Skip to main content

Advertisement

Log in

Progressive renal decline as the major feature of diabetic nephropathy in type 1 diabetes

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Despite almost universal implementation of renoprotective therapies over the past 25 years, the risk of end-stage renal disease (ESRD) in type 1 diabetes (T1D) is not decreasing, and ESRD remains the major cause of excess morbidity and premature mortality [1]. Such a state of affairs prompts a call to action. In this review we re-evaluated the proteinuria-centric model of diabetic nephropathy and showed its deficiencies. On the basis of extensive studies that we have been conducting on the patients attending the Joslin Clinic, we propose that progressive renal decline, not abnormalities in urinary albumin excretion, should be considered as the major feature of disease processes leading to ESRD in T1D. The etiology of diabetic nephropathy should be reconsidered in light of our new findings so our perspective can be broadened regarding new therapeutic targets available for interrupting the progressive renal decline in T1D. Reduction in the loss of glomerular filtration rate, not reduction of albumin excretion rate, should become the measure for evaluating the effectiveness of new therapeutic interventions. We need new accurate methods for early diagnosis of patients at risk of progressive renal decline or, better still, for detecting in advance which patients will have rapid, moderate or minimal rate of progression to ESRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosolowsky ET, Skupien J, Smiles AM, Niewczas MA, Roshan B, Stanton R, Eckfeldt JH, Warram JH, Krolewski AS. Risk of ESRD in type 1 diabetes remains high in spite of renoprotection. J Am Soc Nephrol. 2011;22(3):545–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bright R. Cases and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guy Hosp Rep. 1836;1:338–400.

    Google Scholar 

  3. Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol. 1936;12:83–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Miles DW, Mogensen CE, Gundersen HJG. Radioimmunoassay for urinary albumin using a single antibody. Scand J Clin Lab Invest. 1970;26:5–11.

    Article  CAS  PubMed  Google Scholar 

  5. Parving HH, Oxenbøll B, Svendsen PA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh). 1982;100(4):550–5.

    CAS  Google Scholar 

  6. Viberti GC, Jarrett RJ, Keen H. Microalbuminuria as prediction of nephropathy in diabetics. Lancet. 1982;2(8298):611.

    Article  CAS  PubMed  Google Scholar 

  7. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  8. Parving HH, Mauer M, Ritz E. Diabetic nephropathy. In: Brenner BM, editor. The kidney. 7th ed. Philadelphia: Elsevier; 2004. p. 1777–818.

    Google Scholar 

  9. Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000;49:1399–408.

    Article  CAS  PubMed  Google Scholar 

  10. Tabaei BP, Al-Kassab AS, Ilag LL, Zawacki CM, Herman WH. Does microalbuminuria predict diabetic nephropathy? Diabetes Care. 2001;24(9):1560–6.

    Article  CAS  PubMed  Google Scholar 

  11. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.

    Article  CAS  PubMed  Google Scholar 

  12. Giorgino F, Laviola L, Cavallo Perin P, Solnica B, Fuller J, Chaturvedi N. Factors associated with progression to macroalbuminuria in microalbuminuric Type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia. 2004;47(6):1020–8.

    Article  CAS  PubMed  Google Scholar 

  13. de Boer IH, Rue TC, Cleary PA, Lachin JM, Molitch ME, Steffes MW, Sun W, Zinman B, Brunzell JD, DCCT/EDIC Research Group. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch Intern Med. 2011;171(5):412–20.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Forsblom CM, Groop PH, Ekstrand A, Groop LC. Predictive value of microalbuminuria in patients with insulin-dependent diabetes of long duration. BMJ. 1992;305(6861):1051–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy—an 8-year prospective study. Kidney Int. 1992;41(4):822–8.

    Article  CAS  PubMed  Google Scholar 

  16. Ficociello L, Perkins BA, Silva KH, Finkelstein DM, Ignatowska-Switalska H, Gaciong Z, Cupples LA, Aschengrau A, Warram JH, Krolewski AS. Progression from microalbuminuria to proteinuria in individuals with type 1 diabetes treated with angiotensin converting enzyme inhibitors. Clin J Am Soc Nephrol. 2007;2(3):461–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mathiesen ER, Hommel E, Giese J, Parving HH. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ. 1991;303(6794):81–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Viberti G, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA. 1994;271(4):275–9.

    Article  CAS  PubMed  Google Scholar 

  19. Laffel LM, McGill JB, Gans DJ. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med. 1995;99(5):497–504.

    Article  CAS  PubMed  Google Scholar 

  20. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet. 1997; 349(9068):1787–92.

  21. O’Hare P, Bilbous R, Mitchell T, O’ Callaghan CJ, Viberti GC, Ace-Inhibitor Trial to Lower Albuminuria in Normotensive Insulin-Dependent Subjects Study Group. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care. 2000;23(12):1823–9.

    Article  PubMed  Google Scholar 

  22. Crepaldi G, Carta Q, Deferrari G, Mangili R, Navalesi R, Santeusanio F, Spalluto A, Vanasia A, Villa GM, Nosadini R. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care. 1998;21(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  23. Bojestig M, Karlberg BE, Lindström T, Nystrom FH. Reduction of ACE activity is insufficient to decrease microalbuminuria in normotensive patients with type 1 diabetes. Diabetes Care. 2001;24(5):919–24.

    Article  CAS  PubMed  Google Scholar 

  24. Tsalamandris C, Allen TJ, Gilbert RE, Sinha A, Panagiotopoulos S, Cooper MF, Jerums G. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43:649–55.

    Article  CAS  PubMed  Google Scholar 

  25. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes. U.K. Prospective Diabetes Study 74. Diabetes. 2006;55:1832–9.

    Article  CAS  PubMed  Google Scholar 

  26. Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with Type 1 diabetes and new onset micro-albuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77:57–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, Doria A, Warram JH. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2013 (Epub ahead of print).

  28. Merchant ML, Perkins BA, Boratyn GM, Ficociello LH, Wilkey DW, Barati MT, Bertram CC, Page GP, Rovin BH, Warram JH, Krolewski AS, Klein JB. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol. 2009;20(9):2065–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Skupien J, Warram JH, Smiles AM, Niewczas MA, Gohda G, Pezzolesi MG, Cantarovich D, Stanton R, Krolewski AS. Early renal function decline predicts risk of ESRD: 5–18 year follow-up of patients with type 1 diabetes and proteinuria. Kidney Int. 2012;82(5):589–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Krolewski M, Eggers PW, Warram JH. Magnitude of end-stage renal disease in IDDM: a 35 year follow-up study. Kidney Int. 1996;50(6):2041–6.

    Article  CAS  PubMed  Google Scholar 

  31. Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28(6):1234–42.

    PubMed  Google Scholar 

  32. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282(6):F991–7.

    CAS  PubMed  Google Scholar 

  33. Talbott JH, Terplan KL. The kidney in gout. Medicine. 1960;39:405–67.

    Article  CAS  PubMed  Google Scholar 

  34. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–9.

    Article  CAS  PubMed  Google Scholar 

  35. Doria A, Niewczas M, Fiorina P. Can existing drugs approved for other indications retard renal function decline in patients with Type 1 diabetes and nephropathy. Semin Nephrol. 2012;32(5):437–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F, Cullere X, Johnson AC, Crabtree G, Smiles AM, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict stage 3 of CKD in Type 1 diabetes. J Am Soc Nephrol. 2012;23(3):516–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, Cullere X, Eckfeldt JH, Doria A, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74:1143–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56:1627–37.

    Article  CAS  PubMed  Google Scholar 

  40. Bohle A, Wehrmann M, Bogenschutz O, Batz C, Muller CA, Muller GA. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract. 1991;187:251–9.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki D, Miyazaki M, Naka R, Koji T, Yagame M, Jinde K, Endoh M, Nomoto Y, Sakai H. In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes. 1995;44:1233–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda SI, Takasawa K, Yoshimura M, Kida H, Kobayashi KI, Mukaida N, Naito T, Matsushima K, Yokoyama H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000;58:1492–9.

    Article  CAS  PubMed  Google Scholar 

  43. Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Grone HJ, Nelson PJ, Schlondorff D, Cohen CD, Kretzler M, European Renal cDNA Bank (ERCB) Consortium. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes. 2006;55:2993–3003.

    Article  CAS  PubMed  Google Scholar 

  44. Morcos M, Sayed AA, Bierhaus A, Yard B, Waldherr R, Merz W, Kloeting I, Schleicher E, Mentz S, Abd el Baki RF, Tritschler H, Kasper M, Schwenger V, Hamann A, Dugi KA, Schmidt AM, Stern D, Ziegler R, Haering HU, Andrassy M, van der Woude F, Nawroth PP. Activation of tubular epithelial cells in diabetic nephropathy. Diabetes. 2002;51:3532–44.

    Article  CAS  PubMed  Google Scholar 

  45. Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, Krolewski AS. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol. 2008;19:789–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Segerer S, Nelson PJ, Schlondorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol. 2000;11:152–76.

    CAS  PubMed  Google Scholar 

  47. Rodriguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. 2001;59:1626–40.

    Article  CAS  PubMed  Google Scholar 

  48. Anders HJ, Vielhauer V, Schlondorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int. 2003;63:401–15.

    Article  CAS  PubMed  Google Scholar 

  49. Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, Humphreys BD, Bonventre JV. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 2012;82:172–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wanic K, Krolewski B, Ju W, Placha G, Niewczas MA, Walker W, Warram JH, Kretzler M, Krolewski AS. Transcriptome analysis of proximal tubular cells (HK-2) exposed to urines of type 1 diabetes patients at risk of early progressive renal function decline. PLoS ONE. 2013;8(3):e57751.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60:2354–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Krolewski AS, Warram JH, Forsblom C, Smiles A, Thorn L, Skupien J, Harjutsalo V, Stanton R, Eckfeldt JH, Inker LA, Groop PH. Serum concentration of cystatin C and risk of ESRD in diabetes. Diabetes Care. 2012;35(11):2311–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Krolewski AS, Bonventre JV. High risk of ESRD in type 1 diabetes: new strategies are needed to retard progressive renal function decline. Semin Nephrol. 2012;32(5):407–14.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Degome EM, Rivera G, Lilly SM, Usman MH, Mohler ER. Personalized vascular medicine; individualizing drug therapy. Vasc Med. 2011;16(5):391–404.

    Article  Google Scholar 

  55. Chokrungvaranon N, Deer J, Reaven PD. Intensive glycemic control and cardiovascular disease; are there patients who may benefit? Postgrad Med. 2011;123(6):114–23.

    Article  PubMed  Google Scholar 

  56. Higgins MJ, Baselga J. Targeted therapies for breast cancer. J Clin Invest. 2011;121(10):3797–803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Cantarovich D, Perrone V. Pancreas transplant as treatment to arrest renal function decline in patients with type 1 diabetes and proteinuria. Semin Nephrol. 2012;32(5):432–6.

    Article  PubMed  Google Scholar 

  58. Pavlakis M, Kher A. Pre-emptive kidney transplantation to improve survival in patients with Type 1 diabetes and imminent risk of ESRD. Semin Nephrol. 2012;32(5):505–11.

    Article  PubMed  Google Scholar 

  59. Gilbert RE, Zhang Y, Yuen DA. Cell therapy for diabetic nephropathy: is the future, now? Semin Nephrol. 2012;32(5):486–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the following grants: NIH grants DK-41526 and DK676381 and JDRF grants 1-2008-1018 and 17-2013-8 to A.S. Krolewski; and Diabetes Research Center—Joslin, Pilot and Feasibility Grant, P30DK036836 to M.A. Niewczas.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej S. Krolewski.

About this article

Cite this article

Krolewski, A.S., Gohda, T. & Niewczas, M.A. Progressive renal decline as the major feature of diabetic nephropathy in type 1 diabetes. Clin Exp Nephrol 18, 571–583 (2014). https://doi.org/10.1007/s10157-013-0900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0900-y

Keywords

Navigation