ ∂2

∂F2 g(x, u, F)

∥∥∥∥
1

p−2

∣∣∣∣∣∣ ‖F‖ ≤ ��∗(x)‖u‖ s
p +σ�∗(x)(x)

⎫⎬
⎭ ,

for all x ∈ � and u ∈ R
N ;

(iii) there is an r ∈ (0, s) and an M < +∞ such that for each x, y ∈ � and each u, v ∈ R
N ,

we have

|g(x, u, F) − g(y, v, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2 + M

(‖u‖s + ‖v‖s)

+ M
(
1 + ‖u‖r + ‖v‖r ) (1 + ‖F‖2) p(s−r)

2s ,

for every F ∈ R
N×n.

If u ∈ W 1,p(�; R
N ) is a (K , η)-minimizer for the functional

K [u] :=
∫

�

g(x, u(x),∇u(x)) dx

satisfying [u − u] ∈ W 1,p
0 (�; R

N ), then we find that ∇u ∈ L p,κ (�; R
N×n) and that u ∈

L p,p+κ (�; R
N ).

Proof By applying Young’s inequality in property (iii), without loss of generality we may as-

sume that s > p. First, we show that we may apply Theorem 12. Put γ1 := n
(

1 − s
p∗
)

. Since

s < p∗, we see thatγ1 > 0. Since by hypothesis u ∈ W 1,p(�; R
N ), Sobolev’s imbedding the-

orem implies u∈ L p∗
(�; R

N ). Therefore ‖u‖s ∈ L1,γ1(�) and
[
A‖u‖ s

p +a
]
,
[
B‖u‖ s

p +b
]
∈

L p,γ1(�). For each y ∈ �, define g̃ : � × R
N×n → R by

g̃(y, F) := g(y, u(y), F)
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and the functional K̃ : W 1,1(�; R
N ) → R by

K̃ [w] :=
∫

�

g̃(x,∇w(x)) dx.

Let ϕ ∈ W 1,1
0 (�y,ρ; R

N ) and ε > 0 be given. Since the inequality in Definition 1 is trivial

if ∇ϕ /∈ L p(�y,ρ; R
N×n), we assume that ϕ ∈ W 1,p

0 (�y,ρ; R
N ). We have

K̃ [u] ≤ K̃ [u + ϕ] + K [u + ϕ] − K [u] + K̃ [u] − K̃ [u + ϕ]
+ η(ρ)

∫

supp(ϕ)

(
1+‖∇ϕ‖p +‖∇u‖p) dx

≤ K̃ [u + ϕ] +
∫

supp(ϕ)

|g(x, u(x),∇u(x)) − g(y, u(y),∇u(x))| dx

+
∫

supp(ϕ)

|g(x, u(x) + ϕ(x),∇u(x) + ∇ϕ(x)) − g(y, u(y),∇u(x) + ∇ϕ(x))| dx

+ η(ρ)

∫

supp(ϕ)

(
1+‖∇ϕ‖p +‖∇u‖p) dx.

Using property (iii) and Young’s inequality, we continue with

K̃ [u] ≤ K̃ [u + ϕ] + C(M + 1) {δ(ρ) + η(ρ) + ε}
∫

supp(ϕ)

(
1 + ‖∇ϕ‖p + ‖∇u‖p) dx

+ C(M + 1)

(
1 + 1

ε
s−r

r

)∫

supp(ϕ)

(‖u‖s + ‖ϕ‖s) dx + C(M + 1)ρn‖u(y)‖s .

Now Sobolev’s inequality implies that

K̃ [u] ≤ K̃ [u + ϕ] + C(M + 1) {δ(ρ) + η(ρ) + ε}
∫

supp(ϕ)

(
1 + ‖∇ϕ‖p + ‖∇u‖p) dx

+ C(M + 1)

(
1 + 1

ε
s−r

r

)⎛
⎜⎝

∫

supp(ϕ)

‖∇ϕ‖p dx

⎞
⎟⎠

s
p

+ C(M + 1)

(
1 + 1

ε
s−r

r

)⎛
⎜⎝

∫

supp(ϕ)

‖u‖s dx + ρn‖u(y)‖s

⎞
⎟⎠ .

Hence u is a (K̃ , ω, {νε, Tε})-minimizer with ω(ρ) = C(M + 1) {δ(ρ) + η(ρ)}, νε =
C(M + 1)

(
1 + 1

ε
s−r

r

)
‖u‖s , Tε = C(M + 1)

(
1 + 1

ε
s−r

r

)
and t = s

p > 1. Moreover,

by putting ζ := M(1 + ‖u‖r ), we see that ζ ∈ L
s
r ,γ1 and

|̃g(x, F) − g̃(y, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2 + ζ(x)

s
r + ζ(y)

s
r

+ (ζ(x) + ζ(y))
(
1 + ‖F‖2) p( s

r −1)
s
r
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If γ1 ≥ κ , then for each ε > 0, we find that �ε‖u‖ s
p + σε ∈ L p,κ (�) and that νε ∈ L1,κ ,

so Theorem 12 tells us that ∇u ∈ L p,κ (�; R
N×n). Thus Poincaré’s inequality implies that

u ∈ L p,p+κ (�; R
N ), and the Theorem is proved.

If, on the other hand, we find that γ1 < κ , then �ε‖u‖ s
p +σε ∈ L p,γ1(�) and νε ∈ L1,γ1 ,

and by Theorem 12, we deduce that ∇u ∈ L p,γ1(�; R
N×n), while Poincaré’s inequality

implies that u ∈ L p∗,γ1(�; R
N ). Since γ1 < n and � has no external cusps, there is

an isomorphism between L p∗,γ1(�; R
N ) and L p∗,γ1(�; R

N ) (see [13] or [16]) that we

may use to argue that u ∈ L p∗,γ1(�; R
N ). Putting γ2 := γ1

(
1 + s

p∗
)

, it follows that

‖u‖s ∈ L1,γ2(�) and
[

A‖u‖ s
p + a

]
,
[

B‖u‖ s
p + b

]
∈ L p,γ2(�; R). Another application

of Theorem 12, now implies ∇u ∈ L p,γ2(�; R
N×n). We may repeat this argument. Each

repetition shows that ∇u ∈ L p,γ j (�; R
N×n), where γ j := n

(
1 −

(
s
p∗
) j
)

, so long as

γ j < κ . Once γ j ≥ κ , a final application of Theorem 12 tells us that ∇u ∈ L p,κ (�; R
N×n),

and u ∈ L p,p+κ (�; R
N×n) follows from Poincaré’s inequality. ��

We again point out that if p + κ > n, then we obtain uniform continuity of the almost
minimizer u.

Corollary 4 Suppose that all of the hypotheses of Theorem 14 are satisfied with p + κ > n.

Then u ∈ C0,1− n−κ
p (�; R

N ).

Example 4 Suppose that p ≤ n and let

(i) y ∈ C0(�; (0,∞));
(ii) z : � × R

N → R satisfying, for some L < +∞ and 0 < r < p∗ p−2
p ,

|z(x, u)| ≤ L
(
1 + ‖u‖r ) ,

for all x ∈ � and u ∈ R
N

be given. Notice that we require no continuity for the function z. We claim that the function
g : � × R

N × R
N×n → R given by

g(x, u, F) := y(x)‖F‖p + z(x, u)
(
1 + ‖F‖2) p(p∗−r)

2(p∗+r)

satisfies the hypotheses of Theorem 14, with s = p∗+r
2 . Clearly, we have

|z(x, u)| 1
p ≥ |g(x, u, 0)| 1

p +
∥∥∥∥ ∂

∂F
g(x, u, 0)

∥∥∥∥
1

p−1

,

so hypothesis (i) is satisfied. For hypothesis (ii), we may use σε(x) := C

ε
p∗+r
2pr

, for all x ∈ �,

and �ε := C

ε
p∗+r
2pr

, and a(x) and A may also be taken to be constants that depend only on

supx∈�

{
1

y(x)
+ y(x)

}
, r and p. Thus, if u ∈ W 1,(p,κ)(�; R

N ) and u ∈ W 1,p(�; R
N×n) is

a minimizer for the functional

u �→
∫

�

{
y(x)‖∇u(x)‖p + z(x, u(x))

(
1 + ‖∇u(x)‖2) p(p∗−r)

2(p∗+r)

}
dx

that satisfies [u − u] ∈ W 1,p
0 (�; R

N ), then we may apply Theorem 14 and conclude that

u∈L p,p+κ (�; R
N×n). In particular, if κ > n − p, then u∈C0,1− n−κ

p (�; R
N ).
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Again, under some stronger hypotheses, we can obtain Lipschitz regularity of almost
minimizers. More precisely, we have the following

Theorem 15 Let � ⊂ R
n, with a C1,β boundary, and u ∈ C1,β(�; R

N ) be given. Suppose
that the functions δ, η ∈ C0,β([0,∞)) are non-decreasing and satisfy δ(0) = η(0) = 0. Let
0 ≤ s < p∗ be given. Suppose that g : � × R

N × R
N×n → R possesses the following

properties:

(i) for each x ∈ � and u ∈ R
N , we have g(x, u, ·) ∈ C3(RN×n), and there exist a, L ∈

L∞
loc(R

N ) and b < +∞ such that
∥∥∥∥ ∂3

∂F3 g(x, u, F)

∥∥∥∥ ≤ L(u)
(
a(u) + ‖F‖2) p−3

2

and

b
(

1 + ‖u‖ s
p

)
≥ |g(x, u, 0)| 1

p +
∥∥∥∥ ∂

∂F
g(x, u, 0)

∥∥∥∥
1

p−1 +
∥∥∥∥ ∂2

∂F2 g(x, u, 0)

∥∥∥∥
for every x ∈ �, u ∈ R

N and F ∈ R
N×n;

(ii) there is a family { fx}x∈� ⊂ C2(RN×n) with a uniform p-Uhlenbeck structure such

that for each ε > 0, there exist σε,< +∞ such that for every x ∈ �

∥∥∥∥ ∂2

∂F2 g(x, u, F) − ∂2

∂F2 fx(F)

∥∥∥∥ <
1

2
p
2
ε‖F‖p−2

whenever ‖F‖ > σε

(
1 + ‖u‖ s

p

)
;

(iii) there is an r ∈ (0, s − β) such that for each x, y ∈ � and u, v ∈ R
N , we have

|g(x, u, F) − g(y, v, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2

+δ(‖u − v‖) (1 + ‖u‖r + ‖v‖r ) (1 + ‖F‖2) p(s−r)
2s ,

for every F ∈ R
N×n.

If u ∈ W 1,p(�; R
N ) is a (K , η)-minimizer for the functional

K [u] :=
∫

�

g(x, u(x),∇u(x)) dx

satisfying [u − u] ∈ W 1,p
0 (�; R

N ), then u ∈ W 1,∞(�; R
N ).

Proof First, we use Corollary 4, with κ = n, to see that u ∈ C0,α(�; R
N ) for every 0<α<1.

Thus, Theorem 13 can be applied to complete the proof.

9 Application to an open problem

We now apply Theorem 12 to obtain a partial resolution to the open problem discussed
in [21, Sect. 4.3]. We establish a continuity result for minimizers of convex functionals
with integrands of the form g(x, F) that have a radial structure at infinity and a continuous
dependence on x.
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Definition 12 Given a measurable set U ⊂ R
n , we will say that a family of functions{

gy
}

y∈U ⊂ C2(RN×n) is uniformly asymptotically radial if and only if there exists a family{
f̃y
}

y∈U ∈ C2([0,∞)) with the following property: for each ε > 0 there exists a τε < +∞
such that for every y ∈ U , we have∥∥∥∥ ∂2

∂F2 gy(F) − ∂2

∂F2 f̃y(‖F‖2)

∥∥∥∥ < ε‖F‖p−2, (87)

whenever ‖F‖ > τε .

We will use the following

Lemma 11 Let U ⊂ R
n be a measurable set. Suppose that the family of functions

{
gy
} ⊂

C2(RN×n) is uniformly asymptotically radial and possesses the following property: there
exist �∗ > 0 and �∗ < +∞ such that for each y ∈ U

�∗‖F‖p−2‖ξ‖2 ≤ ∂2

∂F2 gy(F) :: ξ ⊗ ξ ≤ �∗ (1 + ‖F‖2) p−2
2 ‖ξ‖2,

for every F, ξ ∈ R
N×n. Then there is a family

{
hy
}

y∈U ⊂ C2(RN×n) with a uniform p-

Uhlenbeck structure that is also uniformly asymptotically related to
{
gy
}

y∈U .

Proof Put R∗ = 1 + τ�∗
2

. First, since {gy} is uniformly asymptotically radial, we deduce

from hypothesis (ii) that there is a
{

f̃
}

y∈U ⊂ C2(RN×n) such that ‖F‖ ≥ R∗ implies

�∗
2

p
2

(
1 + ‖F‖2) p−2

2 ‖ξ‖2 ≤ ∂2

∂F2 f̃y(‖F‖2) :: ξ ⊗ ξ ≤ 3�∗

2

(
1 + ‖F‖2) p−2

2 ‖ξ‖2, (88)

for every y ∈ U and ξ ∈ R
N×n . Since (87) continues to hold if to each f̃y we add a linear

function, without loss of generality, we may assume f̃y(0) = f̃ ′
y(0) = 0 for all y ∈ U . It is

straightforward to verify that there is a constant C > 0, depending only on n, N and p, such
that for every y ∈ U and ‖F‖ ≥ R∗ the following hold:∥∥∥∥ ∂2

∂F2 f̃y(‖F‖2)

∥∥∥∥ ≤ C�∗ (1 + ‖F‖2) p−2
2 ;

∥∥∥∥ ∂

∂F
f̃y(‖F‖2)

∥∥∥∥ ≤ C�∗ (1 + ‖F‖2) p−2
2 ‖F‖;

and
�∗
C

(
1 + ‖F‖2) p

2 ≤ f̃y(‖F‖2) ≤ C�∗ (1 + ‖F‖2) p
2 . (89)

Thus for each y ∈ U , we see that F �→ f̃y(‖F‖2) has a p-Uhlenbeck structure outside the
ball BR∗ ⊂ R

N×n . We proceed to extend this function to all of R
N×n while preserving the

p-Uhlenbeck structure.
We make a couple of preliminary observations based on (88). Since

∂2

∂F2 f̃y(‖F‖2) :: ξ ⊗ ξ = 4 f̃ ′′
y (‖F‖2)(F : ξ)2 + 2 f̃ ′

y(‖F‖2)‖ξ‖2,

by selecting F, ξ ∈ R
N×n so that ‖F‖ = R∗, ξ �= 0 and ξ : F = 0, we deduce that

0 <
�∗

2
p+2

2

(
1 + R2∗

) p−2
2 ≤ f̃ ′

y(R2∗) ≤ 3�∗

2

(
1 + R2∗

) p−2
2 . (90)
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Next, using F ∈ R
N×n satisfying ‖F‖ = R∗ and ξ = F in (88), we also find that

�∗
(
1 + R2∗

) p−2
2

2
p+2

2 fy(R2∗)
≤ 2

f̃ ′′
y (R2∗)R2∗
f̃ ′
y(R2∗)

+ 1 ≤ 3�∗ (1 + R2∗
) p−2

2

4 fy(R2∗)

⇒ 1

6
· 1

2
p
2

· �∗
�∗ − 1

2
≤ f̃ ′′

y (R2∗)R2∗
f̃ ′
y(R2∗)

≤ 3

2
· 1

2
p
2

· �∗

�∗
− 1

2
. (91)

We now define an appropriate extension of each f̃y. Choose µ > 0 so that
(

µ + R2∗
R2∗

)(
1

6
· 1

2
p
2

· �∗
�∗ − 1

2

)
>

1

2
. (92)

For each y ∈ U , define

αy := f̃ ′′
y (R2∗)

(
µ + R2∗

)
f̃ ′
y(R2∗)

and βy := f̃ ′
y(R2∗)

(
µ + R2∗

)(1−αy)

(1 + αy)
− f̃y(R2∗).

Notice that (89), (90), (91) and (92) imply that {αy}y∈U is contained in a compact subset of
(− 1

2 ,+∞) and that βy is uniformly bounded in U . Define the function hy : [0,+∞) →
[0,+∞) by

hy(t) :=

⎧⎪⎪⎨
⎪⎪⎩

f̃ ′
y(R2∗)(

1 + αy
) (

µ + R2∗
)αy

(µ + t)(1+αy) , t < R2∗

βy + f̃y(t), t ≥ R2∗.

The family
{
F �→ hy(‖F‖2)

}
y∈U has a uniform p-Uhlenbeck structure. That this family is

uniformly asymptotically related to the family
{
gy
}

y∈U clearly follows from the hypothesis

on
{

f̃y
}

y∈U . ��
With Lemma 11 and Theorem 12, we obtain

Theorem 16 Let � ⊂ R
n, with a C1,0 boundary, and u ∈ W 1,(p,κ)(�; R

N ), for some κ ≥ 0
satisfying p + κ > n, be given. Suppose that g : � × R

N×n → R possesses the following
properties:

(i) for each x ∈ � and each F ∈ R
N×n, we have that g(x, ·) ∈ C2(RN×n) and g(·, F) ∈

C(�);
(ii) there is a δ ∈ C([0,+∞)) that is non-decreasing and satisfies δ(0) = 0 such that for

each x, y ∈ �, we have

|g(x, F) − g(y, F)| ≤ δ(‖x − y‖) (1 + ‖F‖2) p
2 ,

for every F ∈ R
N×n;

(iii) there exist �∗ > 0 and �∗ < +∞ such that for each x ∈ �, we have

�∗‖F‖p−2‖ξ‖2 ≤ ∂2

∂F2 g(x, F) :: ξ ⊗ ξ ≤ �∗ (1 + ‖F‖2) p−2
2 ‖ξ‖2,

for every F, ξ ∈ R
N×n;

(iv) the family {g(x, ·)}x∈� is uniformly asymptotically radial.
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If u ∈ W 1,1(�; R
N ) is a (K , 0)-minimizer for the functional

K [u] :=
∫

�

g(x,∇u(x)) dx

satisfying [u − u] ∈ W 1,1
0 (�; R

N ), then u ∈ C0,1− n−κ
p (�; R

N ) ∩ C0,β(�; R
N ), for each

β ∈ (0, 1).

Under the theorem’s hypotheses, we actually find ∇u ∈ L p,κ (�; R
N×n). We conclude

by mentioning that there is a local version of this theorem for local minimizers of the
functional K .
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