Errata for Computing the Top Betti Numbers of Semialgebraic Sets Defined by Quadratic Inequalities in Polynomial Time (DOI: 10.1007/s10208-005-0208-8)

FOUNDATIONS OF

COMPUTATIONAL MATHEMATICS

Saugata Basu

Corollary 1.3 has been amended. The text is reproduced here. The original Section 4.3 has been deleted. Substantial changes have been made to Sections 6 and 7, and the text is reproduced here on the following pages.

Corollary 1.3. Let R be a real closed field and let $S \subset \mathbb{R}^k$ be defined by

$$\bigwedge_{P\in\mathcal{P}_1}P=0\bigwedge_{P\in\mathcal{P}_2}P>0\bigwedge_{P\in\mathcal{P}_3}P<0$$

with deg(P) ≤ 2 for each $P \in \bigcup_{i=0,1,2} \mathcal{P}_i$, and $\# \bigcup_{i=0,1,2} \mathcal{P}_i = s$. Then, for all $\ell \geq 0$,

$$b_{k-\ell}(S) \leq {\binom{s}{\ell}} k^{O(\ell)}.$$

In the following proof, as well as later in the paper, we will extend the ground field R by infinitesimal elements. We denote by $R\langle \zeta \rangle$ the real closed field of algebraic Puiseux series in ζ with coefficients in R (see [9] for more details). The sign of a Puiseux series in $R\langle \zeta \rangle$ agrees with the sign of the coefficient of the lowest degree term in ζ . This induces a unique order on $R\langle \zeta \rangle$ which makes ζ infinitesimal: ζ is positive and smaller than any positive element of R. When $a \in R\langle \zeta \rangle$ is bounded from above and below by some elements of R, $\lim_{\zeta} (a)$ is the constant term of *a*, obtained by substituting 0 for ζ in *a*. Given a semialgebraic set *S* in \mathbb{R}^k , the *extension* of *S* to \mathbb{R}' , denoted $\operatorname{Ext}(S, \mathbb{R}')$, is the semialgebraic subset of \mathbb{R}'^k defined by the same quantifier-free formula that defines *S*. The set $\operatorname{Ext}(S, \mathbb{R}')$ is

Online publication: April 23, 2008.

well defined (i.e., it only depends on the set S and not on the quantifier-free formula chosen to describe it). This is an easy consequence of the transfer principle (see, for instance, [9]).

Proof of Corollary 1.3. Let $0 < \delta \ll \varepsilon \ll 1$ be infinitesimals. We first replace the set *S* by the set $S' \subset \mathbb{R}\langle \varepsilon \rangle^k$ defined by $S' = \operatorname{Ext}(S, \mathbb{R}\langle \varepsilon \rangle) \cap \overline{B}_k(0, 1/\varepsilon)$, where $\overline{B}_k(0, r)$ denotes the closed ball of radius *r* centered at the origin. It follows from Hardt's triviality theorem for semialgebraic mappings [**19**] that $b_i(S) = b_i(S')$ for all $i \ge 0$. We then replace *S'* by the set $S'' \subset \mathbb{R}\langle \varepsilon, \delta \rangle^k$ defined by

$$\bigwedge_{P \in \mathcal{P}_1} P \leq 0 \wedge -P \leq 0 \bigwedge_{P \in \mathcal{P}_2} -P + \delta \leq 0 \bigwedge_{P \in \mathcal{P}_3} -P - \delta$$
$$\leq 0 \bigwedge \varepsilon^2 (X_1^2 + \dots + X_k^2) - 1 \leq 0.$$

It follows from Hardt's triviality again that $b_i(S') = b_i(S'')$ for all $i \ge 0$. Now apply Theorem 1.1.

6. Computing the Cohomology Groups of a Basic Semi-Algebraic Set Defined by Homogeneous Quadratic Inequalities

In this section, we will show how to effectively compute the spectral sequence described in the previous section.

Let $\mathcal{P} = (P_1, \ldots, P_s) \subset \mathbb{R}[X_0, \ldots, X_k]$ be a *s*-tuple of quadratic forms. For any subset $\mathcal{Q} \subset \mathcal{P}$, we denote by $T_{\mathcal{Q}} \subset \mathbf{S}^k$, the semi-algebraic set,

$$T_{\mathcal{Q}} = \bigcup_{P \in \mathcal{Q}} \{ x \in \mathbf{S}^k \mid P(x) \le 0 \}.$$

and let

$$S = \bigcap_{P \in \mathcal{P}} \{ x \in \mathbf{S}^k \mid P(x) \le 0 \}.$$

We denote by $C^{\bullet}(\mathcal{H}(T_{\mathcal{Q}}))$ the co-chain complex of a cellular subdivision, $\mathcal{H}(T_{\mathcal{Q}})$ of $T_{\mathcal{Q}}$, which is to be chosen sufficiently fine (to be specified later).

We first describe for each subset $Q \subset P$ with $\#Q = \ell < k$, a complex, $\mathcal{M}_{Q}^{\bullet}$, and natural homomorphisms,

$$\psi_{\mathcal{Q}}: C^{\bullet}(\mathcal{H}(T_{\mathcal{Q}})) \to \mathcal{M}_{\mathcal{Q}}^{\bullet},$$

which induce isomorphisms,

$$\psi_{\mathcal{Q}}^*: H^*(C^{\bullet}(\mathcal{H}(T_{\mathcal{Q}}))) \to H^*(\mathcal{M}_{\mathcal{Q}}^{\bullet}).$$

Moreover, for $\mathcal{B} \subset \mathcal{A} \subset \mathcal{P}$ with $\#\mathcal{A} = \#\mathcal{B} + 1 < k$, we construct a homomorphism of complexes,

$$\varphi_{\mathcal{A},\mathcal{B}}:\mathcal{M}^{\bullet}_{\mathcal{A}}\to\mathcal{M}^{\bullet}_{\mathcal{B}},$$

such that the following diagram commutes,

where $\varphi_{\mathcal{A},\mathcal{B}}^*$ and r^* are the induced homomorphisms of $\varphi_{\mathcal{A},\mathcal{B}}$ and the restriction homomorphism *r* respectively.

Now, consider a fixed subset $Q \subset P$, which without loss of generality we take to be $\{P_1, \ldots, P_\ell\}$. Let

$$P = (P_1, \ldots, P_\ell) : \mathbb{R}^{k+1} \to \mathbb{R}^\ell$$

denote the corresponding quadratic map.

As in the previous section, let $R^{Q} = R^{\ell}$, and

$$\Omega_{\mathcal{Q}} = \{ \omega \in \mathbb{R}^{\ell} \mid |\omega| = 1, \omega_i \le 0, 1 \le i \le \ell \}.$$

Let $B_{\mathcal{Q}} \subset \Omega_{\mathcal{Q}} \times \mathbf{S}^k$ be the set defined by,

$$B_{\mathcal{Q}} = \{(\omega, x) \mid \omega \in \Omega_{\mathcal{Q}}, x \in \mathbf{S}^k \text{ and } \omega P(x) \ge 0\},\$$

and we denote by $\varphi_{1,Q} : B_Q \to \Omega_Q$ and $\varphi_{2,Q} : B_Q \to \mathbf{S}^k$ the two projection maps.

For each subset $Q' \subset Q$ we have a natural inclusion $\Omega_{Q'} \hookrightarrow \Omega_Q$. Let

$$h_{\mathcal{Q}}: \Delta_{\mathcal{Q}} \to \Omega_{\mathcal{Q}}$$

be a semi-algebraic triangulation of Ω_Q , which is compatible with the subsets $\Omega_{Q'}$ for every $Q' \subset Q$, and such that for any simplex σ of Δ_Q , index(ωP), as well as the multiplicities of the eigenvalues of ωP , stay invariant as ω varies over $h_Q(\sigma)$. Note that by a simplex of certain dimension we mean an open simplex of that dimension. The following proposition relates the homotopy type of $\varphi_{1,Q}^{-1}(h_Q(\sigma))$ to that of a single fiber.

Proposition 4. For any simplex $\sigma \in \Delta_Q$ and $\omega \in h_Q(\sigma)$, $\varphi_{1,Q}^{-1}(h_Q(\sigma))$ is homotopy equivalent to $\varphi_{1,Q}^{-1}(\omega)$, and both these spaces have the homotopy type of the sphere $\mathbf{S}^{k-\text{index}(\omega P)}$.

Proof. Let $i = \text{index}(\omega P)$. Since $\text{index}(\omega P)$ is invariant as ω varies over $h_Q(\sigma)$, the quadratic forms ωP has exactly *i* negative eigen-values for each $\omega \in h_Q(\sigma)$. Let $M(\sigma, \omega) \subset \mathbb{R}^{k+1}$ be the orthogonal complement to the linear span of the corresponding eigen-vectors, and let $B(\sigma, \omega) = M(\sigma, \omega) \cap \mathbf{S}^k$. Clearly, $M(\sigma, \omega)$ and $B(\sigma, \omega)$ vary continuously with ω , and $\varphi_{1,Q}^{-1}(\omega)$ can be retracted to the set $\{\omega\} \times B(\sigma, \omega)$. Finally, since $h_Q(\sigma)$ is contractible to ω , its clear that $\varphi_{1,Q}^{-1}(h_Q(\sigma))$ retracts to $\{\omega\} \times B(\sigma, \omega)$ and the latter has the homotopy type of $\mathbf{S}^{k-\text{index}(\omega P)}$ by Lemma 5.1.

Our next goal is to construct a cell complex homotopy equivalent to B_Q obtained by glueing together certain regular cell complexes, $\mathcal{K}(\sigma)$, where $\sigma \in \Delta_Q$.

Let $1 \ge \varepsilon_0 \gg \varepsilon_1 \gg \cdots \gg \varepsilon_s \gg 0$ be infinitesimals. For $\eta \in \Delta_Q$, we denote by C_η the subset of $\bar{\eta}$ defined by,

$$C_{\eta} = \{x \in \overline{\eta} \mid \text{ and } \operatorname{dist}(x, \theta) \ge \varepsilon_{\operatorname{dim}(\theta)} \text{ for all } \theta \prec \sigma\}.$$

Now, let $\sigma \prec \eta$ be two simplices of Δ_Q . We denote by $C_{\sigma,\eta}$ the subset of $\bar{\eta}$ defined by,

$$C_{\sigma,\eta} = \{x \in \overline{\eta} \mid \operatorname{dist}(x,\sigma) \leq \varepsilon_{\operatorname{dim}(\sigma)}, \text{ and } \operatorname{dist}(x,\theta) \geq \varepsilon_{\operatorname{dim}(\theta)} \text{ for all } \theta \prec \sigma\}.$$

Fig. 1. The complex Δ_Q .

Note that,

$$|\Delta_{\mathcal{Q}}| = \bigcup_{\sigma \in \Delta_{\mathcal{Q}}} C_{\sigma} \cup \bigcup_{\sigma, \eta \in \Delta_{\mathcal{Q}}, \sigma \prec \eta} C_{\sigma, \eta}.$$

Also, observe that the various C_{η} 's and $C_{\sigma,\eta}$'s are each homeomorphic to a ball, and moreover all non-empty intersections between them also have the same property. Thus, the union of the C_{η} 's and $C_{\sigma,\eta}$'s together with the non-empty intersections between them form a regular cell complex, $C(\Delta_Q)$, whose underlying topological space is $|\Delta_Q|$ (see Figures 1 and 2).

We now associate to each C_{σ} (respectively, $C_{\sigma,\eta}$) a regular cell complex, $\mathcal{K}(\sigma)$, (respectively, $\mathcal{K}(\sigma, \eta)$) homotopy equivalent to $\varphi_{1,\mathcal{Q}}^{-1}(h_{\mathcal{Q}}(C_{\sigma}))$ (respectively, $\varphi_{1,\mathcal{Q}}^{-1}(h_{\mathcal{Q}}(C_{\sigma,\eta}))$.

Fig. 2. The corresponding complex $C(\Delta_Q)$.

For each $\sigma \in \Delta_Q$, and $\omega \in h_Q(\sigma)$, let

$$\lambda_0^{\sigma}(\omega) = \dots = \lambda_{i_0}^{\sigma}(\omega) < \lambda_{i_0+1}^{\sigma}(\omega) = \dots = \lambda_{i_1}^{\sigma}(\omega) < \dots < \lambda_{i_{p-1}+1}^{\sigma}(\omega) = \dots = \lambda_{i_p}^{\sigma}(\omega) < 0 = \dots = \lambda_{i_{p+1}}^{\sigma}(\omega) < \dots = \dots = \lambda_k^{\sigma}(\omega)$$

denote the eigenvalues of ωP . Here, $\operatorname{index}(\omega P) = i_p + 1$. Also, since the multiplicities of the eigenvalues do not change as ω varies over $h_Q(\sigma)$, the block structure, $[0, \ldots, i_0], [i_0 + 1, \ldots, i_1], \ldots, [\cdot, \ldots, k]$ also does not change as ω varies over $h_Q(\sigma)$. For $0 \le j \le p$, let $M^j(\sigma, \omega)$ denote the subspace of \mathbb{R}^{k+1} orthogonal to the subspace spanned by the eigenvectors corresponding to the eigenvalues $\lambda_0^{\sigma}(\omega) = \cdots = \lambda_{i_0}^{\sigma}(\omega) < \lambda_{i_0+1}^{\sigma}(\omega) = \cdots = \lambda_{i_1}^{\sigma}(\omega) < \cdots < \lambda_{i_{p-1}+1}^{\sigma}(\omega) = \cdots = \lambda_{i_j}^{\sigma}(\omega)$, and let $M(\sigma, \omega) = M^p(\sigma, \omega)$. Since the eigenvalues vary continuously and their multiplicities do not change as ω varies over $h_Q(\sigma)$, the flag of subspaces $M^0(\sigma, \omega) \supset \cdots \supset M^p(\sigma, \omega)$ also varies continuously over $h_Q(\sigma)$.

For each $\sigma \in \Delta_Q$, and $\omega \in h_Q(\sigma)$, let $\{e_0(\sigma, \omega), \ldots, e_k(\sigma, \omega)\}$, be a continuously varying orthonormal basis of \mathbb{R}^{k+1} , computed using a parametrized version of Gram-Schmidt orthogonalization algorithm, such that $e_i(\sigma, \omega), \ldots, e_k(\sigma, \omega)$, form an orthonormal basis of $M^p(\sigma, \omega) = M(\sigma, \omega)$, where $i = \operatorname{index}(\omega P)$. Since the number and the degrees of the polynomials defining the triangulation Δ_Q are bounded by $k^{2^{O(\ell)}}$, and the complexity of Gram-Schmidt orthogonalization is polynomial in the size of the input matrix, it is clear that the univariate representations defining the parametrized orthonormal basis $\{e_0(\sigma, \omega), \ldots, e_k(\sigma, \omega)\}$, have complexity bounded by $k^{2^{O(\ell)}}$. After having computed the orthonormal basis, $\{e_0(\sigma, \omega), \ldots, e_k(\sigma, \omega)\}$, we extend it continuously to each $C_{\sigma,\eta}$ for η with $\sigma \prec \eta$, satisfying the condition that

$$M(\sigma, \omega) \subset \operatorname{span}(e_i(\sigma, \omega), \ldots, e_k(\sigma, \omega))$$

This extension can be done in a consistent manner because the first *i* eigenvalues, $\lambda_0(\omega P), \ldots, \lambda_{i-1}(\omega P)$ of ωP stay negative, and $\lambda_{i-1}(\omega P) < \lambda_i(\omega P)$ for ω in any infinitesimal neighborhood of $h_Q(C_\sigma)$. Thus, the linear subspace of \mathbb{R}^k orthogonal to the eigenspaces corresponding to the eigenvalues, $\lambda_0(\omega P), \ldots, \lambda_{i-1}(\omega P)$ is well-defined and varies continuously with ω in any infinitesimal neighborhood of $h_Q(C_\sigma)$.

The orthonormal basis

$$\{e_0(\sigma, \omega), \ldots, e_k(\sigma, \omega)\},\$$

determines a complete flag of subspaces, $\mathcal{F}(\sigma, \omega)$, consisting of

$$L^{0}(\sigma, \omega) = 0,$$

$$L^{1}(\sigma, \omega) = \operatorname{span}(e_{k}(\sigma, \omega)),$$

$$L^{2}(\sigma, \omega) = \operatorname{span}(e_{k}(\sigma, \omega), e_{k-1}(\sigma, \omega)),$$

$$\vdots$$

$$L^{k+1}(\sigma, \omega) = \mathbb{R}^{k+1}.$$

For $0 \le j \le k$, let $c_j^+(\sigma, \omega)$ (respectively, $c_j^-(\sigma, \omega)$) denote the (k - j)dimensional cell consisting of the intersection of the $L^{k-j+1}(\sigma, \omega)$ with the unit hemisphere in \mathbb{R}^{k+1} defined by $\{x \in \mathbb{S}^k \mid \langle x, e_j(\sigma, \omega) \rangle \ge 0\}$ (respectively, $\{x \in \mathbb{S}^k \mid \langle x, e_j(\sigma, \omega) \rangle \ge 0\}$).

The regular cell complex $\mathcal{K}(\sigma)$ (as well as $\mathcal{K}(\sigma, \eta)$) is defined as follows.

The cells of $\mathcal{K}(\sigma)$ are $\{(x, \omega) \mid x \in c_j^{\pm}(\sigma, \omega), \omega \in h_Q(c)\}$, where index $(\omega P) \leq j \leq k$, and $c \in \mathcal{C}(\Delta_Q)$ is either C_σ itself, or a cell contained in the boundary of C_σ .

Similarly, the cells of $\mathcal{K}(\sigma, \eta)$ are $\{(x, \omega) \mid x \in c_j^{\pm}(\sigma, \omega), \omega \in h_Q(c)\}$, where index $(\omega P) \leq j \leq k, c \in \mathcal{C}(\Delta_Q)$ is either $C_{\sigma,\eta}$ itself, or a cell contained in the boundary of $C_{\sigma,\eta}$.

Our next step is to obtain cellular subdivisions of each non-empty intersection amongst the spaces associated to the complexes constructed above, and thus obtain a regular cell complex, $\mathcal{K}(B_Q)$, homotopy equivalent to B_Q .

First notice that $|\mathcal{K}(\sigma', \eta')|$ (respectively, $|\mathcal{K}(\sigma)|$) has a non-empty intersection with $|\mathcal{K}(\sigma, \eta)|$ only if $C_{\sigma', \eta'}$ (respectively, $C_{\sigma'}$) intersects $C_{\sigma, \eta}$.

Let *C* be some non-empty intersection amongst the C_{σ} 's and $C_{\sigma,\eta}$'s, that is *C* is a cell of $\mathcal{C}(\Delta_{\mathcal{Q}})$. Then, $C \subset \eta$ for a unique simplex $\eta \in \Delta_{\mathcal{Q}}$, and

$$C = C_{\sigma_1,\eta} \cap \cdots \cap C_{\sigma_p,\eta},$$

with $\sigma_1 \prec \sigma_2 \prec \cdots \prec \sigma_p \prec \eta$ and $p \leq \#Q + 1$.

Consider $\omega \in h_Q(C)$. We have *p* different flags,

$$\mathcal{F}(\sigma_1,\omega),\ldots,\mathcal{F}(\sigma_p,\omega),$$

giving rise to p independent regular cell decompositions of $B(\omega, \eta) = M(\omega, \eta) \cap \mathbf{S}^k$.

There is a unique smallest regular cell complex, $\mathcal{K}'(C, \omega)$, that refines all these cell decompositions. The cells of this cell decomposition consists of the following. Let $L \subset M(\omega, \eta)$ be any linear subspace of dimension $m, 0 \le m \le k+1$, which is an intersection, of linear subspaces L_1, \ldots, L_p , where $L_i \in \mathcal{F}(\sigma_i, \omega), 1 \le i \le p$. The elements of the flags, $\mathcal{F}(\sigma_1, \omega), \ldots, \mathcal{F}(\sigma_p, \omega)$ of dimensions m+1, partition L into polyhedral cones of various dimensions. The union of the sets of intersections of these cones with \mathbf{S}^k , over all such subspaces $L \subset M(\omega, \eta)$, are the cells of $\mathcal{K}'(C, \omega)$. Figure 3 illustrates the refinement described above in case of two flags in \mathbb{R}^3 .

We now triangulate $h_Q(C)$, using the algorithm implicit in Theorem 3.2 (Triangulation), such that the combinatorial type of the arrangement of flags,

$$\mathcal{F}(\sigma_1, \omega), \ldots, \mathcal{F}(\sigma_p, \omega)$$

and hence the cell decomposition $\mathcal{K}'(C, \omega)$, stays invariant over the image, $h_C(\theta)$, of each simplex, θ , of this triangulation. More precisely, we first compute a family of polynomials, $\mathcal{A}_C \subset \mathbb{R}[Z_1, \ldots, Z_\ell]$ whose signs at ω determine the combinatorial type of the corresponding arrangement of flags. It is easy to verify that the number and degrees of the polynomials in the family \mathcal{A}_C is bounded by $k^{2^{O(\ell)}}$. We

Fig. 3. The cell complex $\mathcal{K}'(C, \omega)$.

then use the algorithm implicit in Theorem 3.2 (Triangulation), with A_C as input, to obtain the required triangulation.

The closures of the sets

$$\{(\omega, x) \mid x \in c \in \mathcal{K}'(C, \omega), \omega \in h_{\mathcal{O}}(h_C(\theta))\}$$

constitute a regular cell complex, $\mathcal{K}(C)$, which is compatible with the regular cell complexes $\mathcal{K}(\sigma_1), \ldots, \mathcal{K}(\sigma_p)$.

The following proposition gives an upper bound on the size of the complex $\mathcal{K}(C)$. We use the notation introduced in the previous paragraph.

Proposition 5. For each $\omega \in h_Q(C)$, the number of cells in $\mathcal{K}'(C, \omega)$ is bounded by $k^{O(\ell)}$. Moreover, the number of cells in the complex $\mathcal{K}(C)$ is bounded by $k^{2^{O(\ell)}}$.

Proof. The first part of the proposition follows from the fact that there are at most $k^{\#Q+1} = k^{\ell+1}$ choices for the linear space *L* and the number of (m-1) dimensional cells contained in *L* is bounded by 2^{ℓ} (which is an upper bound on the number of full dimensional cells in an arrangement of at most ℓ hyperplanes). The second part is a consequence of the complexity estimate in Theorem 3.2 (Triangulation) and the bounds on number and degrees of polynomials in the family A_C stated above.

We denote by $\mathcal{K}(B_Q)$, the union of all the complexes $\mathcal{K}(C)$ constructed above, noting that by construction, $\mathcal{K}(B_Q)$ is a regular cell complex.

Proposition 6. $|\mathcal{K}(B_Q)|$ is homotopy equivalent to B_Q .

Proof. We first show that $B_{\mathcal{Q}}$ is homotopy equivalent to a subset $B'_{\mathcal{Q}} \subset B_{\mathcal{Q}}$ as follows. For each simplex $\sigma \in \Delta_{\mathcal{Q}}$ of the largest dimension ℓ , we use the retraction used in the proof of Proposition 4, to retract $\varphi_1^{-1}(h_{\mathcal{Q}}(\operatorname{relint}(C_{\sigma})))$ to the set $\{(\omega, x) \mid \omega \in \operatorname{relint}(C_{\sigma}), x \in B(\omega, \sigma)\}$. In this way we obtain a semialgebraic set, X'_{ℓ} , which is a deformation retract of $\operatorname{Ext}(B_{\mathcal{Q}}, \mathbb{R}\langle \varepsilon_0, \ldots, \varepsilon_{\ell-1} \rangle)$. Let $X_{\ell} = \lim_{\varepsilon_{\ell-1}} X'_{\ell}$. Notice that in the definition of X'_{ℓ} , if we replace $\varepsilon_{\ell-1}$ by a variable t and denote the corresponding set by $X'_{\ell,t}$, then for all $0 < t < t', X'_{\ell,t} \subset X'_{\ell,t'}$ and each $X_{\ell,t}$ is closed and bounded. It then follows (see Lemma 16.17 in [**9**]) that $\operatorname{Ext}(X_{\ell}, \mathbb{R}\langle \varepsilon_0, \ldots, \varepsilon_{\ell-1} \rangle)$ has the same homotopy type as X'_{ℓ} , and hence X_{ℓ} has the same homotopy type as $\operatorname{Ext}(B_{\mathcal{Q}}, \mathbb{R}\langle \varepsilon_0, \ldots, \varepsilon_{\ell-2} \rangle)$.

Now repeat the process using the $(\ell - 1)$ -dimensional simplices and so on, to finally obtain $X_0 = B'_Q$, which by construction has the same homotopy type as B_Q . Finally, (again using Lemma 16.17 in [9]) we also have that $X_0 = \lim_{\varepsilon_0} |\mathcal{K}(B_Q)|$ and $\operatorname{Ext}(X_0, \mathbb{R}\langle \varepsilon_0, \dots, \varepsilon_{\ell-1} \rangle)$ has the same homotopy type as $|\mathcal{K}(B_Q)|$.

We also have,

Proposition 7. The number of cells in the cell complex $\mathcal{K}(B_Q)$ is bounded by $k^{2^{o(\ell)}}$.

Proof. The proposition is a consequence of Proposition 5 and the fact that the number of cells in the complex $C(\Delta_Q)$ is bounded by $k^{2^{O(\ell)}}$.

We now define,

$$\mathcal{M}^{\bullet}_{\mathcal{O}} = C^{\bullet}(\mathcal{K}(B_{\mathcal{Q}})),$$

where $C^{\bullet}(\mathcal{K}(B_Q))$ is the cellular co-chain complex of the regular cell complex $\mathcal{K}(B_Q)$.

Let $\mathcal{H}(T_Q)$ (resp. $\mathcal{H}(B_Q)$) be a suitably fine cellular subdivision of T_Q (resp. B_Q) and let

$$\varphi'_{2,\mathcal{Q}}: C_{\bullet}(\mathcal{H}(B_{\mathcal{Q}})) \to C_{\bullet}(\mathcal{H}(T_{\mathcal{Q}})),$$

be the homomorphism induced by a cellular map, which is a cellular approximation of $\varphi_{2,Q}$.

Let $\varphi_Q : |\mathcal{K}(B_Q)| \to B_Q$ denote the homotopy equivalence shown to exist by Proposition 6 above and let

$$\varphi_{\mathcal{O}}': C_{\bullet}(\mathcal{K}'(B_{\mathcal{Q}})) \to C_{\bullet}(\mathcal{H}(B_{\mathcal{Q}})),$$

be the homomorphism induced by a cellular approximation to φ_Q , where $\mathcal{K}'(B_Q)$ is a cellular subdivision of the complex $\mathcal{K}(B_Q)$.

Since, each cell of $\mathcal{K}(B_Q)$ is a union of cells of $\mathcal{K}'(B_Q)$, there is a natural homomorphism

$$\theta_{\mathcal{Q}}: C_{\bullet}(\mathcal{K}(B_{\mathcal{Q}})) \to C_{\bullet}(\mathcal{K}'(B_{\mathcal{Q}}))$$

obtained by sending each *p*-dimensional cell of $\mathcal{K}(B_Q)$ to the sum of *p*-dimensional cells of $\mathcal{K}'(B_Q)$ contained in it, for every $p \ge 0$. It is a standard fact that θ_Q and its dual, $\check{\theta}_Q$, are quasi-isomorphisms.

Let

$$\psi_{\mathcal{Q}} = \dot{\theta}_{\mathcal{Q}} \circ \check{\varphi}'_{\mathcal{Q}} \circ \check{\varphi}'_{2,\mathcal{Q}} : C^{\bullet}(\mathcal{H}(T_{\mathcal{Q}})) \to C^{\bullet}(\mathcal{K}(B_{\mathcal{Q}})),$$

where $\check{\varphi}'_{\mathcal{Q}}$ (resp. $\check{\varphi}'_{2,\mathcal{Q}}$) is the dual homomorphism of $\varphi'_{\mathcal{Q}}$ (resp. $\varphi'_{2,\mathcal{Q}}$).

Proposition 8. For $0 \le i \le k - 1$, the induced homomorphisms,

$$\psi_{\mathcal{O}}^*: H^i(C^{\bullet}(\mathcal{H}(T_{\mathcal{Q}}))) \to H^i(\mathcal{M}_{\mathcal{O}}^{\bullet})$$

are isomorphisms.

Proof. The proof is clear since ψ_Q is a composition of quasi-isomorphisms. \Box

Now let, $\mathcal{B} \subset \mathcal{A} \subset \mathcal{P}$ with $#\mathcal{A} = #\mathcal{B} + 1 < k$.

The simplicial complex $\Delta_{\mathcal{B}}$ is a subcomplex of $\Delta_{\mathcal{A}}$ and hence, $\mathcal{K}(B_{\mathcal{B}})$ is a subcomplex of $\mathcal{K}(B_{\mathcal{A}})$ and thus there exists a natural homomorphism (induced by restriction),

$$\varphi_{\mathcal{A},\mathcal{B}}: \mathcal{M}^{\bullet}_{\mathcal{A}} \to \mathcal{M}^{\bullet}_{\mathcal{B}}.$$

The complexes $\mathcal{M}^{\bullet}_{\mathcal{A}}, \mathcal{M}^{\bullet}_{\mathcal{B}}$, and the homomorphisms, $\varphi_{\mathcal{A},\mathcal{B}}, \psi_{\mathcal{A}}, \psi_{\mathcal{B}}$ satisfy

Proposition 9. The diagram

$$\begin{array}{c|c} \mathcal{M}^{\bullet}_{\mathcal{A}} & \xrightarrow{\varphi_{\mathcal{A},\mathcal{B}}} & \mathcal{M}^{\bullet}_{\mathcal{B}} \\ & \psi_{\mathcal{A}} & & \psi_{\mathcal{B}} \\ & & \psi_{\mathcal{B}} \\ C^{\bullet}(\mathcal{H}(T_{\mathcal{A}})) & \xrightarrow{r} & C^{\bullet}(\mathcal{H}(T_{\mathcal{B}})) \end{array}$$

is commutative, where r is the restriction homomorphism.

Proof. Clear from the construction.

It follows from Proposition 9 that the diagram (6.1) is also commutative. We denote by

$$\check{\varphi}_{\mathcal{B},\mathcal{A}}: \check{\mathcal{M}}^{\bullet}_{\mathcal{B}} \to \check{\mathcal{M}}^{\bullet}_{\mathcal{A}}$$

the homomorphism dual to $\varphi_{\mathcal{A},\mathcal{B}}$. We denote by $\mathcal{D}_{\mathcal{P}}^{\bullet,\bullet}$ the double complex defined by:

$$\mathcal{D}_{\mathcal{P}}^{p,q} = \bigoplus_{\mathcal{Q} \subset \mathcal{P}, \#\mathcal{Q} = p+1} \check{\mathcal{M}}_{\mathcal{Q}}^{q}.$$

The vertical differentials,

$$d: \mathcal{D}_{\mathcal{P}}^{p,q} \to \mathcal{D}_{\mathcal{P}}^{p,q-1},$$

are induced componentwise from the differentials of the individual complexes $\check{\mathcal{M}}^{\bullet}_{\mathcal{O}}$. The horizontal differentials,

$$\delta: \mathcal{D}^{p,q}_{\mathcal{P}} \to \mathcal{D}^{p+1,q}_{\mathcal{P}},$$

are defined as follows: for $a \in \mathcal{D}_{\mathcal{P}}^{p,q} = \bigoplus_{\#\mathcal{Q}=p+1} \check{\mathcal{M}}_{\mathcal{Q}}^{q}$, for each subset $\mathcal{Q} = \{P_{i_0}, \ldots, P_{i_{p+1}}\} \subset \mathcal{P}$ with $i_0 < \cdots < i_{p+1}$, the \mathcal{Q} -th component of $\delta a \in \mathcal{D}_{\mathcal{P}}^{p+1,q}$ is given by,

$$(\delta a)_{\mathcal{Q}} = \sum_{0 \le j \le p+1} \check{\varphi}_{\mathcal{Q}_j,\mathcal{Q}}(a_{\mathcal{Q}_j}),$$

.

where $Q_j = Q \setminus \{P_{i_j}\}.$

We have the following theorem.

Theorem 6.1. For $0 \le i \le k$, $H^i(S) \cong H^i(\operatorname{Tot}^{\bullet}(\mathcal{D}_{\mathcal{D}}^{\bullet,\bullet})).$ *Proof.* For each $i, 1 \leq i \leq s$, let $S_i \subset \mathbf{S}^k$ denote, the set defined on \mathbf{S}^k by $P_i \leq 0$. Then, $S = \bigcap_{i=1}^s S_i$. Choosing a suitably fine triangulation of $\bigcup_{i=1}^s S_i$ consider the Mayer-Vietoris double complex, $\mathcal{N}^{\bullet,\bullet}$, as described in Section 3.5. The homomorphisms,

$$\bigoplus_{\mathcal{Q}\subset\mathcal{P},\#\mathcal{Q}=p+1}\check{\psi}_{\mathcal{Q}}:\bigoplus_{\mathcal{Q}\subset\mathcal{P},\#\mathcal{Q}=p+1}\check{\mathcal{M}}_{\mathcal{Q}}^{q}\longrightarrow\bigoplus_{\mathcal{Q}\subset\mathcal{P},\#\mathcal{Q}=p+1}C_{q}(\mathcal{H}(T_{\mathcal{Q}}))$$

give a homomorphism of the double complexes,

$$\psi: \mathcal{D}_{\mathcal{P}}^{\bullet, \bullet} \longrightarrow \mathcal{N}^{\bullet, \bullet}. \tag{6.2}$$

By Proposition 8, ψ induces isomporphisms between the E_1 terms of the two spectral sequences, obtained by taking homology with respect to the vertical differentials. Theorem 3.1 then implies that ψ induces isomorphisms in the associated spectral sequences. But, the second spectral sequence converges to the homology of *S* by (3.1). The theorem is an immediate consequence.

7. Algorithms for quadratic forms

In this section we describe the algorithm for computing the top Betti numbers of a basic semi-algebraic set defined by quadratic forms. We first describe an algorithm for computing the complexes $\check{\mathcal{M}}_{\mathcal{O}}^{\bullet}$ described in the previous section.

ALGORITHM 1 (Build Complex for Unions).

INPUT:

- (A) An integer ℓ , $0 \le \ell \le k$.
- (B) A quadratic map $P = (P_1, \ldots, P_s) : \mathbb{R}^{k+1} \to \mathbb{R}^s$ given by s homogeneous quadratic polynomials, $P_1, \ldots, P_s \in \mathbb{R}[X_0, \ldots, X_k]$.

OUTPUT:

- (A) For each subset $Q \subset \mathcal{P} = \{P_1, \ldots, P_s\}, \#Q \leq \ell + 2$ a description of the complex $\check{\mathcal{M}}_Q$, consisting of a basis for each term of the complex and matrices (in this basis) for the differentials.
- (B) For each $Q' \subset Q$, with #Q = #Q'+1, matrices for the homomorphisms,

$$\check{\varphi}_{\mathcal{Q}',\mathcal{Q}}: \check{\mathcal{M}}^{\bullet}_{\mathcal{Q}'} \to \check{\mathcal{M}}^{\bullet}_{\mathcal{Q}}.$$

PROCEDURE

Step 1 For each subset $Q = \{P_{i_1}, \ldots, P_{i_{\ell+2}}\} \subset P$, with $\#Q = \ell + 2$, let P_Q be the quadratic map corresponding to the subset Q.

Let $Z_Q = (Z_{i_1}, \ldots, Z_{i_{\ell+2}})$ and let M_Q be the symmetric matrix corresponding to the quadratic form $Z_Q \cdot P_Q = Z_{i_1}P_{i_1} + \cdots + Z_{i_{\ell+2}}P_{i_{\ell+2}}$. The entries of M_Q depend linearly on $Z_{i_1}, \ldots, Z_{i_{\ell+2}}$. Let,

$$F(Z_{Q}, T) = \det(M_{Q} + T \cdot I_{k+1}) = T^{k+1} + C_{k}T^{k} + \dots + C_{0},$$

where each $C_i \in \mathbb{R}[Z_{i_1}, \dots, Z_{i_{\ell+2}}]$ is a polynomial of degree at most k + 1. Let $\mathcal{A}_Q = \{C_0, \dots, C_k\}.$

Step 2 Using the algorithm implicit in Theorem 3.2 (Triangulation), compute a semi-algebraic triangulation,

$$h_{\mathcal{Q}}: \Delta_{\mathcal{Q}} \to \Omega_{\mathcal{Q}},$$

respecting the family $\mathcal{A}_{\mathcal{Q}} \cup \operatorname{Elim}_{T}(\{F(Z_{\mathcal{Q}}, T)\})$ (see [9] for the definition of Elim), such that for any subset $\mathcal{Q}' \subset \mathcal{Q}$, $\Delta_{\mathcal{Q}'}$ is a sub-complex of $\Delta_{\mathcal{Q}}$.

Step 3 Construct the cell complex $C(\Delta_Q)$.

- Step 4 For each cell $C \in C(\Delta_Q)$, compute using a parametrized version of Gram-Schmidt orthogonalizations, as well as the the algorithm implicit in Theorem 3.2 (Triangulation), the cell complex $\mathcal{K}(C)$ and thus obtain a description of $\mathcal{K}(B_Q)$.
- Step 5 Compute the matrices corresponding to the differentials in the complex $\mathcal{M}^{\bullet}_{\mathcal{O}} = C^{\bullet}(\mathcal{K}(B_{\mathcal{Q}})).$
- Step 6 For $Q' \subset Q \subset P$ with #Q = #Q' + 1 < k, compute the matrices for the homomorphisms of complexes,

$$\check{\varphi}_{\mathcal{Q}',\mathcal{Q}}: \check{\mathcal{M}}^{\bullet}_{\mathcal{Q}'} \to \check{\mathcal{M}}^{\bullet}_{\mathcal{Q}}.$$

in the following way.

The simplicial complex $\mathcal{K}(B_{Q'})$ is a subcomplex of $\mathcal{K}(B_Q)$ by construction. Compute the matrix for the restriction homomorphism,

$$\varphi_{\mathcal{Q},\mathcal{Q}'}: C^{\bullet}(\mathcal{K}(B_{\mathcal{Q}})) \to C^{\bullet}(\mathcal{K}(B_{\mathcal{Q}'})).$$

and output the matrix for the dual homomorphism.

COMPLEXITY ANALYSIS: The complexity of Step 1 is $\sum_{i=0}^{\ell+2} {s \choose i} k^{O(i)}$. The complexity of Step 2 is $\sum_{i=0}^{\ell+2} {s \choose i} k^{2^{O(\min(\ell,s))}}$, using the complexity of the algorithm for triangulating semi-algebraic sets. It follows from Proposition 7 that the complexities of all the remaining steps are also bounded by $\sum_{i=0}^{\ell+2} {s \choose i} k^{2^{O(\min(\ell,s))}}$.

Proof of Correctness.. It follows from Descarte's rule of signs (see Remark 2.42, page 41 in [9]) that for any $z \in \Omega_Q$, index (zP_Q) is equal to the number of sign variations in the sequence $C_0(z), \ldots, C_k(z), +1$. Thus, the signs of the polynomials $\mathcal{A}_Q = \{C_0, \ldots, C_k\}$ determine the index of zP_Q . Hence for any simplex σ of Δ_Q , index (ωP_Q) stays invariant as ω varies over $h_Q(\sigma)$.

The correctness of the algorithm is now a consequence of Proposition 6 and Proposition 9. $\hfill \Box$

Let $P_1, \ldots, P_s \in \mathbb{R}[X_0, \ldots, X_k]$ be homogeneous quadratic polynomials, and consider the set $S \subset \mathbf{S}^k$ defined by, $S = \{x \in \mathbf{S}^k \mid P_1(x) \le 0, \ldots, P_s \le 0\}$.

We will also denote for $1 \le i \le s$, by S_i the set defined by $\{x \in \mathbf{S}^k \mid P_i(x) \le 0.\}$ Clearly, $S = \bigcap_{1 \le i \le s} S_i$. ALGORITHM 2 (Computing the highest ℓ Betti Numbers: the homogeneous case).

INPUT: A quadratic map $P = (P_1, ..., P_s) : \mathbb{R}^{k+1} \to \mathbb{R}^s$ given by a set, $\mathcal{P} = \{P_1, ..., P_s\} \subset \mathbb{R}[X_0, ..., X_k]$, of s homogeneous quadratic polynomials. OUTPUT: $b_k(S), ..., b_{k-\ell}(S)$, where S is the set defined by

$$S = \bigcap_{P \in \mathcal{P}} \{ x \in \mathbf{S}^k \mid P(x) \le 0 \}.$$

PROCEDURE

Step 1 Using Algorithm 1 compute the truncated complex $\mathcal{D}_{\ell}^{\bullet,\bullet}$, i.e.

$$\mathcal{D}_{\ell}^{p,q} = \mathcal{D}^{p,q}, \quad 0 \le p \le \ell+1, \ k-\ell-1 \le q \le k, = 0, \qquad otherwise,$$

Step 2 Compute using linear algebra, the ranks of

$$H^i(\operatorname{Tot}^{\bullet}(\mathcal{D}_{\ell}^{\bullet,\bullet})), \ k-\ell+1 \le i \le k.$$

Step 3 For each *i*, $k - \ell \le i \le k$, output, $b_i(S) = \operatorname{rank}(H^i(\operatorname{Tot}^{\bullet,\bullet})))$.

COMPLEXITY ANALYSIS: The number of algebraic operations is clearly bounded by $\sum_{i=0}^{\ell+2} {s \choose i} k^{2^{O(\min(\ell,s))}}$ using the complexity analysis of Algorithm 1.

Proof of Correctness. The correctness of the algorithm is a consequence of the correctness of Algorithm 1 and Theorem 6.1. \Box

Remark 7.1. Suppose that (using Notation from Algorithm 2) $\mathcal{P}' \subset \mathcal{P}$ and

$$S' = \bigcap_{P \in \mathcal{P}'} \{ x \in \mathbf{S}^k \mid P(x) \le 0 \},\$$

and letting $\mathcal{D}_{\ell}^{\bullet,\bullet}$ denote the corresponding complex for *S'*, it is clear from the definition that there is a homomorphism, $\Phi_{\mathcal{P},\mathcal{P}'}: \mathcal{D}_{\ell}^{\bullet,\bullet} \to \mathcal{D}_{\ell}^{\prime\bullet,\bullet}$ defined as follows. For

$$\varphi = \bigoplus_{\mathcal{Q} \subset \mathcal{P}, \#\mathcal{Q} = p+1} \varphi_{\mathcal{Q}} \in \mathcal{D}_{\ell}^{p,q} = \bigoplus_{\mathcal{Q} \subset \mathcal{P}, \#\mathcal{Q} = p+1} \check{\mathcal{M}}_{\mathcal{Q}}^{q},$$
$$\Phi_{\mathcal{P},\mathcal{P}'}(\varphi) = \bigoplus_{\mathcal{Q} \subset \mathcal{P}', \#\mathcal{Q} = p+1} \varphi_{\mathcal{Q}}.$$

Recall from 6.2 that there exists,

$$\psi:\mathcal{D}_{\ell}^{\bullet,\bullet}\longrightarrow\mathcal{N}_{\ell}^{\bullet,\bullet}$$

which induces an isomorphism, $\psi^* : H^*(\operatorname{Tot}^{\bullet, \bullet}(\mathcal{D}_{\ell}^{\bullet, \bullet})) \longrightarrow H^*(\operatorname{Tot}^{\bullet}(\mathcal{N}_{\ell}^{\bullet, \bullet})).$

Denoting by $\mathcal{N}_{\ell}^{\prime\bullet,\bullet}$ the (truncated) Mayer-Vietoris complex for S' and by $i_{\mathcal{P},\mathcal{P}'}$: $\mathcal{N}_{\ell}^{\bullet,\bullet} \to \mathcal{N}_{\ell}^{\prime\bullet,\bullet}$ the inclusion homomorphism, we have the following commutative diagram.

$$\begin{array}{c|c} H^*(\mathrm{Tot}^{\bullet}(\mathcal{D}_{\ell}^{\bullet,\bullet})) \xrightarrow{\Phi_{\mathcal{P},\mathcal{P}'}^*} H^*(\mathrm{Tot}^{\bullet}(\mathcal{D}_{\ell}^{\prime\bullet,\bullet})) \\ \psi^* & & & \\ \psi^{\ast} & & & \\ H^*(\mathrm{Tot}^{\bullet}(\mathcal{N}_{\ell}^{\bullet,\bullet}))) \xrightarrow{i_*} H^*(\mathrm{Tot}^{\bullet}(\mathcal{N}_{\ell}^{\prime\bullet,\bullet}))) \end{array}$$

Note that $H^*(\operatorname{Tot}^{\bullet}(\mathcal{N}^{\bullet,\bullet})) \cong H_*(S)$ and $H^*(\operatorname{Tot}^{\bullet}(\mathcal{N}'^{\bullet,\bullet})) \cong H_*(S')$.

It is clear that Algorithm 2 can be easily modified to output the complex $\mathcal{D}_{\ell}^{\bullet,\bullet}$, by outputting the matrices corresponding to the vertical and horizontal homomorphisms in the chosen bases. Furthermore, given a subset $\mathcal{P}' \subset \mathcal{P}$, Algorithm 2 can be made to output both the complexes $\mathcal{D}_{\ell}^{\bullet,\bullet}$ and $\mathcal{D}_{\ell}^{\bullet,\bullet}$ along with the matrices defining the homomorphism $\Phi_{\mathcal{P},\mathcal{P}'}$ with the same complexity bounds.