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Abstract. We prove existence and uniqueness of renormalized solutions of some transport
equations with a vector field that is not W1,1 with respect to all variables but is of a particular
form. Two specific applications of this new result are then treated, based upon the equivalence
between transport equations and ordinary differential equations. The first one consists of
a result about the dependance upon initial conditions for solutions of ODEs. The second
one is related to some stochastic differential equations arising in the modelling of polymeric
fluid flows.

1. Introduction and motivation

Our purpose in this article is to show some slight extension, together with some
new applications, of the theory of renormalized solutions of the linear transport
equations introduced by Di Perna and the second author in [1,2]. This extension
aims to consider cases when some coordinates bi of the vector field b appearing in
the transport equation,

∂u

∂t
+ b · ∇u = 0 in (0,∞) × RN , (1.1)

are not W1,1 with respect to some space variables x j . In that case, the Di Perna–
Lions theory does not apply straightforwardly. For our result to apply, such coordi-
nates bi should of course not be of any form, but have to be of some specific form,
that we shall make precise below. Typically, we have in mind the situations when

b (x1, x2) = (b1(x1), b2(x1, x2)) with b1 ∈ W1,1
x1

, and b2 ∈ L1
x1

(
W1,1

x2

)
, (1.2)

together with more technical assumptions that will be detailed when needed. But
before turning to the heart of the matter, let us say a word on the applications that
require such results.

Our motivation stems from two specific applications that we want to briefly
describe now.
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The first application aims at raising the state of the art of the theory of solutions
of ordinary differential equations with coefficients in Sobolev spaces to the level of
that of the Cauchy–Lipschitz theory for those with regular coefficients. We consider
the ordinary differential equation

Ẏ (t, y) = c (t, Y(t, y)), (1.3)

complemented with the initial condition Y(0, y) = y. For simplicity in this intro-
ductory section, the space variable y is assumed to be one-dimensional. It is well
known in the Cauchy–Lipschitz theory that, once the existence and uniqueness of
a solution of (1.3) are proved, which essentially requires the Lipschitz regularity
(with respect to y) of the field c(t, y) appearing in (1.3), then, under the additional
assumption that the first derivative of c with respect to the space variable y exists
and is continuous, one may prove that the solution Y(t, y) to (1.3) is differentiable
with respect to its initial datum y, and that its first derivative satifies the linearized
ODE

∂

∂t

∂Y

∂y
(t, y) = ∂c

∂Y
(t, Y(t, y))

∂Y

∂y
. (1.4)

The Cauchy problem for this ODE is in turn well posed in view of the Cauchy–
Lipschitz theorem. On the other hand, the theory of renormalized solutions of
linear transport equations (1.1) has been allowed to obtain (see [2]) existence and
uniqueness results for the ODEs of type (1.3) with only W1,1 coefficients c (with
a bounded divergence, say). The observation that allows us to do so is the fact that
a generalized almost everywhere flow Y(t, y) associated to (1.3) is indeed related in
a unique way to a renormalized group solution u0(Y(t, y)) to a transport equation
of the type (1.1), u0 being the initial condition complementing (1.1) (see [4]). It has
already been pointed out in [2, Remark 2, page 536], that it would be interesting
to give more than a formal sense to equation (1.4) in this non-regular setting. We
shall see in Section 4 that it is indeed possible. Exactly like in the framework of the
Cauchy–Lipschitz theory, the number of derivatives that is allowed on Y is equal
to that allowed on c. Of course, all this is loosely stated, and will be made precise

in Section 4. It is sufficient to say for the time being that the pair (Y(t, y),
∂Y

∂y
(t, y))

is a solution of the system (1.3)–(1.4), which is indeed of the form
{

Ẋ1(t, x) = b1(t, X1(t, x)),

Ẋ2(t, x) = b2(t, X1(t, x), X2(t, x)),
(1.5)

with b1(·) = c (·) and b2(x1, x2) = ∂c

∂x
(t, x1)x2 satisfying (1.2) as soon as c ∈ W1,1.

The second situation we want to address is close to numerical simulations.
It is related to the so-called micro-macro simulations of polymeric fluids. For
a pedagogic introduction to these models along with a comprehensive list of relevant
references, we refer the reader to [3]. We shall only briefly indicate here the main
lines of the modelling.

Micro-macro simulations of non-newtonian flows are now commonly used in
computational fluid dynamics. The approach consists of coupling the macroscopic
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conservation equations for the velocity of the fluid c together with a kinetic theory
model – a Fokker–Planck equation – modelling the evolution of the microstructure
of the fluid, instead of using a constitutive equation to evaluate the non-newtonian
contribution to the stress. Next, this kinetic model can be computed numerically by
solving the stochastic differential equation underlying the Fokker–Planck equation.
Let us consider in this introduction only the simplest case when the microstructure
of the fluid is described by the stochastic evolution of a single Hookean dumbell:
the polymeric chain has only one length and the force it experiences is purely
entropic. In that case, the equations under consideration are the classic macroscopic
continuity equations for an incompressible fluid






∂c

∂t
− ∆yc + ∇y p = divy τ

divy c = 0
(1.6)

set for t > 0, y ∈ RN , together with

τ(y) = E(Rt(y) ⊗ Rt(y)), (1.7)

and

dRt(y) + c · ∇y Rt(y) dt = (∇c · Rt(y) − Rt(y)) dt + dWt, (1.8)

where Rt(y) denotes the N-dimensional stochastic process defining the evolution
of the microstructure at the macroscopic point y (E is the expectation value, Wt is
a N-dimensional Wiener process).

Giving a sense to (1.8), which formally is a stochastic partial differential equa-
tion, is not straightforward. When c is sufficiently regular, one can consider the
Lagrangian form of this equation and treat the stochastic process along the char-
acteristics. This amounts to setting

R̃t(y) = Rt(Y(t)), (1.9)

where Y(t) denotes the flow of c, and then rewriting (1.8) as

d R̃t = (∇c · R̃t − R̃t) dt + dWt . (1.10)

One then ends up with a stochastic differential equation (not a partial one), that
has a proper mathematical meaning when c is sufficiently regular (and bounded).
On the contrary, when c is only a weak solution of the macroscopic equation (1.6),
the previous argument has to be adapted. Formally, one may consider the almost
everywhere flow Y(t) associated to c in the sense of Di Perna–Lions, and then give
a sense to (1.10), at least almost everywhere in y. We shall attack the problem
in a slightly different way, by treating it globally in the variables (y, r). As such,
the existence of an almost everywhere flow in (y, r) will be a corollary of our
general result for transport equations of the form (1.1)–(1.2). One may measure the
difficulty simply by considering the solution of this question in the fully determin-
istic case (which embodies, in fact, most of the difficulties of the stochastic one).
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Up to a change of function (replace R by et R), the question is to give a rigorous
mathematical sense to

dR

dt
+ c · ∇y R − ∇c R = 0, (1.11)

which is the Eulerian form of the Lagrangian dynamics






Ẏ(t) = c (Y(t)),

Ṙ(t) = ∇yc (Y(t))R(t),

Y(0) = y , R(0) = r.

(1.12)

It is straightforward to see that in (1.12), we are back again to vector fields of the
form (1.2). The stochastic character of (1.8) only is a slight additional difficulty,
that turns system (1.12) into






Ẏ (t) = c (Y(t)),

dRt = ∇yc (Y(t))Rt dt + dWt,

Y(0) = y , Rt=0 = R0,

(1.13)

and that will be easily treated in a second step. Section 5 will be devoted to the
treatment of this second application.

It is now time to outline our mathematical strategy for providing a mathematical
foundation to these types of equations.

Our main task consists of proving an existence and uniqueness theorem for the
solution of (1.1) when the vector field is of the form (1.2). This is the purpose of
Theorem 2.1 of Section 2. In fact, the uniqueness part is the crucial step (Lemma 2.2)
and the proof of it is a consequence of a regularization lemma (Lemma 2.1). From
this result we deduce, in the same manner as in [2] an existence, uniqueness and
stability result, contained in Theorem 3.1, for renormalized solutions of (1.1). This
second result will not be as detailed as the first one as it is really close to the
standard case developed in [2].

In Section 4, we turn to the first application mentioned above. We first recall the
link between solutions of transport equations and solutions of ordinary differential
equations, and next explain how our previous results of Section 2 and Section 3
allow us to prove a result (Theorem 4.1) on perturbations on initial conditions for
solutions of the ODE.

Finally, Section 5 is devoted to our second application. We begin by considering
in Subsection 5.1 a given trajectory of the stochastic differential equation, which
allows us to define the stochastic flow in Subsection 5.2. Next, in Subsections 5.3
and 5.4, we examine the Fokker–Planck equation associated to the SDE. Finally in
Subsection 5.5 we take an alternative viewpoint provided by the stochastic transport
equation associated to the SDE.
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2. Main result: Uniqueness of solutions of some transport equations

This section is devoted to the statement and proof of our main existence and
uniqueness result for the solutions of (1.1). All other results will be drawn from
this result.

Let us now make precise the mathematical setting and introduce some notation.
As announced in the introduction, we consider the linear transport equa-

tion (1.1),

∂u

∂t
+ b · ∇u = 0 in (0,∞) ×RN .

The space variable x is partitioned into x = (x1, x2) with x1 ∈ RN1 , x2 ∈ RN2 , N1+
N2 = N. Accordingly, the vector field b is written b = (b1, b2) with bi : RN −→
R

Ni , and the differential operators gradient and divergence are decomposed along
∇ = (∇x1 ,∇x2 ), divx = divx1 + divx2 .

We make the following assumptions on the vector field :

(H1) b1 = b1(x1) ∈ W1,1
x1 ,loc (it does not depend on x2)

(H2)
b1

1 + |x1| ∈ L1
x1

(RN1) + L∞
x1

(RN1),

(H3) divx1 b1 = 0,

(H4) b2 = b2(x1, x2) ∈ L1
x1 ,loc

(
R

N1 , W1,1
x2 ,loc

)
,

(H5)
b2

1 + |x2| ∈ L1
x1 ,loc

(
R

N1 , L1
x2

(RN2) + L∞
x2

(RN2 )
)
,

(H6) divx2 b2 = 0.

In view of (H1), we rewrite equation (1.1) in a particular form :

∂u

∂t
+ b1(x1) · ∇x1 u + b2(x1, x2) · ∇x2 u = 0 in (0,∞) × RN1 × RN2 . (2.1)

Assumptions (H1) to (H6) deserve some comments. The crucial assumption
is (H1), which justifies our study. It allows us to treat the variables x1 and x2

in a different way. Assumptions (H3) to (H6) must be compared to the standard
situation which is dealt with in [2]. We need here to control both the operators
divx1 and divx2 and not only their sum divx . Once (H1), (H3) and (H6) are satisfied,
this allows one to avoid any assumption of W1,1 regularity of b2 with respect to x1.
Note indeed that in (H4), only the L1

x1
regularity is required! It should be compared

to the standard case of [2] when b2 ∈ W1,1
x1 ,x2

is required.
Some other comments about possible generalizations are in order.

Remark 2.1. For the sake of simplicity, we have chosen to present our results when
the vector field b is assumed not to depend on the time variable, although our results
also hold mutatis mutandis in the time-dependent case b = b (t, x) when we allow
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an L1 dependence with respect to time. Then, assumption (H1) needs to be replaced
by

(H1′) b1 = b1(t, x1) ∈ L1([0, T ], W1,1
x1 ,loc

)
,

while (H3) and (H6) hold for almost any time t, and (H2), (H4) and (H5) are
replaced by

(H2′)
b1

1 + |x1| ∈ L1
(
[0, T ], (L1

x1
(RN1) + L∞

x1
(RN1)

))
,

(H4′) b2 = b2(t, x1, x2) ∈ L1
(
[0, T ], L1

x1 ,loc

(
R

N1 , W1,1
x2 ,loc

))
,

(H5′)
b2

1 + |x2| ∈ L1
(
[0, T ], L1

x1 ,loc

(
R

N1 , L1
x2

(RN2) + L∞
x2

(RN2)
))

.

Remark 2.2. Similarly, we have chosen to present the case of divergence-free
velocities. Again, our results admit straightforward extensions to situations when
the divergence is controlled in the L∞ norm

(H3′′) divx1 b1 ∈ L∞
x1

(RN1 ),

(H6′′) divx2 b2 ∈ L∞
x (RN ).

Remark 2.3. Of course, the above two remarks may be combined with one another
to allow the hypotheses

(H3′′′) divx1 b1 ∈ L1([0, T ], L∞
x1

(RN1 )
)
,

(H6′′′) divx2 b2 ∈ L1([0, T ], L∞
x (RN )

)
.

We are now in a position to state our main result:

Theorem 2.1. We assume (H1) to (H6). Let

u0 ∈ (
L1 ∩ L∞(RN )

) ∩ L∞
x1

(
R

N1 , L1
x2

(RN2)
)
. (2.2)

Then there exists one and only one solution,

u(t, x) ∈ L∞([0, T ], L1
x ∩ L∞

x (RN )
)

∩ L∞
(
[0, T ], L∞

x1

(
R

N1 , L1
x2

(RN2 )
))

,
(2.3)

to (2.1) satisfying the initial condition u(t = 0, ·) = u0.

The proof of this theorem is divided into three steps. The uniqueness being
the central issue, we begin by proving it. It is the consequence of the following
two lemmas, the first one dealing with regularization, the second one stating the
uniqueness per se. Finally, we show the existence part.



Renormalized solutions of some transport equations 103

Lemma 2.1. We assume (H1)–(H4) (or, in the time-dependent case, (H1′)–(H4′)).
Let f ∈ L∞([0, T ], L1

x ∩ L∞
x (RN )) be a solution of (2.1). Let ρα1 and ρα2 be two

regularization kernels, respectively, in the variable x1 and x2 (ραi = 1
αi

Ni
ρi(

·
αi

),

ρi ∈ D+(RNi ),
∫
R

Ni ρi = 1, for i = 1, 2). Then fα1,α2 = ( f ∗ρα1)∗ρα2 is a smooth
(in x) solution of

∂ fα1,α2

∂t
+ b · ∇ fα1,α2 = εα1,α2, (2.4)

with

lim
α2−→0

lim
α1−→0

εα1,α2 = 0 in L∞([0, T ], L1
x,loc ∩ L∞

x,loc(R
N )

)
. (2.5)

Lemma 2.2. We assume (H1) to (H6) (or the analogous hypotheses in the other
cases). Let f(t, x) ∈ L∞([0, T ], L1

x∩L∞
x (RN )) ∩ L∞([0, T ], L∞

x1
(RN1 , L1

x2
(RN2)))

be a non-negative solution of (2.1) with the vanishing initial value f0 = 0. Then
f = 0 for all times.

Remark 2.4. Note that we need the additional assumption that f ∈ L∞([0, T ],
L∞

x1
(RN1 , L1

x2
(RN2 ))) in comparison with the standard case when only f(t, x) ∈

L∞([0, T ], L1
x ∩ L∞

x (RN )) is needed. As it will be seen later on, this regularity
is indeed propagated by the equation itself as soon as the initial condition satisfies
the second part of (2.2).

We now prove successively these two lemmas, and next complete the proof of
Theorem 2.1.

Proof of Lemma 2.1. We make the proof under the time-independent assumptions
(H1)–(H4). All the functional spaces used here are local, this is clearly enough for
such a regularization result. However, in order to lighten the notations, we skip the
subscript loc.

We first regularize in the x2 variable by convoluting (2.1) with ρα2

∂( f ∗ ρα2)

∂t
+ b1 · ∇x1 ( f ∗ ρα2) + (b2 · ∇x2 f ) ∗ ρα2 = 0,

using the fact that, in view of (H1), b1 does not depend on x2. Denoting by

[b2 · ∇x2 , ρα2 ] ( f ) = b2 · ∇x2( f ∗ ρα2) − ρα2 ∗ (b2 · ∇x2 f ), (2.6)

this can be written

∂( f ∗ ρα2)

∂t
+ b1 · ∇x1 ( f ∗ ρα2) + b2 · ∇x2 ( f ∗ ρα2) = [b2 · ∇x2 , ρα2 ] ( f ).

It is a standard fact (see [2]) that

εα2 = [b2 · ∇x2 , ρα2 ] ( f )
α2−→0−→ 0 in L1

x . (2.7)
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Indeed, it is clear for smooth b2 and f , while, as in [2], the general case follows by
density through the estimate

‖[b2 · ∇x2 , ρα2] ( f )‖L1
x

≤ C ‖b2‖L1
x1

(
W1,1

x2

) ‖ f ‖L∞
x1,x2

, (2.8)

which can in turn be obtained by integrating in x1 the standard estimate

‖[b2 · ∇x2 , ρα2 ] ( f )‖L1
x2

≤ C ‖b2‖W1,1
x2

‖ f ‖L∞
x2

. (2.9)

Of course, this is here where (H4) plays a role. At this stage, we have obtained for
fα2 = f ∗ ρα2 ,

∂ fα2

∂t
+ b1 · ∇x1 fα2 + b2 · ∇x2 fα2 = εα2, (2.10)

with εα2 satisfying (2.7).
Next, we regularize in the x1 variable by convoluting (2.10) with ρα1

∂( fα2 ∗ ρα1)

∂t
+ b1 · ∇x1 ( fα2 ∗ ρα1) + b2 · ∇x2 ( fα2 ∗ ρα1) =
[b1 · ∇x1 , ρα1 ] ( fα2) + [b2 · ∇x2 , ρα1] ( fα2) + εα2 ∗ ρα1 .

(2.11)

This is exactly (2.4) with

εα1,α2 = [b1 · ∇x1 , ρα1] ( fα2) + [b2 · ∇x2 , ρα1 ] ( fα2)

+ ([b2 · ∇x2 , ρα2 ] ( f )) ∗ ρα1 .
(2.12)

We now successively treat each of the three terms of εα1,α2 in order to show the
convergence (2.5) claimed in the lemma.

The first term is the standard error term for the regularization in the variable x1

of the function fα2 ∈ L∞
x1,x2

. For almost each x2, it is controlled in the following
way:

‖[b1 · ∇x1 , ρα1 ] ( fα2)‖L1
x1

≤ C ‖b1‖W1,1
x1

‖ fα2‖L∞
x1

,

and thus, as b1 does not depend on x2,

‖[b1 · ∇x1 , ρα1 ] ( fα2)‖L∞
x2 (L1

x1 ) ≤ C ‖b1‖W1,1
x1

‖ fα2‖L∞
x1,x2

,

where on the right-hand side, ‖ fα2‖L∞
x1,x2

may be replaced by ‖ f ‖L∞
x1,x2

itself in view
of the regularity assumed on f . Considering the above estimate and approximating
b1 and fα2 by density, we therefore obtain, for the first term of (2.12),

lim
α1−→0

[b1 · ∇x1 , ρα1] ( fα2) = 0, (2.13)

in L1
x1 ,x2

, when α2 is fixed. Let us now turn to the second term of (2.12). We have

[b2 · ∇x2 , ρα1] ( fα2) = b2 · ∇x2 (ρα1 ∗ fα2) − ρα1 ∗ (b2 · ∇x2 fα2)

= b2 · ((∇x2 fα2) ∗ ρα1) − ρα1 ∗ (b2 · ∇x2 fα2)

= [b2, ρα1 ](∇x2 fα2). (2.14)
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The latter bracket may be controlled as follows:

‖[b2, ρα1](∇x2 fα2)‖L1
x1,x2

≤ C‖b2‖L1
x1,x2

‖∇x2 fα2‖L∞
x1,x2

,

where it should be noted that no norm of derivatives of b2 with respect to x1 is
needed, and where the last norm depends on α2. Arguing by density as above, we
therefore have

lim
α1−→0

[b2 · ∇x2 , ρα1] ( fα2) = 0, (2.15)

in L1
x1 ,x2

, as α1 goes to zero and α2 is kept fixed.
There remains to treat the third term of (2.12) which is the easiest one. Indeed,

α2 being fixed, it is clear that

lim
α1−→0

ε2 ∗ ρα1 = ε2, (2.16)

in L1.
We are now able to complete our argument. We fix α2. In view of the conver-

gences (2.13) and (2.15), the first two terms of (2.12) go to zero in L1
x1 ,x2

, while
the third one behaves according to (2.16). It follows that

lim
α1−→0

ε12 = ε2

in L1, and finally we let α2 go to zero and use (2.7) to get the convergence (2.5). ��
Proof of Lemma 2.2. Let f be a non-negative solution as claimed in the lemma.
We introduce two cut-off functions, respectively, with respect to each variable x1

and x2. For m, n ∈ N, we denote them by ϕm = ϕ(
x1
m ) and ψn(x2) = ψ(

x2
n ), where

ϕ ∈ D(RN1), ϕ ≥ 0, ϕ ≡ 1 for |x1| ≤ 1 and ϕ ≡ 0 for |x1| ≥ 2. The analogous
properties are required on ψ with respect to the variable x2. We first multiply

∂ f

∂t
+ b1 · ∇x1 f + b2 · ∇x2 f = 0

by ψn and integrate over the x2 space to obtain

∂

∂t

∫

R
N2

f ψn dx2 + b1 · ∇x1

∫

R
N2

f ψn dx2

+
∫

R
N2

(b2 · ∇x2 f ) ψn dx2 = 0.

(2.17)

We treat the last term as follows:
∫

RN2
(b2 · ∇x2 f ) ψn dx2 = −

∫

RN2
f ψn (divx2 b2) ψn dx2

−
∫

RN2
f b2 · ∇x2ψn dx2 (2.18)

= −
∫

RN2
f

1 + |x2|
n

b2

1 + |x2| · (∇x2ψ)
( x2

n

)
dx2,
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where we have used the fact that b2 is divergence free (the modifications in the
other cases are rather straightforward and will be skipped here).

Let us now multiply (2.17) by ψm and integrate over x1:

d

dt

∫

RN
f ψn ϕm dx1 dx2 +

∫

RN1
ϕm b1 · ∇x1

∫

RN2
f ψn dx2 dx1

−
∫

R
N1

ϕm

∫

RN2
f

1 + |x2|
n

b2

1 + |x2| · (∇x2ψ)
( x2

n

)
dx2 dx1 = 0.

that is to say, by a simple integration by parts of the second term (we use this time
assumption (H3) to get rid of divx1 b1),

d

dt

∫

RN
f ψn ϕm dx1 dx2 −

∫

RN1
(b1 · ∇x1ϕm)

∫

RN2
f ψn dx2 dx1

−
∫

R
N1

ϕm

∫

RN2
f

1 + |x2|
n

b2

1 + |x2| · (∇x2ψ)
( x2

n

)
dx2 dx1 = 0.

(2.19)

We now remark that, uniformly with respect to n, the second term of (2.19) goes

to zero as m goes to infinity. Indeed, writing
|b1|

1 + |x1| = c1 + c∞ with c1 ∈ L1
x1

,

c∞ ∈ L∞
x1

, thanks to (H2), we have
∫

RN1
|b1 · ∇x1ϕm |

∫

RN2
f ψn dx2 dx1

=
∫

RN1

1 + |x1|
m

|b1|
1 + |x1|

∣∣∣(∇x1ϕ)
( x1

m

)∣∣∣
∫

RN2
f ψn dx2 dx1

≤ c‖∇ϕ‖L∞
x1

∫

m≤|x1 |≤2m
|c1(x1)| dx1 ‖

∫

RN2
f dx2‖L∞

x1

+ c‖c∞‖L∞
x1

‖∇ϕ‖L∞
x1

‖
∫

{m≤|x1|≤2m}×RN2
f dx1 dx2,

using the fact that ∇ϕ is L∞ and supported in the annular {1 ≤ |x1| ≤ 2} and the
assumption f ∈ L1

x1
(L1

x2
) ∩ L∞

x1
(L1

x2
).

In addition, m this time being fixed, we claim that the third term of (2.19) goes
to zero as n goes to infinity by Lebesgue’s dominated convergence theorem.

Indeed, as ∇ψ is L∞ and supported in the annular {1 ≤ |x1| ≤ 2}, and
b2

1 + |x2| may be decomposed, in view of (H4), into d1 + d∞ with d1 ∈ L1
x1 ,x2

and

d∞ ∈ L1
x1

(L∞
x2

), we have for almost all x1 ∈ RN1 ,

|ϕm(x1)|
∫

RN2
f

1 + |x2|
n

|b2|
1 + |x2| |∇x2ψ|

( x2

n

)
dx2

≤ c|ϕm(x1)|‖ f(x1, ·)‖L∞
x2

∫

n≤|x2 |≤2n
|d1(x1, ·)| dx2

+ c|ϕm(x1)|‖d∞(x1, ·)‖L∞
x2

∫

n≤|x2 |≤2n
f dx2

−→ 0
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as n goes to infinity. In addition,

|ϕm(x1)|
∫

RN2
f

1 + |x2|
n

|b2|
1 + |x2| |∇x2ψ|

( x2

n

)
dx2

≤ c|ϕm(x1)| ‖ f(x1, ·)‖L∞
x2

‖d1(x1, ·)‖L1
x2

+ c|ϕm(x1)| ‖d∞(x1, ·)‖L∞
x2

‖ f ‖L1
x2

and the right-hand side is in L1
x1

, since f ∈ L∞
x1

(L1 ∩ L∞
x2

), d1 ∈ L1
x1 ,x2

, d∞ ∈
L1

x1
(L∞

x2
), ϕm ∈ L∞

x1
. Therefore Lebesgue’s theorem applies and we get the con-

vergence of the third term of (2.19) to zero as n goes to infinity, m being kept
fixed.

Collecting the behaviours of the last two terms, we obtain with (2.19), as n,
and next m, go to infinity,

d

dt

∫

RN
f = 0.

As f0 = 0, this yields f = 0 for all t since f ≥ 0 and this concludes the proof. ��
Remark 2.5. Let us emphasize the fact that local integrability in x1 is enough for
assumption (H5), as we indeed argue on Supp(ϕm), m being fixed (large enough).

Having proved Lemma 2.1 and Lemma 2.2, we now complete the proof of
Theorem 2.1:

Proof of Theorem 2.1. Assume for the time being that we have at hand two solutions
u1 and u2 to (2.1) satisfying the regularity stated in Theorem 2.1, and sharing the
same initial value. By virtue of Lemma 2.1, the difference f = u1 − u2 satisfies

∂ fα1,α2

∂t
+ b · ∇ fα1,α2 = εα1,α2,

with obvious notation. As we are in a regular setting here, we may multiply the
above equation by β′( fα1,α2) for some function β ∈ C1(R), β′ bounded, and obtain

∂β( fα1,α2)

∂t
+ b · ∇β( fα1,α2) = εα1,α2β

′( fα1,α2).

By letting α2, and next α1, go to zero, we obtain the equation

∂β( f )

∂t
+ b · ∇β( f ) = 0,

for such functions β. Now, letting β approximate the absolute value, we end up
with

∂| f |
∂t

+ b · ∇| f | = 0.

Therefore we have a non-negative solution | f | to (2.1), which vanishes at initial
time and belongs to the right functional space. Applying Lemma 2.2, we get
u1 = u2. There remains now to prove the existence part.



108 C. Le Bris, P.-L. Lions

Existence in the functional space L∞([0, T ], L1
x∩L∞

x (RN )) is given in a straight-
forward way by an application of Proposition II.1 of [2]. For the sake of consistency,
let us only mention here that it is a simple matter of regularization of the vector
field b appearing in (2.1). One introduces the solution uε to

∂uε

∂t
+ bε · ∇uε = 0 in (0,∞) ×RN , (2.20)

where bε = ρε ∗ b ∈ L1([0, T ], C1
b (RN )) converges to b, next shows the right

estimates on uε and finally passes to the limit. The only non-standard thing
we have to prove here is the fact that such a solution necessarily belongs to
L∞([0, T ], L∞

x1
(RN1 , L1

x2
(RN2 ))). This is actually a consequence of the specific

form of the transport equation and of the regularization work we have already done.
Indeed, formally we deduce by integration of

∂u

∂t
+ b1 · ∇x1 u + b2 · ∇x2 u = 0,

over the x2-space, that

∂

∂t

∫

R
N2

u dx2 + b1 · ∇x1

∫

R
N2

u dx2 +
∫

R
N2

b2 · ∇x2 u dx2 = 0,

that is to say, the third term vanishes as b2 has zero divergence with respect to x2,

∂

∂t

∫

R
N2

u dx2 + b1 · ∇x1

∫

R
N2

u dx2 = 0.

Formally, this yields the conservation over time of

∥∥∥
∫

R
N2

u dx2

∥∥∥
L∞

x1

,

and therefore the L∞([0, T ], L∞
x1

(RN1 , L1
x2

(RN2))) regularity. In order to make
this estimate rigorous, it suffices to go back to the regular form (2.20). For this
purpose, we need to specify the regularization kernel ρε used to define bε in (2.20).
We choose a product of two regularization kernels ρ1,ε(x1) and ρ2,ε(x2). This is
useful to keep both parts of bε, namely b1,ε and b2,ε, divergence free. Then all
the computations made formally above take a rigorous sense, and we obtain the

conservation of ‖
∫

R
N2

uε dx2‖L∞
x1

and thus, letting ε go to zero, that of the same

norm for u. This completes the proof of Theorem 2.1. ��

Remark 2.6. When assumptions (H3)–(H6) are replaced e.g. by (H3′′)–(H6′′), the
same technique allows one to control both divergences in the right functional
spaces, and consequently the claimed regularity also holds, by a straightforward
adaptation of our proof.
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3. Renormalized solutions of transport equations (2.1)

We devote this short section to the extension of the previous result to less regular
initial data through the notion of renormalized solutions, as introduced in [2]. As
almost all the arguments and statements are identical to those of [2], here we sketch
only the proofs and give the main lines of the results.

As in [2], we consider the set L0 of all measurable functions u onRN with values
in R such that meas{|u| > λ} < ∞, for all λ > 0. For any β ∈ C(R), bounded
and vanishing near zero, we thus have β(u) ∈ L1 ∩ L∞(RN ) for any u ∈ L0. As
in [2], we shall say that a sequence un is bounded (respectively, converges) in L0

whenever β(un) is bounded (respectively, converges) in L1 for any such β.
Here we need some additional assumptions on our initial datum, and that is

why we consider the subset L00 of L0 consisting of functions u satisfying

∀δ > 0, meas{x2 / |u(x1, x2)| > δ} < cδ(x1) ∈ L∞
x1

(RN1). (3.1)

This subset is equipped with the topology induced by that of L0. For any u ∈ L00,
we have β(u) ∈ L∞

x1
(RN1 , L1

x2
(RN2)). Indeed, for δ small enough such that β

vanishes on [0, δ], we have
∫

RN2

∣∣β(u(x1, x2))
∣∣ dx2 =

∫

{x2/ |u(x1,x2)|>δ}

∣∣β(u(x1, x2))
∣∣ dx2

+
∫

{x2/ |u(x1,x2)|<δ}

∣∣β(u(x1, x2))
∣∣ dx2

≤ ‖β‖L∞ cδ(x1) + 0,

which belongs to L∞
x1

.
It follows that if we choose u0 in L00, then β(u0) is a convenient initial condition

for the transport equation considered in the previous section.
We therefore say that u is a renormalized solution of (2.1) complemented by

an initial condition u0 ∈ L00 whenever β(u) is a solution of (2.1) in the sense of
Section 2 with initial condition β(u0).

The stability result for renormalized solutions of (2.1) that we shall need in the
rest of this article is a straightforward consequence of that of [2, Theorem II.4].
We therefore reproduce the main result of it here for convenience. Only slight
modifications are done with respect to that of [2].

Theorem 3.1. Let us consider a sequence bn = (b1,n(x1), b2,n(x1, x2)) of vector
fields satisfying (H1) to (H6). We assume that b1,n converges to b1 in L1

x1 ,loc, that

b2,n converges to b2 in L1
x1 ,x2,loc. We also assume that b = (b1(x1), b2(x1, x2))

satisfies (H1) to (H6).
Let un be a bounded sequence in L∞([0, T ], L00) of renormalized solutions of

(2.1) with vector field bn, and initial condition un,0 ∈ L00. We assume that un,0

converges in L00
loc to some u0 in L00.

Then un converges in C([0, T ], L00
loc) to the renormalized solution of (2.1)

associated to the initial condition u0.
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Let us emphasize that we have only mentioned above the basic conclusion of
stability. Many extensions (under alternatives and/or additional assumptions) are
available in the spirit of [2]. In particular, the following remark contains a note-
worthy extension, as far as time-dependent vector fields b are concerned.

Remark 3.1. We consider time-dependent vector fields b (satisfying (H1′), (H2′),
(H3), (H4′), (H5′), (H6)). Then, for Theorem 3.1 to hold, one may allow for
a convergence of bn = (b1,n(x1), b2,n(x1, x2)) to b = (b1(x1), b2(x1, x2)) either in
the strong topology of L1([0, T ], L1

x1,loc × L1
x1 ,x2,loc), or also for only a convergence

in the weak topology of the same functional space provided the additional condition
of “regularity” in x

sup
n

‖bn(t, x + h) − bn(t, x)‖
L1

(
[0,T ],L1

x1,loc × L1
x1,x2,loc

) h−→0−→ 0

is fulfilled. The fact that the above Theorem 3.1 can be extended to this latter
situation is a straightforward consequence of arguments already used to prove
Theorem II.7 of [2].

Likewise, the convergence of un towards u can be improved (local convergence
for better topologies, and global convergence) under additional assumptions. All
these are consequences of Theorem II.4 of [2] in the present setting, and are skipped
here.

We also skip the proof as it is the same as that of [2]. It is sufficent to say that
the heart of the matter is the uniqueness theorem for the renormalized solution,
basically to obtain that

β(lim un) = lim(β(un)).

4. Application 1: Dependance upon initial data for solutions of ODEs

We turn here to our first application, that deals with ordinary differential equations.
We consider the ordinary differential equation (1.3) that again for the sake of

simplicity we rewrite here in the case for a vector field, denoted here by c, which
does not depend on time

{
Ẏ (t, y) = c (Y(t, y)),
Y(t = 0, y) = y.

(4.1)

Let us assume that c satifies the following properties:

(P1) c ∈ W1,1
y,loc,

(P2)
c

1 + |y| ∈ L1 + L∞(RN ),

(P3) div c = 0,
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which are the standard assumptions that allow us to define an almost everywhere
flow for (4.1) in the sense of [2,1]). As in [2], assumption (P2) will possibly be
strenghtened into

(Q2) c ∈ L p + (1 + |y|) L∞(RN), for some p ∈ [1,∞],

in order to obtain the L1
loc integrability of Y with respect to the y variable. Other-

wise, almost everywhere in t, Y(t, y) will only belong to the space L y of almost
everywhere finite measurable functions of y, the space being equipped with the
topology of the convergence in measure on arbitrary balls.

Remark 4.1. Let us at once mention that, like in [2], our whole study can be carried
through when the vector field c depends on time, the properties (P1)–(P2) being
changed into

(P1′) c = c (t, y) ∈ L1
([0, T ], W1,1

y,loc

)
,

(P2′)
c

1 + |y| ∈ L1([0, T ], L1 + L∞(RN )).

Likewise, we may allow, like in [2], a divergence of c that is not zero, provided it
is controlled in L∞

y , or respectively in the time-dependent case in L1
t (L∞

y ).

As mentioned in the introduction, we aim at differentiating the flow Y with
respect to its initial condition. Let us fix some r ∈ RN , and differentiate (formally
for the moment) Y with respect to the initial condition y along the direction r. We
obtain

∂

∂t
(r · ∇yY )(t, y) = ∇y c (Y(t, y)) (r · ∇yY )(t, y).

Grouping the two equations together, we may write






Ẏ(t, y) = c (Y(t, y)),

Ṙ(t, y, r) = ∇y c (Y(t, y)) R(t, y, r),

Y(t = 0, y) = y,

R(t = 0, y, r) = r,

(4.2)

where we have denoted by R(t, y, r) = (r · ∇yY )(t, y).
Our aim is to give a rigorous sense to this system. Clearly, if it has a sense, it

should be the limit in some sense of the system obtained by a small perturbation
of the initial condition of (4.1). For ε > 0 small, we indeed may consider

{
Ẏ (t, y + εr) = c (Y(t, y + εr)),

Y(t = 0, y + εr) = y + εr,
(4.3)
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and by comparing with (4.1) we deduce the system





Ẏ (t, y) = c (Y(t, y)),

˙Y(t, y + εr) − Y(t, y)

ε
= c (Y(t, y + εr)) − c (Y(t, y))

ε
,

Y(t = 0, y) = y,

Y(t = 0, y + εr) − Y(t = 0, y)

ε
= r.

(4.4)

We shall see that, indeed, the limit as ε goes to zero “(4.4) giving to (4.2)” can be
made rigorous.

For this purpose, our first task is to remark that both systems (4.2) and (4.4)
can be formally recast as systems of the form






Ẋ1(t, x) = b1(X1(t, x)),

Ẋ2(t, x) = b2(X1(t, x), X2(t, x)),

X1(t = 0, x1) = x1,

X2(t = 0, x2) = x2,

(4.5)

for (x1, x2) ∈ RN1 × RN2 . It suffices that:

• for system (4.2), to set x1 = y, x2 = r, N1 = N2 = N, X1 = Y , X2 = ∂Y

∂y
,

b1 = c, b2 = ∇y c (y) r, (note that this latter notation means (b2)i =∑

j

(∂ j ci) r j);

• for system (4.4), it is natural to introduce a subscript ε, and we set x1 = y,

x2 = r, N1 = N2 = N, X1 = Y , X2ε = Y(t, y + εr) − Y(t, y)

ε
, b1 = c,

b2ε = c (y + εr) − c (y)

ε
.

The programme is now clear. First, we recall the equivalence between systems
of ODEs and linear transport equations. Secondly, check that both systems satisfy
assumptions (H1) to (H6). Theorem 2.1 will thus imply the existence and unique-
ness of the solution of the associated transport equation, and therefore this will
allow us to obtain the existence and uniqueness of the almost everywhere flow
for both systems. Thirdly, we check by the stability Theorem 3.1 that the solution
of the transport equation associated to (4.4) converges, as ε goes to zero, to the
solution of that associated to (4.2). Consequently, we shall obtain the convergence
of the flows.

System (4.5) will also be written in the more compact form
{

Ẋ(t, x) = b (X(t, x)),

X(t = 0, x) = x,
(4.6)

but the reader should keep in mind that the field b has here the special form
appearing in (4.5).
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Since b ∈ L1
loc (both bi are, in particular, in L1

x1 ,x2,loc), it is a consequence of [4]
that we have an equivalence between the ordinary differential equation (4.6) and the
transport equation (2.1). More precisely, as announced in the introduction, we know
from Proposition 1 of [4] that if X is an almost everywhere flow solution of (4.6),
which means that X satisfies (4.6), for almost all x, in the sense of distributions
together with the following three properties:






(i) X ∈ C (R, L1),

(ii)
∫

ϕ(X(t, x)) dx =
∫

ϕ(x) dx, ∀ϕ ∈ C∞, ∀t ∈ R,

(iii) X(t + s, x) = X(t, X(s, x)), ∀ t, s ∈ R, ∀ a.e. x,

(4.7)

then [S(t)u0](x) = u0(X(t, x)) is a renormalized group solution of (2.1) (here and
in the rest of this section, −b replaces b in (2.1)), that is






(i) S(t)u0 ∈ C (R, L1),

(ii) S(t)β(u0) = β(S(t)u0), ∀β ∈ C∞
0 , ∀u0 ∈ L∞, ∀t ∈ R,

(iii) S(t) is linear, ∀t ∈ R,

(iv) S(t + s) = S(t) ◦ S(s), ∀s, t ∈ R,

(v) u(t, x) = (S(t)u0)(x) is solution of (2.1), ∀u0 ∈ L∞.

(4.8)

Conversely, we define an almost everywhere flow X(t, x) for (4.1) from a renor-
malized group S(t) solution of (2.1) simply by setting (X(t, x))i = (S(t)xi)(x),
1 ≤ i ≤ N (coordinate by coordinate).

It is to be remarked that the equivalence we have recalled above holds when
the equation is set on the torus. A necessary and sufficient modification when
one works on the whole space is to impose a convenient behaviour at infinity for
the vector field b. In our case, assumption (P2) will play this role. However, the
L1

loc integrability in (i) of (4.7) is not immediate (see [2]). We shall see below (in
Remark 4.2) that in our case the flow is not L1 with respect to some variables.
Nevertheless, we shall call our flow an almost everywhere flow in the sense of [4]
with a slight abuse of language.

We define the notion of the solution of (4.6) as follows. We shall say that X is
a solution of (4.6) whenever, for all β ∈ C∞

0 , we have





∂

∂t
β(X) = Dβ(X(t, y)) · b (X(t, y)),

β(X)(t = 0, y) = β(y),
(4.9)

in the sense of distributions.

4.1. Main result: first-order derivatives

We are now in position to state and prove our main result of this section.

Theorem 4.1. We assume (P1) to (P3). Then, there exists a unique almost every-
where flow (Y, R), such that:
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• Y is continuous from [0, T ] with values in L y,loc;
• R is continuous from [0, T ] to the set of functions of (y, r) that, for almost all y,

are L1
r,loc and, for almost all r, L y,loc, i.e. almost everywhere finite measurable

functions of y;
• X = (Y, R) satisfies the conservation property (4.7)-(ii) of the Lebesgue meas-

ure in (y, r), and the semigroup property (4.7)-(iii) (again in (y, r));
• (Y, R) satisfies (4.2) in the sense of (4.9).

In addition, almost everywhere in (y, r), X = (Y, R) satisfies (4.2) in the sense of
distributions in time.

If we assume, in addition, (Q2), then Y is continuous from [0, T ] with values
in L1

y,loc, R is continuous from [0, T ] to L1
y,r,loc.

As ε goes to zero, the flow (Y, R) is, in C0([0, T ], L y,loc × (Lr,loc ∩ L y,loc)),
and almost everywhere in (y, r), the limit of the unique almost everywhere flow

(
Y,

Y(t, y + εr) − Y(t, y)

ε

)

associated to (4.4) in the same sense, and enjoying the same measurability and
regularity properties as those of (Y, R) above.

Proof of Theorem 4.1. Let us first check that for both systems (4.2) and (4.4), that
the assumptions (H1) to (H6), which allow to use the theory developed in Section 2,
are fulfilled.

For both systems, assumptions (H1) to (H3) on b1 exactly are assumptions (P1)
to (P3) on c. Next, for system (4.2), since b2 = (∇x1 c (x1)) x2, we have b2 ∈
L1

x1 ,x2,loc. Next, ∇x2 b2 = ∇x1 c (x1) ∈ L1
x1 ,x2,loc. Therefore (H4) is satisfied. As-

sumption (H5) is clear since

|b2|
1 + |x2| = |∇x1 c (x1)| ∈ L1

x1 ,loc(L∞
x2

).

Finally, (H6) comes from a simple algebraic calculation showing that
divx2 b2(x1, x2) = divx c (x) and (P3).

For system (4.4), assumption (H4) is clear since we even have b2ε ∈
L∞

x1 ,loc(W1,1
x2 ,loc). For (H5), we remark that

c (x1 + ε x2)

1 + |x2| ∈ L∞
x1 ,loc

(
L1

x2
+ L∞

x2

)
,

because of (P2), and

c (x1)

1 + |x2| ∈ L1
x1 ,loc

(
L∞

x2

)
,

because c ∈ L1
x1 ,loc.

Finally (H6) follows from a simple calculation.
Having checked that assumptions (H1) to (H6) are verified by both systems (4.2)

and (4.4), allows us to apply the results of Section 2 for the corresponding transport
equations (2.1). There exist unique solutions (in the sense of Theorem 2.1) to both
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transport equations. Next using the equivalence stated in [2,4] between the transport
equations and their respective ODEs, we therefore may claim that there exist flows
for both systems. These flows are solution of (4.2) and (4.4), respectively, in the
sense of (4.9).

Moreover, now using the stability result of Section 3, we may say that as ε

goes to zero, the unique renormalized solution of the transport equation associated
to (4.4) converges to the unique renormalized solution of the transport equation
associated to (4.2). Consequently, the flows also converge, almost everywhere in x.
All the properties of measurability and integrability of Y and R stated in Theo-
rem 4.1 are straightforward consequences of the arguments of [2]. In particular, the
L1

loc integrability of R with respect to the r variable comes from the fact that the
associated flow, namely ∇y c(y) r, fulfills the condition

∇y c(y) r ∈ |r| L∞(RN ) ⊂ L1 + (1 + |r|) L∞(RN ),

which is a condition of type (Q2) in the r variable.
We have therefore proven the theorem. ��

Remark 4.2. It should be noted that R is not in L1
loc in the variables y, r (for each

time t). In order to illustrate the obstruction, we can formally integrate

Ṙ = ∇c (Y )R.

Then, we remark that ∇c is not exponentially integrable with respect to the vari-
able y. Therefore R is only measurable in y, and not integrable.

Remark 4.3. The result contained in Theorem 4.1 of existence of a stable almost
everywhere flow for ODEs (4.6) with a vector field satisfying (H1) to (H6) was
announced in a somewhat vague way in Remarque 4 - alinea (iii) of [4]. In particular
the case when b1 in (H1) is constant was explicitly mentioned there.

4.2. Second-order derivatives

It is next a natural idea to try and differentiate the flow Y of (4.1) with respect
to its initial condition at a higher order than one. It turns out that when assuming
some Wm,1 regularity of c with respect to y, it is indeed possible to differentiate
m times. We therefore recover a result of the same nature as that of the classical
Cauchy–Lipschitz theory. In order to illustrate this fact, we now briefly describe
the case m = 2. The cases m ≥ 3 basically follow the same line, without any
additional difficulty, and we leave such easy extensions to the reader.

Let us come back to the system (4.2), namely





Ẏ(t, y) = c (Y(t, y)),

Ṙ(t, y, r) = ∇y c (Y(t, y)) R(t, y, r),

Y(t = 0, y) = y,

R(t = 0, y, r) = r.
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Let us fix (y′, r ′) ∈ R2N , and differentiate Y and R with respect to (y, r) along the
direction (y′, r ′). In other words, we look for which equations the functions

Y ′ = (y′, r ′) · ∇y,rY = y′ · ∇yY (4.10)

and

R′ = (y′, r ′) · ∇y,r R (4.11)

are solutions of. It is a simple calculation to show that they are solutions of:





Ẏ ′(t, y, y′) = ∇y c (Y(t, y)) Y ′(t, y, y′),
Ṙ′(t, y, r, y′, r ′) = ∇y c (Y(t, y)) R′(t, y, r, y′, r ′)

+∇2
yy c (Y(t, y)) · (R(t, y, r), Y ′(t, y, y′)),

Y ′(t = 0, y, y′) = y′,
R′(t = 0, y, r, y′, r ′) = r ′.

(4.12)

For the sake of clarity, let us make precise that the above equations explicitly read,
componentwise, and using the convention of summation over repeated indices,

d

dt
Y ′

i (t, y, y′) = ∂

∂y j
ci (Y(t, y))Y ′

j(t, y, y′)

and

d

dt
R′

i(t, y, r, y′, r ′) = ∂

∂y j
ci (Y(t, y))R′

j(t, y, r, y′, r ′)

+ ∂2

∂y j∂yk
ci (Y(t, y))Y ′

j(t, y, y′)R′
k(t, y, r, y′, r ′).

Collecting (4.12) with (4.2), we obtain the closed system:





Ẏ(t, y) = c (Y(t, y)),

Ṙ(t, y, r) = ∇y c (Y(t, y)) R(t, y, r),

Ẏ ′(t, y, y′) = ∇y c (Y(t, y)) Y ′(t, y, y′),
Ṙ′(t, y, r, y′, r ′) = ∇y c (Y(t, y)) R′(t, y, r, y′, r ′)

+∇2
yy c (Y(t, y)) · (R(t, y, r), Y ′(t, y, y′)),

Y(t = 0, y) = y,

R(t = 0, y, r) = r,

Y ′(t = 0, y, y′) = y′,
R′(t = 0, y, r, y′, r ′) = r ′.

(4.13)

It is easy to see that this system of ODEs is associated to the following transport
equation:

∂

∂t
u − c(y) · ∇y u − ∇y c(y) r ∇r u

− ∇y c(y) y′ ∇y′ u − (∇y c(y) r ′ − ∇2
yy c(y) · (r, y′)

)∇r′ u = 0
(4.14)

set on a function u = u(t, y, r, y′, r ′).
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Proving that an almost everywhere flow (in the sense of Theorem 4.1) exists for
system (4.13) amounts to showing the existence and uniqueness of renormalized
solutions of (4.14). It is easily seen that properties (H1) to (H6) are fulfilled by the
vector field

b (y, r, y′, r ′) =
− (c(y),∇y c(y) r,∇y c(y) y′,∇y c(y) r ′,∇2

yy c(y) · (r, y′)).
(4.15)

In particular, the W2,1 regularity allows (H1) and (H4) to be fulfilled, while the
crucial assumption (H5) is satisfied because

∇y c(y) r ′ + ∇2
yy c(y) · (r, y′)

1 + |r ′| ∈ L1
y,r,y′,loc

(
L1

r′ + L∞
r′

)
.

5. Application 2: Micro-macro models for polymeric flows

We concentrate here on a stochastic differential equation of the type

dXt = b(Xt)dt + dWt, (5.1)

complemented with an initial condition at time t = 0

Xt |t=0 = X0.

As mentioned in the introduction, our interest in such equations stems from our
aim to give a sound mathematical meaning to systems of the type (1.13).

Our purpose is to give a meaning to the stochastic flow of such an equation
when the field b does not fulfill the usual assumptions of regularity needed in the
theory of stochastic flows (namely b Lipschitz for strong solutions or b continuous
bounded, say, for the corresponding martingale problem, see, e.g., [5]). We shall
show that conditions of weak differentiability analogous to that used for the ordinary
differential equations suffice to give a generalized sense to flows in this stochastic
context. The notion of the Fokker–Planck equation and of a stochastic transport
equation will also be extended to the present framework.

For clarity, and with a view to concentrate here on the additional difficulties
created by the non-standard term dWt in (5.1), we shall mainly deal in this section
with equations of the form (5.1) when the vector field b satisfies the classical
assumptions of the theory of ODEs treated in [2], namely assumptions (P1), (P2),
(P3) of Section 4 (assumption (P2) being possibly strenghtened into (Q2)). It is
however to be borne in mind that our arguments can be slightly modified in order
to extend our results to the other cases:

(α) b is a vector field of the particular form (1.2) with b1, b2 satisfying assumptions
(H1) to (H6), with possibly (H3′′), (H6′′) replacing (H3), (H6), respectively;
in this case, M = 2N where N is the space dimension for x1 and x2, it exactly
corresponds to the case when system (1.13) is dealt with;

(β) b is not divergence free, but div b is controlled in the L∞
x norm;

(γ ) b is time dependent and satifies (H1′), (H2′), (H3), (H4′), (H5′), (H6);
(δ) b satifies assumptions that are any combinations of (α), (β), (γ ) above.
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We mainly skip such extensions, but shall incidentally indicate the modifica-
tions of the arguments, in particular when dealing with case (α). Apart from the
extensions (α), (β), (γ ), (δ), we shall also consider, from Subsection 5.3 on, the
case when b has only an L2 regularity.

Our strategy is first to come back to a deterministic situation. Without entering
the details of the theory of diffusion processes (which will be made below, see
Subsection 5.2), it suffices to mention here that in order to give a meaning to
(5.1), we shall make use of the special form of this SDE to prove it can be given
a meaning pathwise. This motivates the introduction of the following problem:
giving a meaning to an equation of the form

dX(t) = b(X(t))dt + dω(t),

where ω is a given (deterministic) continuous-in-time function. This will be done
in Subsection 5.1 below. Then (essentially by replacing ω(t) by a trajectory of
the Brownian motion Wt ) we shall come back to the stochastic framework in
Subsection 5.2.

5.1. A deterministic flow

As mentioned above, we concentrate ourselves here on the differential equation

dX(t) = b(X(t))dt + dω(t), (5.2)

complemented with the initial condition

X(0) = x, (5.3)

where ω is a given (deterministic) function in C0([0,+∞[,RM). The unknown
X(t) takes values inRM , the vector field b mapsRM inRM , and the initial condition
x is fixed inRM . As indicated above, we focus on the “simple” case when the vector
field b satisfies assumptions (P1), (P2), (P3) of Section 4 (assumption (P2) being
possibly strengthened into (Q2)).

Our main trick is to reduce (5.2) to an ODE of a standard form. Up to
a change of variable Y(t) = X(t) − ω(t), (5.2) is formally equivalent to the ODE
Ẏ(t) = b(Y(t) + ω(t)) complemented by the initial condition Y(t)|t=0 = x − ω(0).
It is therefore natural to introduce the vector field

bω(t, y) = b(y + ω(t)), (5.4)

and consider the ordinary differential equation
{

Ẏ = bω (t, Y ),

Y(t = s) = y,
(5.5)

with its flow Yω(t, s, y) formally defined (for the time being) by





d

dt
Yω(t, s, y) = bω (t, Yω(t, s, y)),

Yω(t = s, s, y) = y.
(5.6)

The formal equivalence above motivates the following definition:
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Definition 5.1. We shall say that X(t, s, x) is an almost everywhere flow for the
ordinary differential equation

dX(t) = b(X(t)) dt + dω(t) for t ≥ s ≥ 0

complemented with the initial condition

X(s) = x,

when X(t, s, x) reads

X(t, s, x) = Yω(t, s, x − ω(s)) + ω(t), (5.7)

for all t ≥ s ≥ 0, where Yω(t, s, y) is an almost everywhere flow (in the sense of
[2]) of the ordinary differential equation (5.6).

Next, let us recall at this point that if we assume that b(x) satisfies assump-
tions (P1), (P2) and (P3), then the field bω(t, y) defined from b by (5.4) satifies the
properties needed, in the time-dependent case to uniquely define an almost every-
where flow Yω for (5.6). These properties have been written above, namely in (H1′),
(H2′) and (H3′). It suffices to remark that all algebraic properties and all norms with
respect to the space variable remain unchanged: the change of variables is a simple
translation with ω(t). It is useful, for self consistency, to recall here the properties
obtained (in [2]) for the unique flow Yω of an ODE with a time-dependent right-
hand-side such as (5.6), which is defined as a function continuous with respect to
(t, s) and valued in the space L of almost everywhere finite measurable functions
of y, namely:

• (a) we have the conservation of the Lebesgue measure (in the case when the
original vector field b is divergencefree, otherwise the modification of this
measure is controlled, see [2]);

• (b) the semigroup property Yω(t3, t1, y) = Yω(t3, t2, Yω(t2, t1, y)), for all ti ;
• (c) the renormalized equation for (5.6), namely

∂

∂t
β(Yω) = Dβ(Yω) · bω(t, Yω),

with initial condition β(Yω) = β(y) at time t = s, holds in the distribution’s
sense in t, y.

In view of [2], we know that Yω is uniquely defined by properties (a), (b), (c) above.
In addition to other properties for which we refer to [2], we wish to mention that

∂

∂t
Yω = bω(t, Yω)

holds for all t ≥ 0, almost all y. When the additional assumption (Q2) on b is
fulfilled, then Yω takes, continuously in time, its values in L p

loc in the y variable.
The above properties of the flow Yω immediately imply:
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Proposition 5.1. Assume that b satisfies (P1), (P2) and (P3). Then the almost ev-
erywhere flow X(t, s, x) defined by Definition 5.1 exists and is uniquely defined
by properties (a), (b), (c) above (where X − ω replaces Yω accordingly to rela-
tion (5.7)). In addition, X(t, x) = X(t, 0, x) satisfies the ODE (5.2)–(5.3) in the
sense that, almost everywhere in x, one has

X(t, x) = x +
∫ t

0
b(X(s, x)) ds + ω(t) − ω(0).

If b satisfies (Q2), then X(t, x) is continuous in time with values in L1
loc.

5.2. The stochastic flow

We now come back to equation

dXt = b(Xt)dt + dWt, (5.8)

complemented with an initial condition at time t = 0,

Xt |t=0 = X0. (5.9)

In order to set equation (5.8), we fix a Wiener space (Ω,F ,F t ,P, Wt) with
a standard Brownian motion. Each realization ω ∈ Ω is a pair (ω1, ω2), and Ω

is equipped with the product measure of that of Ω1 and Ω2, respectively. The
space Ω1 is the probability space for the initial condition, here fixed at the random
variable X0, whose properties will be made precise later on. On the other hand,
the probability space Ω2 is that for the trajectories of the M-dimensional Wiener
process Wt , valued in RM . The random variable Xt denotes a stochastic process
defined on Ω = Ω1 × Ω2, valued in RM . The drift b, i.e. the vector field in the
terminology of the previous sections, will enjoy specific properties which will be
the main issue examined in the following. Within this precise mathematical setting,
and at least for regular fields b (see above) the meaning of (5.8)–(5.9) can now be
made precise:

Xt(ω1, ω2) = X0(ω1) +
∫ t

0
b(Xs(ω1, ω2)) ds +

∫ t

0
dWs(ω2), (5.10)

for all t ≥ 0, and almost all ω1, ω2.
As above, and with a view to now concentrate on the additional difficulties

created by the stochastic nature of (5.8), we shall again deal in this section with
equations of the form (5.8) when the drift b satisfies assumptions (P1), (P2), (P3) of
Section 4 (assumption (P2) being possibly strengthened into (Q2)). Our arguments
can be slightly modified in order to extend our results to the other cases (α), (β),
(γ ), (δ) listed in Subsection 5.1.

As for the stochastic part of the equation is concerned, we have chosen (for
clarity again) a simple Wiener process Wt in (5.8), but the following situation (that
can also be combined with cases (α), (β), (γ ), (δ) above) can be tackled in the same
manner as below: dWt is replaced by Λ(t)dWt , where Λ(t) is a M × M matrix
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with coefficients depending on time t with a W1,1 regularity (a particular case is
(1.13), where Λ = [Λij ] with Λii = 0 when 1 ≤ i ≤ N, and Λii = 1 when
N + 1 ≤ i ≤ M = 2N).

It is to be emphasized that, on the contrary, when the Wiener process is multi-
plied by a diffusion coefficient (or matrix), namely when we have

dXt = b(Xt)dt + σ(Xt)dWt,

the following arguments will generally not apply (at least for general diffusion
coefficients σ). It is however possible to extend our approach to such situations but
we shall not do so here.

The treatment of (5.8) simply follows from the following observation: for
almost all ω2, we may consider the continuous trajectory Wt(ω2) of the Wiener
process, next set ω(t) = Wt(ω2) and use the results of Subsection 5.1. More
explicitly, we introduce, for almost all ω2, the vector field

bω2(t, y) = b(y + Wt(ω2)), (5.11)

and consider the ordinary differential equation

{
Ẏ = bω2 (t, Y ),

Y(t = s) = y,
(5.12)

with its flow Yω2(t, s, y) formally defined by






d

dt
Yω2(t, s, y) = bω2 (t, Yω2(t, s, y)),

Yω2(t = s, s, y) = y.
(5.13)

Next, in the same spirit as in Definition 5.1, we introduce:

Definition 5.2. Let us be given a Wiener process Wt on Ω2. We shall say that
Xt(s, x, ω2) is an almost everywhere stochastic flow for the stochastic differential
equation

dXt = b(Xt) dt + dWt, for t ≥ s ≥ 0,

complemented with the deterministic initial condition

Xt=s(t, x, ω2) = x,

when Xt(s, x, ω2) reads

Xt(s, x, ω2) = Yω2(t, s, x − Ws(ω2)) + Wt(ω2), (5.14)

for all t ≥ s ≥ 0 and almost all ω2, where Yω2(t, s, y) is an almost everywhere
flow (in the sense of [2]) of the ordinary differential equation (5.12).
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Definition 5.3. Let us now fix some absolutely continuous random variable X0(ω1).
Then we say that Xt(ω1, ω2) is an almost everywhere solution of

{
dXt = b(Xt) dt + dWt,

Xt=0 = X0,
(5.15)

when Xt(ω1, ω2) satisfies (5.10), i.e.,

Xt(ω1, ω2) = X0(ω1) +
∫ t

0
b(Xs(ω1, ω2)) ds +

∫ t

0
dWs(ω2),

for all t ≥ 0, and almost all ω1, ω2. If Xt(s, x, ω2) is a flow in the sense of
Definition 5.2 then

Xt(ω1, ω2) = Xt(0, X0(ω1), ω2) (5.16)

is convenient.

Some comments are in order:

• the term “almost everywhere” for the flow may seem redundant in the context
of stochastic differential equations; however, we wish to keep it here with
a view to have a general definition valid also in the case when equation (5.8) is,
e.g., replaced by a system consisting of an ordinary differential equation and
a stochastic differential equation, as is the case for (1.13); in such a case, we
only recover a notion of almost everywhere flow for the ODE part, and not that
of a classical solution for all initial conditions;

• the notion of flow and solution in the above definitions are “strong” in the sense
of diffusion processes theory, since the Wiener process is a priori given;

• the assumption on the absolute continuity of the initial value X0 is needed
for consistency, when passing from an “almost everywhere in ω1” notion (for
a stochastic initial condition) to an “almost everywhere in x” notion (for a de-
terministic initial condition);

• when the drift b is regular enough, we recover by the above definition the usual
notions of stochastic flow and solution.

A straightforward application of the results of Subsection 5.1 for almost all ω2

yields:

Proposition 5.2. Assume that b satisfies (P1), (P2) and (P3). Then the almost ev-
erywhere stochastic flow defined by Definition 5.2 exists and is uniquely defined by
properties (a), (b), (c) above holding almost everywhere in ω2 (where X − W re-
places Yω2 accordingly to relation (5.14)). In addition, Xt(ω1, ω2) of Definition 5.3
satifies the SDE (5.8)–(5.9) in the sense that, almost everywhere in ω1 and ω2, one
has (5.10), i.e.

Xt(ω1, ω2) = X0(ω1) +
∫ t

0
b(Xs(ω1, ω2)) ds +

∫ t

0
dWs(ω2).

If b satisfies (Q2), then Xt is continuous in time with values in L1
loc.
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Remark 5.1. Another way to state the above result is to claim that almost surely
in ω2, there exists a flow, uniquely defined by properties (a), (b), (c) (where X − W
replaces Yω2 ).

Remark 5.2. We emphasize that, like in the deterministic case, we claim the unique-
ness of the flow (defined by Definition 5.2) but not that of the solution (defined by
Definition 5.3) of the SDE for a given initial condition.

5.3. Existence and uniqueness for the Fokker–Planck equation, and consequences

As a counterpart to the viewpoint of trajectories that has been used in the previous
subsection to understand mathematically a stochastic differential equation of the
form (5.8), one may adopt the viewpoint of densities (or laws). Indeed, the natural
issues that can be considered involve the Fokker–Planck (or forward Kolmogorov)
equation formally associated to (5.8) when the drift b is again not regular, but
enjoys the properties used above. This equation reads

∂p

∂t
+ b · ∇ p − 1

2
∆p = 0, (5.17)

when b is divergencefree (otherwise, henceforth we use the convention that the
term b · ∇ p is to be replaced by div (p b)) and is complemented by some given
initial condition p(t = 0, ·) = p0.

We successively want to address here and in Subsection 5.4 the following
questions:

(i) does there exist a solution to (5.17) ? in which functional space ?
(ii) is such a solution unique ?
(iii) suppose the initial condition X0 of (5.8) admits a density p0, then does

a solution Xt admit a density, p, and is this density a (the ?) solution of
(5.17) with initial condition p0 ?

(iv) conversely, is any solution of (5.17) the density of a solution Xt of (5.8) ?

We shall address these questions under the usual assumptions on the vector field b
that we have used above. In particular, we shall consider the case of interest for
our application in fluid mechanics: the vector field is then of the form b = (b1, b2),
satisfies (H1)–(H6) and the Laplacian operator, formally introduced in (5.17), only
refers to the x2 variable and not to the full variable (x1, x2). As is natural, we shall
see that we must progressively strengthen the assumptions on b to obtain stronger
results, going from question (i) to question (iv). We shall not give the details of
all proofs, as they are clearly reminiscent of those of [2], but rather concentrate
ourselves on some keypoints of the arguments.

As far as the initial condition p0 of (5.17) is concerned, we shall assume
henceforth that it belongs to L1 ∩ L∞(RN ). The L1 assumption is natural since p0

plays the role of the density of a random variable, namely X0. The L∞ assumption is
taken here for simplicity. We actually may weaken these assumptions, in particular
the L∞ assumption which is restrictive from the standpoint of probability theory,
and consider much more general initial conditions. Indeed, all the arguments of the
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following can be adapted through the notion of renormalized solutions, as we did
above in Section 3. We leave such easy, but rather tedious, extensions to the reader.

Let us begin with the existence question (i). For simplicity we assume that b
is a time-independent, divergencefree vector field that we suppose only belongs to
L1

loc(R
M). Then it is an easy exercise to show (first establishing formal a priori

estimates, and next giving a rigorous meaning to them by approximation and
regularization) that there exists some

p ∈ L∞([0, T ], L1 ∩ L∞(RM )) ∩ L2([0, T ], H1(RM))

solution of (5.17). The H1 (in x) regularity can be shown to be optimal, while the L2

(in time) integrability may indeed be improved. The “usual” other cases of vector
fields b can be considered likewise. For instance, some b that are time dependent
and/or that are not divergence free can be dealt with, provided the assumptions of
Section 2 are fulfilled. On the other hand, we may consider the special form of
a vector field b = (b1, b2) satisfying (H1)–(H6), together with a Laplacian operator
with only the x2 variable. Equation (5.17) then reads

∂p

∂t
+ b1(x1) · ∇x1 p + b2(x1, x2) · ∇x2 p − 1

2
∆x2 p = 0. (5.18)

Then, the existence of a solution

p ∈ L∞([0, T ], L1 ∩ L∞
x1 ,x2

(R2N )
) ∩ L2

t,x1

([0, T ] × RN , H1
x2

(RN )
)

can be shown by the same approximation and regularization techniques. The point
is that the H1 regularity then only holds in the x2 variable.

Let us now turn to question (ii) about the uniqueness, which obviously is the
central issue. Our results are contained in the following:

Proposition 5.3. The vector field b is assumed to satisfy (P1), (P2) and (P3) (or
any generalization of these in the spirit of Remark 4.1). Then there is one and only
one solution

p ∈ L∞([0, T ], L1 ∩ L∞(RM )) ∩ L2([0, T ], H1(RM))

of (5.17) satisfying the initial condition p0 ∈ L1 ∩ L∞.

We skip the proof of Proposition 5.3. The proof of the existence statement
has been outlined above, while the uniqueness is a standard consequence of the
arguments of [2].

Before examining the consequences of Proposition 5.3 on the way questions (iii)
and (iv) can be answered, we would like to mention possible extensions of this
proposition, namely:

Proposition 5.4. The vector field b is also assumed to contain a part which is not
in W1,1

loc but in L2
loc, namely it satisfies

(P̃1) b ∈ L2
loc + W1,1

loc (RM ),

together with (P2)–(P3) (or any generalization of these in the spirit of Remark 4.1).
Then the existence and uniqueness stated in Proposition 5.3 still holds.
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The proof of Proposition 5.4 relies upon the following observation. As the
solution p of the Fokker–Planck equation has a better regularity than that of the
transport equation, since p automatically enjoys H1 regularity, one can allow for
a somewhat less regular vector field, thus we have the L2 part in (P̃1). As usual, the
keypoint in the proof of the uniqueness of the solution is the commutation relation
stating (with the notations introduced in (2.6)) that [b ·∇, ρε] (p) converges to zero
in L1

loc as ε goes to zero, thus allowing for a regularization (by convolution with
ρε) of the solution. We therefore only detail here the proof of:

Lemma 5.1. Let b ∈ L2
loc+W1,1

loc (RM ), p ∈ L∞ ∩ H1(RM ). Letρε = 1/εN ρ(·/ε),
where ρ is a fixed, non-negative, compactly supported, smooth function. Then

[b · ∇, ρε] (p)
ε−→0−→ 0 in L1

loc. (5.19)

Proof of Lemma 5.1. To fix the ideas, we assume ρ has compact support in the unit
ball and is of total mass one. The convergence (5.19) is clear for smooth b and p,
and it is also true when b ∈ W1,1

loc and p ∈ L∞ by Lemma II.1 of [2]. Let us now
decompose b = b1 + b2 with b1 ∈ W1,1

loc and b2 ∈ L2
loc . We introduce, for each

δ > 0, a smooth function b2
δ that converges to b2 in L2

loc as δ goes to zero. Likewise,
we introduce, for each δ > 0, a smooth function pδ that converges to p in H1

loc as δ

goes to zero. Arguing by linearity and by density as in [2], we remark that in order
to prove (5.19) for b = b1 + b2 it suffices to show

rε,δ(x) =
∫

∇ p(y) (b2(y) − b2(x)) ρε(x − y) dy

−
∫

∇ pδ(y) (b2
δ(y) − b2

δ(x)) ρε(x − y) dy −→ 0,

(5.20)

in L1
loc, as δ goes to zero, uniformly with respect to ε. We split these two integrals

as follows:

rε,δ(x) = −b2(x)

∫
(∇ p(y) − ∇ pδ(y)) ρε(x − y) dy

+
∫

(∇ p(y) − ∇ pδ(y)) b2(y) ρε(x − y) dy

+ (b2
δ(x) − b2(x))

∫
∇ pδ(y) ρε(x − y) dy

+
∫

∇ pδ(y) (b2(y) − b2
δ(y)) ρε(x − y) dy. (5.21)

The first term can be shown to go to zero in L1
loc because, for any ball BR, one has

∣∣∣∣

∫

x∈BR

b2(x)

∫

y
(∇ p(y) − ∇ pδ(y)) ρε(x − y) dy dx

∣∣∣∣

≤
∫

y
|∇ p(y) − ∇ pδ(y)|

∫

x∈BR

|b2(x)| ρε(x − y) dx dy,

≤ ‖∇ p − ∇ pδ‖L2 ‖χR b2‖L2 ‖ρε‖L1, (5.22)
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using both the Young and Cauchy–Schwarz inequalities, and denoting by χR the
characteristic function of the ball BR. The right-hand side vanishes, uniformly with
respect to ε. The third term of rε,δ in (5.21) can be treated along the same lines. As
for the second term of (5.21), we write

∣∣∣∣

∫

x∈BR

∫

y
(∇ p(y) − ∇ pδ(y)) b2(y) ρε(x − y) dy dx

∣∣∣∣

≤
∫

x∈BR

∫

y∈Bε(x)
|∇ p(y) − ∇ pδ(y)| |b2(y)| ρε(x − y) dy dx,

≤
∫

y∈BR+1

|∇ p(y) − ∇ pδ(y)| |b2(y)|
∫

x∈BR

ρε(x − y) dx dy,

as soon as ε ≤ 1,

≤ ‖∇ p − ∇ pδ‖L2 ‖χR+1 b2‖L2 ‖ρε‖L1 , (5.23)

and the right-hand side vanishes uniformly with respect to ε as δ goes to zero. The
fourth term of rε,δ in (5.21) can be treated likewise. Collecting the four terms, we
complete the proof of Lemma 5.1. ��

It is worth mentioning that, beyond Proposition 5.4, another extension of Propo-
sition 5.3 can be considered. It deals with the case when the Fokker–Planck equation
reads

∂p

∂t
+ b1(x1) · ∇x1 p + b2(x1, x2) · ∇x2 p − 1

2
∆x2 p

= 0 in (0,∞) ×RN1 × RN2 .

(5.24)

As there is a Laplacian in the x2 variable, it allows us to treat the case when the
component b2 of the vector field b also has an L2

x2
part. More precisely, under the

assumptions (H1)–(H2)–(H3)–(H5)–(H6), together with

(H̃4) b2 = b2(x1, x2) ∈ L1
x1 ,loc

(
R

N1 , L2
x2 ,loc + W1,1

x2 ,loc

)

instead of (H4), then the existence and uniqueness of the solution of the above
Fokker–Planck equation (complemented by an initial condition in

(
L1∩L∞(RN )

)∩
L∞

x1
(RN1 , L1

x2
(RN2 ))) can be proven. Again, the same usual extensions for non-

divergence-free and/or time-dependent fields can be considered. We skip the proof
of the above assertion, and only mention the fact that the crucial fact is an exten-
sion of the commutation Lemma 5.1. The latter can be proven by combining the
techniques used in the proof of Lemma 2.1 (see formulae (2.7) and (2.9)) and those
of the proof of Lemma 5.1: each term of the approximation error rε,δ is treated by
the ad hoc technique.

Remark 5.3. We wish to emphasize that all the above results of existence and
uniqueness of the solution of the Fokker–Planck equation can be complemented by
a result of stability of solutions, in the same vein as that of Theorem 3.1. Extensions
for the “usual” other cases of vector field b can be proven.
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5.4. Correspondence between the SDE and the Fokker–Planck equation

We now consider questions (iii) and (iv) that deal with the relationship linking the
solution Xt of the SDE (5.8) with the function p solution of (5.17).

For simplicity, we come back to the case when the vector field satisfies assump-
tions (P1), (P2) and (P3), i.e. is timeindependent, divergencefree, has W1,1 regu-
larity, and satisfies the usual growth condition at infinity. Then we are in a situation
when we may both apply the result of existence/uniqueness of a stochastic flow
(Proposition 5.2) and that of existence/uniqueness of the solution of the Fokker–
Planck equation (Proposition 5.3). It is then easy to answer to questions (iii)–(iv):

Proposition 5.5 (Uniqueness in law). Assume that b satisfies (P1), (P2) and (P3)
and that p0 ∈ L1 ∩ L∞. Then the unique solution p(t, ·) of the Fokker-Planck
equation (5.17) with initial condition p0 is the density at time t of the process
Xt(0, X0(ω1), ω2) where X0 has density p0 and Xt(s, x, ω2) is the unique a.e.
stochastic flow (in the sense of Definition 5.2) of (5.8). In addition, any solution of
(5.8) in the sense of Definition 5.3 with an initial condition X0 that has density p0

has density p(t, ·) for all t.

Remark 5.4. We therefore can also assert that the unique solution f(t, ·) of

∂ f

∂t
− b · ∇ f − 1

2
∆ f = 0

with initial condition f(t = 0, ·) = f0 writes f(t, x) = Eω2( f0(Xt(0, x, ω2)).

Proof of Proposition 5.5 (sketch). The proof is based upon two arguments: regu-
larization of the vector field, and uniqueness (and stability) for the solution of the
Fokker–Planck equation. Let us introduce some field bε, which is both a regular-
ization and a truncation of the field b, in such a way that bε is a bounded continuous
field on RM and bε converges to b in L1

x as ε goes to zero. For such a field, the
stochastic differential equation

dXε
t = bε

(
Xε

t

)
dt + dWt, (5.25)

with initial condition Xε
t=0 = Xε

0 ( a regularization of X0), is well posed by standard
arguments: it admits a unique solution Xε

t . It is also standard that, when Xε
0 admits

a density, denoted by pε
0, then Xε

t has a density pε, which is the unique solution of

∂pε

∂t
+ bε · ∇ pε − 1

2
∆pε = 0 (5.26)

associated to the initial condition pε
0.

Next, the change of variables (5.14) can be made. More precisely, we may
introduce the field

bε,ω2(t, y) = bε(y + Ws(ω2)) (5.27)
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and the flow Y ε,ω2 of the ordinary differential equation






d

ds
Y ε,ω2(t, s, y) = bε,ω2 (Y ε,ω2(t, s, y)),

Y ε,ω2(t = s, s, y) = y.
(5.28)

Then, the flow Xε
t (s, x, ω2) and the solution Xε are related to Y ε,ω2 through

Xε
t (s, x, ω2) = Y ε,ω2(t, s, x − Ws(ω2)) + Wt(ω2),

Xε
t (ω1, ω2) = Y ε,ω2

(
t, 0, Xε

0(ω1)
) + Wt(ω2).

(5.29)

We now want to let ε go to zero, so that bε approximates b. By using the
result of the stability of the solutions of Fokker–Planck equations that is outlined
in Remark 5.3, we may claim that pε converges to p the unique solution of

∂p

∂t
+ b · ∇ p − 1

2
∆p = 0.

On the other hand, as ε goes to zero, the generalized flow Y ε,ω2(t, s, y) of (5.28)
converges to the generalized flow Yω2(t, s, y) of (5.13), in C0

t,s(L y), almost surely
in ω2. Therefore the almost everywhere stochastic flow Xε

t (s, x, ω2) converges to
the almost everywhere stochastic flow Xt(s, x, ω2) of (5.8). Therefore, Xt(ω1, ω2)

is a solution of (5.8).
Now, we already know that the density pε of Xε

t converges in L1
t,y to p. The

two facts imply that p(t, ·) is the density of Xt , first for almost all t, and next (in
view of the pathwise continuity of Xε

t and Xt) for any time t. This concludes the
proof. ��

We now need to make two important comments.
On the one hand, the result of the above proposition clearly also holds when the

field b is assumed to satisfy the usual time-dependent and/or non-divergence-free
assumptions of Section 2. Likewise, using renormalization techniques, it can be
proven to also hold for less regular initial conditions.

On the other hand, however, the case when b has an L2 part, i.e. satisfies
assumption (P̃1), is unclear. The reason is that the results of Proposition 5.2 are not
known to hold in this case. Suppose indeed we consider a regularization bε of the
vector field, together with the associated flow Xε

t for the SDE and the density pε,
solution of the Fokker–Planck equation with regularized field. Then, as ε goes to
zero, we can indeed prove, using Proposition 5.4, that pε converges to p the unique
solution of the Fokker–Planck equation with vector field b. But the convergence of
the flow Xε solution of the regularized SDE is not clear. In fact, the above analysis
of the Fokker–Planck equation shows that Xε converges in law (using the Markov
property) and one sees that, through the Fokker–Planck equation, we can only
determine uniquely in law a flow solving the SDE, or, equivalently, a solution to
the martingale problem “à la Stroock–Varadhan” [5]. However, one needs to define
these notions precisely, and we shall not do so here.
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5.5. On the stochastic transport equation

We would like to conclude this work by briefly examining another viewpoint, that
of the stochastic transport equation associated to (5.8).

We know that a useful rewriting of

dXt = b(Xt) dt + dWt

is obtained by setting

bω2(t, y) = b(y + Wt(ω2)) , Yω2(t, s, x) = Xt(s, x + Ws(ω2), ω2) − Wt(ω2),

and reads

dYω2(t) = bω2(t, Yω2(t)) dt.

On the other hand, we know from the results of [4], recalled in Section 4 above,
that as soon as b is L1, there is, for almost all ω2, a one-to-one correspondence
between the almost everywhere flow Yω2 and the (possibly renormalized) group
solution f ω2 to the transport equation

∂ f ω2

∂t
+ bω2 · ∇ f ω2 = 0. (5.30)

Next, we can formally (for the time being) transform the latter equation into
the stochastic transport equation

d f + (b(x) dt + dWt(ω2)) · ∇ f −
(

1

2
∆ f

)
dt = 0, (5.31)

simply by considering

f(t, x, ω2) = f ω2(t, x − Wt(ω2)), (5.32)

and (formally) applying the Ito formula. Equation (5.31) has a unique solution in
the distributions sense when the initial condition f0 is in L1 ∩ L∞ (and in the sense
of renormalized solutions when the initial condition f0 is only in L1).

The above formal manipulations leading from (5.30) to (5.31) can be given
a rigorous meaning: one gives a distributional sense to (5.30), then applies the
change of variable (5.32) and Ito formula on the C∞ test functions, and obtains
(5.31) in the distributional sense.

We therefore have proven the one-to-one correspondence, for almost all ω2,
between the stochastic flow of (5.8) and the solution to the stochastic transport
equation (5.31), for any b of regularity L1 (divergencefree, for simplicity).

In addition, when b enjoys (e.g.) properties (P1), (P2) and (P3), we may prove
within this setting the existence and uniqueness of the two objects, the flow Xt on
the one hand and the solution f on the other hand, which are uniquely related to
one another.

The solution f of the equation

∂ f

∂t
+ b · ∇ f − 1

2
∆ f = 0

can then be recovered from f ω2 :

f(t, x) = Eω2

(
f(t, x, ω2)

)
.
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