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Corollary 1.3 has been amended. The text is reproduced here. The original Section
4.3 has been deleted. Substantial changes have been made to Sections 6 and 7, and
the text is reproduced here on the following pages.

Corollary 1.3. Let R be a real closed field and let S ⊂ Rk be defined by
∧

P∈P1

P = 0
∧

P∈P2

P > 0
∧

P∈P3

P < 0

with deg(P) ≤ 2 for each P ∈⋃i=0,1,2 Pi , and #
⋃

i=0,1,2 Pi = s.
Then, for all � ≥ 0,

bk−�(S) ≤
(

s

�

)
kO(�).

In the following proof, as well as later in the paper, we will extend the ground
field R by infinitesimal elements. We denote by R〈ζ 〉 the real closed field of
algebraic Puiseux series in ζ with coefficients in R (see [9] for more details).
The sign of a Puiseux series in R〈ζ 〉 agrees with the sign of the coefficient of
the lowest degree term in ζ . This induces a unique order on R〈ζ 〉 which makes
ζ infinitesimal: ζ is positive and smaller than any positive element of R. When
a ∈ R〈ζ 〉 is bounded from above and below by some elements of R, limζ (a) is the
constant term of a, obtained by substituting 0 for ζ in a. Given a semialgebraic set
S in Rk , the extension of S to R′, denoted Ext(S,R′), is the semialgebraic subset of
R′k defined by the same quantifier-free formula that defines S. The set Ext(S,R′) is
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well defined (i.e., it only depends on the set S and not on the quantifier-free formula
chosen to describe it). This is an easy consequence of the transfer principle (see,
for instance, [9]).

Proof of Corollary 1.3. Let 0 < δ 
 ε 
 1 be infinitesimals. We first replace
the set S by the set S′ ⊂ R〈ε〉k defined by S′ = Ext(S,R〈ε〉) ∩ B̄k(0, 1/ε), where
B̄k(0, r) denotes the closed ball of radius r centered at the origin. It follows from
Hardt’s triviality theorem for semialgebraic mappings [19] that bi (S) = bi (S′) for
all i ≥ 0. We then replace S′ by the set S′′ ⊂ R〈ε, δ〉k defined by∧

P∈P1

P ≤ 0 ∧ −P ≤ 0
∧

P∈P2

−P + δ ≤ 0
∧

P∈P3

−P − δ

≤ 0
∧
ε2(X2

1 + · · · + X2
k )− 1 ≤ 0.

It follows from Hardt’s triviality again that bi (S′) = bi (S′′) for all i ≥ 0. Now
apply Theorem 1.1.
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6. Computing the Cohomology Groups of a Basic Semi-Algebraic Set
Defined by Homogeneous Quadratic Inequalities

In this section, we will show how to effectively compute the spectral sequence
described in the previous section.

Let P = (P1, . . . , Ps) ⊂ R[X0, . . . , Xk] be a s-tuple of quadratic forms. For
any subset Q ⊂ P , we denote by TQ ⊂ Sk , the semi-algebraic set,

TQ =
⋃
P∈Q

{x ∈ Sk | P(x) ≤ 0},

and let

S =
⋂
P∈P
{x ∈ Sk | P(x) ≤ 0}.

We denote by C•(H(TQ)) the co-chain complex of a cellular subdivision,H(TQ)
of TQ, which is to be chosen sufficiently fine (to be specified later).

We first describe for each subset Q ⊂ P with #Q = � < k, a complex,M•
Q,

and natural homomorphisms,

ψQ : C•(H(TQ))→M•
Q,

which induce isomorphisms,

ψ∗Q : H∗(C•(H(TQ)))→ H∗(M•
Q).

Moreover, for B ⊂ A ⊂ P with #A = #B + 1 < k, we construct a homomor-
phism of complexes,

ϕA,B :M•
A→M•

B,

such that the following diagram commutes,

H∗(M•
A)

ϕ∗A,B ✲ H∗(M•
B)

H∗(C•(H(TA)))

ψ∗A

✻

r∗✲ H∗(C•(H(TB)))

ψ∗B

✻

(6.1)

where ϕ∗A,B and r∗ are the induced homomorphisms of ϕA,B and the restriction
homomorphism r respectively.

Now, consider a fixed subsetQ ⊂ P , which without loss of generality we take
to be {P1, . . . , P�}. Let

P = (P1, . . . , P�) : Rk+1 → R�

denote the corresponding quadratic map.
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As in the previous section, let RQ = R�, and

�Q = {ω ∈ R� | |ω| = 1, ωi ≤ 0, 1 ≤ i ≤ �}.
Let BQ ⊂ �Q × Sk be the set defined by,

BQ = {(ω, x) | ω ∈ �Q, x ∈ Sk and ωP(x) ≥ 0},
and we denote by ϕ1,Q : BQ → �Q and ϕ2,Q : BQ → Sk the two projection
maps.

For each subset Q′ ⊂ Q we have a natural inclusion �Q′ ↪→ �Q. Let

hQ : �Q→ �Q

be a semi-algebraic triangulation of�Q, which is compatible with the subsets�Q′
for every Q′ ⊂ Q, and such that for any simplex σ of �Q, index(ωP), as well as
the multiplicities of the eigenvalues of ωP , stay invariant as ω varies over hQ(σ ).
Note that by a simplex of certain dimension we mean an open simplex of that
dimension. The following proposition relates the homotopy type of ϕ−1

1,Q(hQ(σ ))
to that of a single fiber.

Proposition 4. For any simplex σ ∈ �Q and ω ∈ hQ(σ ), ϕ
−1
1,Q(hQ(σ )) is

homotopy equivalent to ϕ−1
1,Q(ω), and both these spaces have the homotopy type

of the sphere Sk−index(ωP).

Proof. Let i = index(ωP). Since index(ωP) is invariant asω varies over hQ(σ ),
the quadratic forms ωP has exactly i negative eigen-values for each ω ∈ hQ(σ ).
Let M(σ, ω) ⊂ Rk+1 be the orthogonal complement to the linear span of the
corresponding eigen-vectors, and let B(σ, ω) = M(σ, ω) ∩ Sk . Clearly, M(σ, ω)
and B(σ, ω) vary continuously with ω, and ϕ−1

1,Q(ω) can be retracted to the set
{ω}×B(σ, ω). Finally, since hQ(σ ) is contractible toω, its clear that ϕ−1

1,Q(hQ(σ ))

retracts to {ω} × B(σ, ω) and the latter has the homotopy type of Sk−index(ωP) by
Lemma 5.1.

Our next goal is to construct a cell complex homotopy equivalent to BQ obtained
by glueing together certain regular cell complexes, K(σ ), where σ ∈ �Q.

Let 1 ≥ ε0 � ε1 � · · · � εs � 0 be infinitesimals. For η ∈ �Q, we denote
by Cη the subset of η̄ defined by,

Cη = {x ∈ η̄ | and dist(x, θ) ≥ εdim(θ) for all θ ≺ σ }.
Now, let σ ≺ η be two simplices of �Q. We denote by Cσ,η the subset of η̄

defined by,

Cσ,η = {x ∈ η̄ | dist(x, σ ) ≤ εdim(σ ), and dist(x, θ) ≥ εdim(θ) for all θ ≺ σ }.
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η

σ1

σ2

Fig. 1. The complex �Q.

Note that,

|�Q| =
⋃
σ∈�Q

Cσ ∪
⋃

σ,η∈�Q,σ≺η
Cσ,η.

Also, observe that the various Cη’s and Cσ,η’s are each homeomorphic to a
ball, and moreover all non-empty intersections between them also have the same
property. Thus, the union of the Cη’s and Cσ,η’s together with the non-empty
intersections between them form a regular cell complex, C(�Q), whose underlying
topological space is |�Q| (see Figures 1 and 2).

We now associate to each Cσ (respectively, Cσ,η) a regular cell complex,
K(σ ), (respectively,K(σ, η)) homotopy equivalent toϕ−1

1,Q(hQ(Cσ )) (respectively,
ϕ−1

1,Q(hQ(Cσ,η)).

Cη

Cσ1,η

Cη ∩ Cσ1,η ∩ Cσ2,η

Cσ1,σ2

Cσ1,σ2
∩ Cσ2

Cσ2

Cσ2,η

Cη ∩ Cσ2,η

Fig. 2. The corresponding complex C(�Q).
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For each σ ∈ �Q, and ω ∈ hQ(σ ), let

λσ0 (ω) = · · · = λσi0
(ω) < λσi0+1(ω) = · · · = λσi1

(ω) < · · · < λσip−1+1(ω) = · · · =
λσip
(ω) < 0 = · · · = λσip+1

(ω) < · · · = · · · = λσk (ω)
denote the eigenvalues ofωP . Here, index(ωP) = ip+1. Also, since the multiplic-
ities of the eigenvalues do not change as ω varies over hQ(σ ), the block structure,
[0, . . . , i0], [i0 + 1, . . . , i1], . . . , [·, . . . , k] also does not change as ω varies over
hQ(σ ). For 0 ≤ j ≤ p, let M j (σ, ω) denote the subspace of Rk+1 orthogonal
to the subspace spanned by the eigenvectors corresponding to the eigenvalues
λσ0 (ω) = · · · = λσi0

(ω) < λσi0+1(ω) = · · · = λσi1
(ω) < · · · < λσip−1+1(ω) = · · · =

λσi j
(ω), and let M(σ, ω) = M p(σ, ω). Since the eigenvalues vary continuously and

their multiplicities do not change as ω varies over hQ(σ ), the flag of subspaces
M0(σ, ω) ⊃ · · · ⊃ M p(σ, ω) also varies continuously over hQ(σ ).

For each σ ∈ �Q, and ω ∈ hQ(σ ), let {e0(σ, ω), . . . , ek(σ, ω)}, be a continu-
ously varying orthonormal basis of Rk+1, computed using a parametrized version
of Gram-Schmidt orthogonalization algorithm, such that ei (σ, ω), . . . , ek(σ, ω),

form an orthonormal basis of M p(σ, ω) = M(σ, ω),where i = index(ωP). Since
the number and the degrees of the polynomials defining the triangulation �Q
are bounded by k2O(�)

, and the complexity of Gram-Schmidt orthogonalization is
polynomial in the size of the input matrix, it is clear that the univariate repre-
sentations defining the parametrized orthonormal basis {e0(σ, ω), . . . , ek(σ, ω)},
have complexity bounded by k2O(�)

. After having computed the orthonormal basis,
{e0(σ, ω), . . . , ek(σ, ω)},we extend it continuously to each Cσ,η for η with σ ≺ η,
satisfying the condition that

M(σ, ω) ⊂ span(ei (σ, ω), . . . , ek(σ, ω)).

This extension can be done in a consistent manner because the first i eigenvalues,
λ0(ωP), . . . , λi−1(ωP) ofωP stay negative, and λi−1(ωP) < λi (ωP) forω in any
infinitesimal neighborhood of hQ(Cσ ). Thus, the linear subspace of Rk orthogonal
to the eigenspaces corresponding to the eigenvalues, λ0(ωP), . . . , λi−1(ωP) is
well-defined and varies continuously with ω in any infinitesimal neighborhood of
hQ(Cσ ).

The orthonormal basis

{e0(σ, ω), . . . , ek(σ, ω)},
determines a complete flag of subspaces, F(σ, ω), consisting of

L0(σ, ω) = 0,

L1(σ, ω) = span(ek(σ, ω)),

L2(σ, ω) = span(ek(σ, ω), ek−1(σ, ω)),

...

Lk+1(σ, ω) = Rk+1.
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For 0 ≤ j ≤ k, let c+j (σ, ω) (respectively, c−j (σ, ω)) denote the (k − j)-
dimensional cell consisting of the intersection of the Lk− j+1(σ, ω) with the unit
hemisphere in Rk+1 defined by {x ∈ Sk | 〈x, ej (σ, ω)〉 ≥ 0} (respectively, {x ∈
Sk | 〈x, ej (σ, ω)〉 ≤ 0}).

The regular cell complex K(σ ) (as well as K(σ, η)) is defined as follows.
The cells ofK(σ ) are {(x, ω) | x ∈ c±j (σ, ω), ω ∈ hQ(c)}, where index(ωP) ≤

j ≤ k, and c ∈ C(�Q) is either Cσ itself, or a cell contained in the boundary of Cσ .
Similarly, the cells of K(σ, η) are {(x, ω) | x ∈ c±j (σ, ω), ω ∈ hQ(c)}, where

index(ωP) ≤ j ≤ k, c ∈ C(�Q) is either Cσ,η itself, or a cell contained in the
boundary of Cσ,η.

Our next step is to obtain cellular subdivisions of each non-empty intersection
amongst the spaces associated to the complexes constructed above, and thus obtain
a regular cell complex, K(BQ), homotopy equivalent to BQ.

First notice that |K(σ ′, η′)| (respectively, |K(σ )|) has a non-empty intersection
with |K(σ, η)| only if Cσ ′,η′ (respectively, Cσ ′ ) intersects Cσ,η.

Let C be some non-empty intersection amongst the Cσ ’s and Cσ,η’s, that is C
is a cell of C(�Q). Then, C ⊂ η for a unique simplex η ∈ �Q, and

C = Cσ1,η ∩ · · · ∩ Cσp,η,

with σ1 ≺ σ2 ≺ · · · ≺ σp ≺ η and p ≤ #Q+ 1.
Consider ω ∈ hQ(C). We have p different flags,

F(σ1, ω), . . . ,F(σp, ω),

giving rise to p independent regular cell decompositions of B(ω, η) =
M(ω, η) ∩ Sk .

There is a unique smallest regular cell complex,K′(C, ω), that refines all these
cell decompositions. The cells of this cell decomposition consists of the following.
Let L ⊂ M(ω, η) be any linear subspace of dimension m, 0 ≤ m ≤ k+1, which is
an intersection, of linear subspaces L1, . . . , L p, where Li ∈ F(σi , ω), 1 ≤ i ≤ p.
The elements of the flags,F(σ1, ω), . . . ,F(σp, ω) of dimensions m+1, partition L
into polyhedral cones of various dimensions. The union of the sets of intersections
of these cones with Sk , over all such subspaces L ⊂ M(ω, η), are the cells of
K′(C, ω). Figure 3 illustrates the refinement described above in case of two flags
in R3.

We now triangulate hQ(C), using the algorithm implicit in Theorem 3.2 (Tri-
angulation), such that the combinatorial type of the arrangement of flags,

F(σ1, ω), . . . ,F(σp, ω)

and hence the cell decompositionK′(C, ω), stays invariant over the image, hC(θ),
of each simplex, θ , of this triangulation. More precisely, we first compute a family
of polynomials, AC ⊂ R[Z1, . . . , Z�] whose signs at ω determine the combina-
torial type of the corresponding arrangement of flags. It is easy to verify that the
number and degrees of the polynomials in the familyAC is bounded by k2O(�)

. We
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F(σ1, ω)

F(σ2, ω)

Fig. 3. The cell complex K′(C, ω).

then use the algorithm implicit in Theorem 3.2 (Triangulation), withAC as input,
to obtain the required triangulation.

The closures of the sets

{(ω, x) | x ∈ c ∈ K′(C, ω), ω ∈ hQ(hC(θ))}

constitute a regular cell complex, K(C), which is compatible with the regular cell
complexes K(σ1), . . . ,K(σp).

The following proposition gives an upper bound on the size of the complex
K(C). We use the notation introduced in the previous paragraph.

Proposition 5. For eachω ∈ hQ(C), the number of cells inK′(C, ω) is bounded
by kO(�). Moreover, the number of cells in the complex K(C) is bounded by k2O(�)

.

Proof. The first part of the proposition follows from the fact that there are at most
k#Q+1 = k�+1 choices for the linear space L and the number of (m−1) dimensional
cells contained in L is bounded by 2� (which is an upper bound on the number
of full dimensional cells in an arrangement of at most � hyperplanes). The second
part is a consequence of the complexity estimate in Theorem 3.2 (Triangulation)
and the bounds on number and degrees of polynomials in the family AC stated
above.
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We denote by K(BQ), the union of all the complexes K(C) constructed above,
noting that by construction, K(BQ) is a regular cell complex.

Proposition 6. |K(BQ)| is homotopy equivalent to BQ.

Proof. We first show that BQ is homotopy equivalent to a subset B ′Q ⊂ BQ
as follows. For each simplex σ ∈ �Q of the largest dimension �, we use the
retraction used in the proof of Proposition 4, to retract ϕ−1

1 (hQ(relint(Cσ ))) to
the set {(ω, x) | ω ∈ relint(Cσ ), x ∈ B(ω, σ )}. In this way we obtain a semi-
algebraic set, X ′�, which is a deformation retract of Ext(BQ,R〈ε0, . . . , ε�−1〉). Let
X� = limε�−1 X ′�. Notice that in the definition of X ′�, if we replace ε�−1 by a variable
t and denote the corresponding set by X ′�,t , then for all 0 < t < t ′, X ′�,t ⊂ X ′�,t ′
and each X�,t is closed and bounded. It then follows (see Lemma 16.17 in [9]) that
Ext(X�,R〈ε0, . . . , ε�−1〉) has the same homotopy type as X ′�, and hence X� has
the same homotopy type as Ext(BQ,R〈ε0, . . . , ε�−2〉).

Now repeat the process using the (�− 1)-dimensional simplices and so on, to
finally obtain X0 = B ′Q, which by construction has the same homotopy type as BQ.
Finally, (again using Lemma 16.17 in [9]) we also have that X0 = limε0 |K(BQ)|
and Ext(X0,R〈ε0, . . . , ε�−1〉) has the same homotopy type as |K(BQ)|.

We also have,

Proposition 7. The number of cells in the cell complex K(BQ) is bounded by
k2O(�)

.

Proof. The proposition is a consequence of Proposition 5 and the fact that the
number of cells in the complex C(�Q) is bounded by k2O(�)

.

We now define,

M•
Q = C•(K(BQ),

where C•(K(BQ) is the cellular co-chain complex of the regular cell complex
K(BQ).

Let H(TQ) (resp. H(BQ)) be a suitably fine cellular subdivision of TQ (resp.
BQ) and let

ϕ′2,Q : C•(H(BQ))→ C•(H(TQ)),

be the homomorphism induced by a cellular map, which is a cellular approximation
of ϕ2,Q.

Let ϕQ : |K(BQ)| → BQ denote the homotopy equivalence shown to exist by
Proposition 6 above and let

ϕ′Q : C•(K′(BQ))→ C•(H(BQ)),
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be the homomorphism induced by a cellular approximation to ϕQ, where K′(BQ)
is a cellular subdivision of the complex K(BQ).

Since, each cell of K(BQ) is a union of cells of K′(BQ), there is a natural
homomorphism

θQ : C•(K(BQ))→ C•(K′(BQ))

obtained by sending each p-dimensional cell ofK(BQ) to the sum of p-dimensional
cells of K′(BQ) contained in it, for every p ≥ 0. It is a standard fact that θQ and
its dual, θ̌Q, are quasi-isomorphisms.

Let

ψQ = θ̌Q ◦ ϕ̌′Q ◦ ϕ̌′2,Q : C•(H(TQ))→ C•(K(BQ)),

where ϕ̌′Q (resp. ϕ̌′2,Q) is the dual homomorphism of ϕ′Q (resp. ϕ′2,Q).

Proposition 8. For 0 ≤ i ≤ k − 1, the induced homomorphisms,

ψ∗Q : Hi (C•(H(TQ)))→ Hi (M•
Q)

are isomorphisms.

Proof. The proof is clear since ψQ is a composition of quasi-isomorphisms.

Now let, B ⊂ A ⊂ P with #A = #B + 1 < k.
The simplicial complex �B is a subcomplex of �A and hence, K(BB) is a

subcomplex ofK(BA) and thus there exists a natural homomorphism (induced by
restriction),

ϕA,B :M•
A→M•

B.

The complexesM•
A,M•

B, and the homomorphisms, ϕA,B, ψA, ψB satisfy

Proposition 9. The diagram

M•
A

ϕA,B ✲ M•
B

C•(H(TA))

ψA

✻

r✲ C•(H(TB))

ψB

✻

is commutative, where r is the restriction homomorphism.

Proof. Clear from the construction.
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It follows from Proposition 9 that the diagram (6.1) is also commutative.
We denote by

ϕ̌B,A : M̌•
B → M̌•

A

the homomorphism dual to ϕA,B. We denote by D•,•P the double complex defined
by:

D p,q
P =

⊕
Q⊂P,#Q=p+1

M̌q
Q.

The vertical differentials,

d : D p,q
P → D p,q−1

P ,

are induced componentwise from the differentials of the individual complexes
M̌•
Q. The horizontal differentials,

δ : D p,q
P → D p+1,q

P ,

are defined as follows: for a ∈ D p,q
P = ⊕#Q=p+1M̌q

Q, for each subset Q =
{Pi0 , . . . , Pip+1} ⊂ P with i0 < · · · < ip+1, the Q-th component of δa ∈ D p+1,q

P
is given by,

(δa)Q =
∑

0≤ j≤p+1

ϕ̌Qj ,Q(aQj ),

where Qj = Q \ {Pij }.
...

...
...
d


d

d

0 −→ ⊕#Q=1M̌3
Q

δ−→ ⊕#Q=2M̌3
Q

δ−→ ⊕#Q=3M̌3
Q −→ · · ·
d


d

d

0 −→ ⊕#Q=1M̌2
Q

δ−→ ⊕#Q=2M̌2
Q

δ−→ ⊕#Q=3M̌2
Q −→ · · ·
d


d

d

0 −→ ⊕#Q=1M̌1
Q

δ−→ ⊕#Q=2M̌1
Q

δ−→ ⊕#Q=3M̌1
Q −→ · · ·
d


d

d

0 −→ ⊕#Q=1M̌0
Q

δ−→ ⊕#Q=2M̌0
Q

δ−→ ⊕#Q=3M̌0
Q −→ · · ·
d


d

d

0 0 0

We have the following theorem.

Theorem 6.1. For 0 ≤ i ≤ k,

Hi (S) ∼= Hi (Tot•(D•,•P )).
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Proof. For each i, 1 ≤ i ≤ s, let Si ⊂ Sk denote, the set defined on Sk by
Pi ≤ 0. Then, S = ∩s

i=1Si . Choosing a suitably fine triangulation of ∪s
i=1Si

consider the Mayer-Vietoris double complex, N •,•, as described in Section 3.5.
The homomorphisms,⊕

Q⊂P,#Q=p+1

ψ̌Q :
⊕

Q⊂P,#Q=p+1

M̌q
Q −→

⊕
Q⊂P,#Q=p+1

Cq(H(TQ))

give a homomorphism of the double complexes,

ψ : D•,•P −→ N •,•. (6.2)

By Proposition 8, ψ induces isomporphisms between the E1 terms of the two
spectral sequences, obtained by taking homology with respect to the vertical dif-
ferentials. Theorem 3.1 then implies thatψ induces isomorphisms in the associated
spectral sequences. But, the second spectral sequence converges to the homology
of S by (3.1). The theorem is an immediate consequence.

7. Algorithms for quadratic forms

In this section we describe the algorithm for computing the top Betti numbers of a
basic semi-algebraic set defined by quadratic forms. We first describe an algorithm
for computing the complexes M̌•

Q described in the previous section.

ALGORITHM 1 (Build Complex for Unions).

INPUT:
(A) An integer �, 0 ≤ � ≤ k.
(B) A quadratic map P = (P1, . . . , Ps) : Rk+1 → Rs given by s homoge-

neous quadratic polynomials, P1, . . . , Ps ∈ R[X0, . . . , Xk].
OUTPUT:

(A) For each subset Q ⊂ P = {P1, . . . , Ps}, #Q ≤ �+ 2 a description of
the complex M̌Q, consisting of a basis for each term of the complex
and matrices (in this basis) for the differentials.

(B) For eachQ′ ⊂ Q,with #Q = #Q′+1,matrices for the homomorphisms,

ϕ̌Q′,Q : M̌•
Q′ → M̌•

Q.

PROCEDURE

Step 1 For each subset Q = {Pi1 , . . . , Pi�+2} ⊂ P , with #Q = �+ 2, let PQ be
the quadratic map corresponding to the subset Q.
Let ZQ = (Zi1 , . . . , Zi�+2) and let MQ be the symmetric matrix corresponding
to the quadratic form ZQ · PQ = Zi1 Pi1 + · · · + Zi�+2 Pi�+2 . The entries of MQ
depend linearly on Zi1 , . . . , Zi�+2 . Let,

F(ZQ, T ) = det(MQ + T · Ik+1) = T k+1 + Ck T k + · · · + C0,

92



Computing Betti Numbers of Sets Defined by Quadratic Inequalities

where each Ci ∈ R[Zi1 , . . . , Zi�+2 ] is a polynomial of degree at most k+ 1. Let
AQ = {C0, . . . ,Ck}.

Step 2 Using the algorithm implicit in Theorem 3.2 (Triangulation), compute a
semi-algebraic triangulation,

hQ : �Q→ �Q,

respecting the family AQ ∪ ElimT ({F(ZQ, T )}) (see [9] for the definition of
Elim), such that for any subset Q′ ⊂ Q, �Q′ is a sub-complex of �Q.

Step 3 Construct the cell complex C(�Q).
Step 4 For each cell C ∈ C(�Q), compute using a parametrized version of Gram-

Schmidt orthogonalizations, as well as the the algorithm implicit in Theorem
3.2 (Triangulation), the cell complex K(C) and thus obtain a description of
K(BQ).

Step 5 Compute the matrices corresponding to the differentials in the complex
M•
Q = C•(K(BQ)).

Step 6 For Q′ ⊂ Q ⊂ P with #Q = #Q′ + 1 < k, compute the matrices for the
homomorphisms of complexes,

ϕ̌Q′,Q : M̌•
Q′ → M̌•

Q.

in the following way.
The simplicial complex K(BQ′) is a subcomplex of K(BQ) by construction.
Compute the matrix for the restriction homomorphism,

ϕQ,Q′ : C•(K(BQ))→ C•(K(BQ′)).

and output the matrix for the dual homomorphism.

COMPLEXITY ANALYSIS: The complexity of Step 1 is
∑�+2

i=0

(s
i

)
kO(i). The com-

plexity of Step 2 is
∑�+2

i=0

(s
i

)
k2O(min(�,s))

, using the complexity of the algorithm for
triangulating semi-algebraic sets. It follows from Proposition 7 that the complex-
ities of all the remaining steps are also bounded by

∑�+2
i=0

(s
i

)
k2O(min(�,s))

.

Proof of Correctness.. It follows from Descarte’s rule of signs (see Remark
2.42, page 41 in [9]) that for any z ∈ �Q, index(z PQ) is equal to the number
of sign variations in the sequence C0(z), . . . ,Ck(z),+1. Thus, the signs of the
polynomials AQ = {C0, . . . ,Ck} determine the index of z PQ. Hence for any
simplex σ of �Q, index(ωPQ) stays invariant as ω varies over hQ(σ ).

The correctness of the algorithm is now a consequence of Proposition 6 and
Proposition 9.

Let P1, . . . , Ps ∈ R[X0, . . . , Xk] be homogeneous quadratic polynomials, and
consider the set S ⊂ Sk defined by, S = {x ∈ Sk | P1(x) ≤ 0, . . . , Ps ≤ 0}.

We will also denote for 1 ≤ i ≤ s, by Si the set defined by {x ∈ Sk | Pi (x) ≤ 0.}
Clearly, S = ∩1≤i≤s Si .
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ALGORITHM 2 (Computing the highest � Betti Numbers: the homogeneous case).

INPUT: A quadratic map P = (P1, . . . , Ps) : Rk+1 → Rs given by a set, P =
{P1, . . . , Ps} ⊂ R[X0, . . . , Xk], of s homogeneous quadratic polynomials.

OUTPUT: bk(S), . . . , bk−�(S), where S is the set defined by

S =
⋂
P∈P
{x ∈ Sk | P(x) ≤ 0}.

PROCEDURE

Step 1 Using Algorithm 1 compute the truncated complex D•,•� , i.e.

D p,q
� = D p,q , 0 ≤ p ≤ �+ 1, k − �− 1 ≤ q ≤ k,

= 0, otherwise,

Step 2 Compute using linear algebra, the ranks of

Hi (Tot•(D•,•� )), k − �+ 1 ≤ i ≤ k.

Step 3 For each i, k − � ≤ i ≤ k, output, bi (S) = rank(Hi (Tot•(D•,•� ))).

COMPLEXITY ANALYSIS: The number of algebraic operations is clearly bounded
by
∑�+2

i=0

(s
i

)
k2O(min(�,s))

using the complexity analysis of Algorithm 1.

Proof of Correctness. The correctness of the algorithm is a consequence of the
correctness of Algorithm 1 and Theorem 6.1.

Remark 7.1. Suppose that (using Notation from Algorithm 2) P ′ ⊂ P and

S′ =
⋂

P∈P ′
{x ∈ Sk | P(x) ≤ 0},

and letting D′•,•� denote the corresponding complex for S′, it is clear from the
definition that there is a homomorphism,�P,P ′ : D•,•� → D′•,•� defined as follows.

For

ϕ =
⊕

Q⊂P,#Q=p+1

ϕQ ∈ D p,q
� =

⊕
Q⊂P,#Q=p+1

M̌q
Q,

�P,P ′(ϕ) =
⊕

Q⊂P ′,#Q=p+1

ϕQ.

Recall from 6.2 that there exists,

ψ : D•,•� −→ N •,•
�

which induces an isomorphism, ψ∗ : H∗(Tot•(D•,•� )) −→ H∗(Tot•(N •,•
� )).
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Denoting byN ′•,•
� the (truncated) Mayer-Vietoris complex for S′ and by iP,P ′ :

N •,•
� → N ′•,•

� the inclusion homomorphism, we have the following commutative
diagram.

H∗(Tot•(D•,•� ))
�∗P,P ′✲ H∗(Tot•(D′•,•� ))

H∗(Tot•(N •,•
� )))

ψ∗

❄ i∗✲ H∗(Tot•(N ′•,•
� )))

ψ ′∗

❄

Note that H∗(Tot•(N •,•)) ∼= H∗(S) and H∗(Tot•(N ′•,•)) ∼= H∗(S′).
It is clear that Algorithm 2 can be easily modified to output the complex D•,•� ,

by outputting the matrices corresponding to the vertical and horizontal homomor-
phisms in the chosen bases. Furthermore, given a subset P ′ ⊂ P , Algorithm 2
can be made to output both the complexes D•,•� and D′•,•� along with the matrices
defining the homomorphism �P,P ′ with the same complexity bounds.
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