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Abstract Malignant glioma surgery involves the challenge of
preserving the neurological status of patients harboring these
lesions while pursuing a maximal tumor resection, which is
correlated with overall and progression-free survival.
Presently, several tools exist for assisting neurosurgeons in vi-
sualizing malignant tissue. Fluorescence-guided surgery (FGS)
with 5-aminolevulinic acid (5-ALA) has increasingly been used
during the last decade for identifying malignant glioma.
Intraoperative magnetic resonance imaging (iMRI), first intro-
duced in the mid-1990s, is being evaluated as a further tool to
maximize the extent of resection. We aimed to evaluate the
literature and discuss synergies and differences between FGS
with 5-ALA and iMRI. We conducted and reported according
to the Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) statement. After excluding non-
relevant articles, 16 articles were evaluated and included in
the qualitative analysis, comprising 2 (n = 2) reviews of the
literatures, 1 (n = 1) book chapter, and 13 (n = 13) clinical
articles. ALA-induced fluorescence goes beyond the borders
of gadolinium contrast enhancement. Several studies stress
the synergy between both tools, enabling increase in extent of
resection.We point out advantages of combining both methods.
iMRI, however, is not widely available, is expensive, and is not
recommended as sole resection control tool in high-grade glio-
ma. For these centers, FGS together with mapping and moni-
toring techniques, neuronavigation and, when needed, intraop-
erative ultrasound provides an excellent setting for achieving
state-of-the-art gross total resection of high-grade gliomas.
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Introduction

Extent of resection matters

Over the past years, the goal of glioma surgery has shifted
from removing what is obvious to the human eye as brain
tumor to what is now known to be malignant tissue assisted
by technological innovations. It is now common understand-
ing that the extent of resection (EoR) in high-grade glioma
maximizes overall survival (OS) and progression-free survival
(PFS) [7, 32, 41, 44, 45, 53, 54, 62], the last one being poten-
tially jeopardized even if a small tumor remnant is left after
surgery [10]. Although independent factors, i.e., age, preoper-
ative Karnofsky performance scale (KPS), molecular markers
(IDH-1 mutation, O6-methylguanin-DNA-methyltransferase,
MGMT, promoter methylation), and tumor location, might
play a role in influencing OS, EoR is the variable that we as
neurosurgeons can influence [12, 43]. Glioma tissue infiltrates
healthy brain tissue in a manner that is not perceptive to the
human eye nor tangible to our hands or our instrumental ex-
tensions during surgery. This makes it challenging to identify
glioma tumor tissue with white-light microscopy alone, espe-
cially at tumor margins. For this reason, several tools for the
delineation of tumor tissue have been intensively explored,
such as neuronavigation [84], linear array intraoperative ultra-
sound [12, 84], fluorescence-guided surgery (FGS) mediated
by 5-aminolevulnic Acid (ALA) [75], and intraoperative mag-
netic resonance imaging (iMRI) [69]. The relevance, utility,
additional value, and cost-effectiveness of these tools are be-
ing studied. Hence, recently, several articles have been explor-
ing the differences and synergies between FGS and iMRI by
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either applying these tools simultaneously or in different co-
horts during glioma surgery. We aimed to review FGS and
iMRI in the context of glioma surgery and evaluate the liter-
ature for articles committed to study these tools simultaneous-
ly. Ergo, we performed a MEDLINE/PubMed search to iden-
tify relevant studies about ALA and iMRI. Our aim was to
analyze synergism within both tools and compare outcomes.

Materials and methods

Research protocol and literature search with PRISMA

As a complementary and to guide a thorough literature search
of studies where ALA and iMRI were simultaneously applied,
we conducted a search and reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) statement [46, 47]. We searched for articles pub-
lished until June 2017 without neglecting any earlier publica-
tion date. The following terms were used to search for title and
abstract: BALA^ and Bintraoperative MRI^, BMRI^ and
BALA^, BMRI^ and BPPIX^, and Bmagnetic resonance imag-
ing^ and Baminolevulinic acid^. After excluding not relevant
articles by removing duplicates as well as non-English articles
and screening their titles and abstracts, we selected solely
studies that evaluated FGS and iMRI simultaneously or in
parallel in different cohorts. The screening of articles was
performed with the help of Endnote X7 (Thompson Reuters,
Carlsbad, California, USA).

Results

The above-mentioned search delivered 406 articles. After re-
moving duplicates, abstracts from 280 articles were screened
for relevance. After thorough evaluation and excluding arti-
cles that did not meet inclusion criteria, we identified 26 arti-
cles for full text evaluation. When relevant, we included ref-
erences cited from the selected articles. We identified 16 arti-
cles to include in our qualitative synthesis. These included 1
book chapter [84], 2 reviews of the literature [3, 19], and 13
clinical studies [9, 10, 12, 22, 23, 25, 30, 50, 55, 57, 64, 83,
88], as illustrated in Fig. 1. The selected articles were pub-
lished between July 2011 and June 2017 (Fig. 1). The clinical
studies are summarized in Table 1.

Discussion

5-Aminolevulinic acid

5-Aminolevulinic acid, a prodrug and a precursor in heme bio-
synthesis, leads to accumulation of fluorescent protoporphyrin

IX (PPIX) in certain glioma tumor cells, enabling their visual-
ization with the use of commercially available microscopes
equipped with a special filter system. The exact uptake mech-
anism of ALA in glioma cells is still not fully understood.
However, it is known that ALA is selectively absorbed by tu-
mor cells and is converted into fluorescent PPIX with the help
of enzymes of the heme biosynthesis [14]. First introduced in
1998 [78], ALA has been extensively investigated in and
ex vivo, finally obtaining approval in Europe and many further
countries after a randomized phase III trial [75]. Recently, ALA
was also approved for fluorescence-guided resections of glio-
mas in the USA.

A high selectivity of malignant glioma cells for PPIX fluo-
rescence has been observed in several studies presented over
the last decades, and normal brain tissue does not appear to
induce PPIX expression after ALA administration [9, 17, 20,
31, 34, 74, 79]. To date, ALA is administered as an oral solu-
tion at a dose of 20 mg/kg body weight 4 hours before anes-
thesia induction [75]. Not only from surgical experience, but
also from ex vivo studies, we know that peak fluorescence
will be expected around 6–8 h after administration [77]. A
recent report explored the low toxicology and the safety pro-
file of ALA [82]. Besides rare transient liver enzyme elevation
and known light sensitivity of the skin 24 h after administra-
tion, ALA appears to be safe. So far, more than 30,000 pa-
tients in over 30 countries have been treated with ALA-
induced fluorescence [72]. In order to visualize PPIX fluores-
cence, a modern microscope equipped with a blue/violet light
with a wave length of 375–440 nm together with an emission
filter is needed, enabling the visualization of red fluorescence
at a first peak of 635 nm and a second peak at 704 nm (Fig. 2).

Green fluorescence, which is the way tissue autofluores-
cence appears, will enable background information to allow
visualization of surrounding tissue [76]. This information,
however, can sometimes be too weak for adequate discrimi-
nation of the surgical field, requiring surgeons to alternate
between white-light microscopy and blue fluorescence, e.g.,
for hemostasis. When tumor cell density in tumor tissue is
above 10%, PPIX fluorescence visualization will be expected
[79]. However, in recurrent gliomas, some caveats merit men-
tion when operating with FGS and ALA, since altered brain
tissue and gliosis areas along with reactive astrocytes might
induce ALA uptake and provide PPIX fluorescence [48].
Therefore, concerns have been raised regarding the specificity
of PPIX fluorescence in recurrent gliomas [14]. In a recent
study, however, the diagnostic accuracy of fluorescent tumor
tissue did not significantly differ between primary and recur-
rent glioblastomas [88]. Furthermore, authors have reported
that in certain cases, PPIX fluorescence can help differentiate
recurrent tumor from scar tissue [10]. Another important pit-
fall is that fluorescence can be hidden in the tumor cavity, e.g.,
when craniotomy is too small, or behind a thin layer of healthy
brain or blood [23, 25]. FGS with ALA 2-D is an imaging
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surface tool, with which depth can limit visualization of tumor
tissue. Anatomical landmarks—as well as further tools such as
intraoperative ultrasound, neuronavigation, and iMRI—can
be applied when available, to avoid missing tumor tissue.

Intraoperative MRI

Since their first introduction in the mid-1990s [6], low- (0.15–
0.5 T) and high-field iMRI (1.5–3.0 T) are being investigated
for resection control in glioma surgery [9, 13, 37, 49, 69, 70].
iMRI can provide relevant real-time imaging and feedback on
the resection status during surgery. It allows to update the
neuronavigation system which can increase accuracy during
resection, making brain shift after initial resection a lesser
problem [28, 29, 37, 38]. Nimsky et al. [51] evaluated iMRI
in the context with intraoperative neuronavigation and dem-
onstrated the advantages of combining both tools.

Senft et al. performed the first randomized controlled trial
evaluating iMRI in glioma surgery and demonstrated a gross
total resection (GTR) rate of 96% in the iMRI arm, compared
to 68% in the control group with conventional microsurgery
[69]. Several studies have evaluated the clinical value of low-
field iMRI [25, 30, 33]. Extension in EoR and PFS was

demonstrated by Senft et al. in their iMRI group using a
low-field iMRI (0.15 T), whereas Coburger et al. demonstrat-
ed the benefit of high-field (1.5 T) vs. low-field (0.15) iMRI
regarding GTR; however, it did not affect PFS [11].
Bergsneider et al. [5] found no statistically significant differ-
ence in the EoR after retrospectively evaluating patients oper-
ated either with a 0.15 or 1.5 T iMRI. However, as evaluated
in a recent report, it can falsely demonstrate gadolinium (Gd)
enhancement and lead to low predictive value (64.3%) for
iMRI-guided tumor recognition and potentially to extended
resection of healthy tissue [16, 30]. Hatiboglu et al. demon-
strated an EoR of up to 96% with the help of iMRI in glioma
surgery [29], whereas Wirtz et al. showed that in 62% of
patients, 0.2 T iMRI was helpful in finding tumor remnants
after initial tumor resection [87]. A large, recently published
series of 170 glioblastomas operated with iMRI demonstrated
a significant impact of EoR to OS [13]. This study demon-
strates the importance of a multimodal approach. In this case,
the authors stressed the importance of performing neurophys-
iological monitoring whenever eloquent tissue was expected
during surgery.

To mention some limitations, iMRI is of high cost.
Furthermore, surgery and anesthesia time will be relevantly
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Fig. 1 PRISMA flowchart
demonstrating screening,
selection, and exclusion reasons
for studies
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increased (~ 1 h), since a pause is required to perform and
evaluate images [23, 69]. Additionally, frequent application
of Gd during surgery will lead to extravasation into the resec-
tion cavity, making interpretation of imaging challenging
(Fig. 3) [1].

5-Aminolevulinic acid-induced fluorescence vs.
gadolinium contrast enhancement in MRI

How accurate is the relationship between PPIX fluorescence
and Gd contrast enhancement inMRI? In an early series of the
FGS era by Stummer et al. in the year of 2000, 17 from 52
patients did not demonstrate residual tumor in early postoper-
ative MRI (1.5 T), even though residual fluorescence
remained after resection due to the eloquence of these regions
[74]. Another study discussed the fact that PPIX fluorescence
is, based on histopathological assessment, superior to Gd con-
trast enhancement in MRI with a significantly higher specific-
ity and sensitivity for glioma tumor detection [9]. This indi-
cates that fluorescent tissue, i.e., malignant tumor tissue, goes
beyond the Gd uptake demonstrated in MRI [2, 10, 58, 67]. In
this context, one group discussed the fact that fluorescent tis-
sue volume doubles the size of contrast enhancement on MRI
[67]. Furthermore, Roessler et al. [58] demonstrated fluoro-
ethyl-positron emission tomography (FET-PET) hypermetab-
olism zone to be smaller than the fluorescent tissue, while
others state that PPIX fluorescence matches preoperative
FET-PET tracer uptake [71]. Corburger et al. noticed a higher
sensitivity for tumor detection at the margins of tumor infil-
tration with ALA compared to iMRI when simultaneously
using them (Table 1) [10]. Moreover, it has been shown that
malignant glioma infiltration can exceed Gd contrast enhance-
ment by 6–14 mm as demonstrated in a comparison of preop-
erative MRI and post mortem neuropathological assessment
[89]. Another group, Aldave et al. [2], concluded in a cohort of
50 patients that those without residual fluorescence and over-
all no residual Gd enhancement in early postoperative MRI
lived 10 months longer compared to those with residual fluo-
rescence. It must be mentioned that MRI might be limited by
the quantity of blood brain breakdown or tumor cluster size,
making PPIX fluorescence superior regarding diagnostic ac-
curacy [61].

Gd contrast enhancement in MRI will demonstrate pre-
dominantly blood brain barrier breakdown, which is a part

of but might not demonstrate the complete tumor, whereas
ALA will be metabolized specifically by tumor cells and is
not completely correlated with blood brain barrier breakdown
[74]. This is an important principle that might help us under-
stand the differences between both tools. As mentioned above
and to indicate another limitation, ALAwill demonstrate fluo-
rescence starting from a tumor cell density of 10%.

Concluding, the reviewed articles demonstrate important
synergies between both tools. However, evidence level for
simultaneously applying both tools is still low. iMRI alone
might not provide enough intraoperative tumor identification,
and it lacks the possibility of live guidance. Hence, it should
be evaluated in further studies.

Resection rates

If we know that available tools can improve the extent of
resection without harming eloquent tissue and enabling
state-of-the-art glioma resection, then why not use them as
they are available to us?

Gross total resection, as to date the main goal of glioma
surgery, is defined as no residualGd contrast enhancement in
early postoperative MRI [44, 62]. Residual cells, at tumor
margin, appear to be of relevant importance for survival
[26]. Sanai et al. demonstrated a threshold of > 78% EoR to
have the highest impact on patients’ survival and recom-
mended to use this knowledge for surgical decision making,
e.g., in tumors where subtotal resection is planned due to
eloquence [63]. Up to now, level I evidence exists only for
FGS with ALA for improving EoR and OS in patients har-
boringmalignant gliomas [75],whereas level II evidence has
been provided for iMRI [69]. In spite of the fact that the first
reported complete resection rates with ALA and FGS in the
randomized phase III trial of 65% are at present considered
low,we have to remember that theywere still twice as high as
when operating under white-light microscopy [75] and all
series with data on resection rates, especially if single-
armed and retrospective, will depend very strongly on case
selection and the respective surgeon. So far, new technolog-
ical advantages, i.e., neuronavigation,mappingandmonitor-
ing, and intraoperative ultrasound, have been developed and
are frequently available, helping increase complete resection
rates [81]. Recent studies of patients operated with FGS and
ALA report a resection rate close to 90%when mapping and
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Fig. 2 Fluorescence-guided
surgery with ALA in a patient
harboring a glioblastoma
demonstrating the intraoperative
view of a glioblastoma under a
white-light microscopy and b
PPIX fluorescence with BLUE
400 filter (Zeiss, Oberkochen,
Germany)



monitoring techniques are applied (Table 2) [15, 17, 66, 68,
73], shifting the reason for incomplete resections to be elo-
quence of the region rather than unawareness of the presence
of themalignant tissue. In a recent report,ALA-induced fluo-
rescence demonstrated a positive predictive value of over
95% [27].

Supra-marginal resection is beingdiscussed as potentially
feasible for malignant gliomas [42], predominantly in the
context of low-grade gliomas [18, 90]. Thus, Eyüpoglu
et al. evaluated a prospective supra-marginally resected col-
lective of 30 patients with glioblastoma operated with both
FGS with ALA and iMRI and performed a historic compar-
ison to a retrospectively analyzed cohort (n = 75) operated

with neuronavigation (Table 1) [22]. The authors found a
significant extension of median overall survival (18.5 vs.
14 months) in the prospective arm. Nevertheless, they in-
cluded patients in the control arm before important develop-
ments became standard, such as adjuvant temozolomide
treatment concomitant to radiotherapy [80]. Therefore, such
improvements may have multifactorial etiology. The same
authors recognized the advantage of iMRI in cases where
initially, FGSwasperformed, and in absenceofobvious fluo-
rescence iMRI indicated tumor remnants that led again to
finding fluorescent tissue which was first overlooked; for
instance, being hidden in parts of the cavity that were not
easily accessed (Table 1).

Table 2 Articles simultaneously researching iMRI and FGS with ALA in glioma surgery

Study Stummer et al. Stummer et al. Diez Valle et al. Schucht et al. Della Puppa et al. Schucht et al.

Year 2000 2006 2011 2012 2013 2014

No. of patients 50 135 36 103 25 67

Study design Prospective,
single-center

Prospective,
multicenter
two-arm
randomized

Prospective,
single-center

Prospective,
single-center

Prospective,
single-center

Prospective,
single-center

Eloquent region Eloquent and
non-eloquent

Eloquent and
non-eloquent

Eloquent and
non-eloquent

Eloquent and
non-eloquent

Eloquent and
non-eloquent

Solely eloquent
(motor)

Monitoring and
mapping

No No Yes Yes Yes Yes

Resection rate 65% 65% 83.3% 96% 80% 76%
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Fig. 3 Pre-, intra-, and postoperative MRI of a patient harboring a high-
grade glioma. a Pre-, b intra-, and c, d postoperative contrast-enhanced
T1-weighted MRI of a patient harboring a glioblastoma. c demonstrates
the subtraction imaging after Gd application. Postoperative MRI was
performed within 48 h after surgery. Intraoperative imaging with iMRI,
which demonstrated what appears to be a remnant rostral of the tumor

cavity, was, moreover, revealed as Gd-leakage. Biopsy of this region
demonstrated no tumor tissue, and Gd-enhanced postoperative MRI and
subtraction imaging did not confirm tumor residual (c, d) (Courtesy of Dr.
Ricardo Diez-Valle, Department of Neurosurgery, Clinica Universidad de
Navarra, Navarre, Spain)



Low-grade gliomas

Present evidence indicates that the extent of resection in low-
grade gliomas will reduce the risk of recurrence and increase
overall survival [8, 18].

We are now well aware that fairly 20% of non-enhancing
low- and high-grade tumors will demonstrate PPIX fluores-
cence when applied [21, 35, 52, 71, 73, 85, 86]. Furthermore,
in 44–55% of cases where lesions in the preoperative MRI are
suggestive of low-grade glioma, an anaplastic focus could still
be discovered [39, 71]. Our group evaluated preoperative fac-
tors for predicting fluorescence in gliomas. We concluded that
age, tumor, volume, and 18F-FET-PET uptake ratio > 1.85 are
significant factors for predicting fluorescence [35].

However, due to the high number of non-fluorescing
low-grade gliomas, relying on ALA alone for GTR will
not meet the expectations of the surgeon. For these cases,
iMRI is a helpful tool to achieve maximal surgical outcome
[83]. Also, for low-grade portions of high-grade gliomas or
satellite lesions, iMRI can help discover these elements to
achieve GTR. In contrast, Senft et al. reported not having
achieved GTR in a large portion of low-grade glioma using
a low-field iMRI that has a low anatomical resolution [70].
Nevertheless, Hirschl et al. [33] found low-field iMRI to be
feasible for detecting residual low-grade glioma (sensitivity
82%, specificity 95%). Thus, studies applying high-field
iMRI report much higher resection rates for non-
fluorescing and enhancing gliomas [29, 83], which is prob-
ably more suitable for low-grade glioma surgery. However,
data regarding the impact of OS associated with EoR in low-
grade gliomas remains scarce.

For centers without iMRI, the combination of intraopera-
tive ultrasonography, together with adequate mapping and
monitoring techniques and neuronavigation, can be a reliable
combination for safe resections while attempting maximal
radicality [12, 19, 84]. ALA is to date not recommended to
be of standard use in low-grade glioma surgery.

Cost-effectiveness

Since how we evaluate treatments is changing over time, i.e.,
from a more economically focused volume-based health care
to an outcome- and value-driven healthcare delivery, cost-
effectiveness analyses are becoming more and more impor-
tant. Outcome is now often being measured in quality-
adjusted life years (QALYs), and together with costs, ratios
are being built, in order to evaluate the costs of healthcare
delivery and facilitate decision-making when implementing
new interventions. For this purpose, quality indicators are
emerging in each medical field to help define treatments’ out-
come [65]. Because of the novelty of this transition, scientific
data remains to date scarce. A study evaluating effectiveness
and cost-effectiveness from different intraoperative imaging

modalities, i.e., FGS (ALA and fluorescein), ultrasound and
iMRI, was recently published [19]. The authors calculated a
cost-effectiveness ratio of $1784 for FGSwith ALAvs. $3625
for iMRI. Additional cost per QALY gained amounted
$16,218 for FGS with ALA and $32,955 for iMRI. Despite
the authors basing some of their calculations on older articles,
it is an important evaluation on which future studies can build
upon. For instance, in the UK, the National Health Service
(NHS) will in general fund treatments between £20,000 and
£30,000 per QALY gained. Hence, interventions costing less
than £20,000 are cost-effective. In the same manner,
willingness-to-pay threshold can be up to $50,000 for malig-
nant glioma, as it has been calculated in the USA [56].
According to Eljamel et al., iMRI is more expensive than
ALA, yet it is below the quite high willingness-to-pay thresh-
old. Furthermore, Esteves et al. performed a pilot cost-
effectiveness analysis with a Markov model in the
Portuguese healthcare system of FGS with ALA vs. conven-
tional white-light surgery. The authors calculated the cost per
QALY gained with FGS and ALA to be around €9100.
Nevertheless, costs depend on the country and healthcare sys-
tem. It is important to obtain more data on cost-effectiveness
in order to support neurosurgeons in decision-making toward
establishing new interventions, tools, drugs, or procedures.
Consequently, further studies are needed. From the available
data, iMRI was only stated to be cost-effective in the USA; for
other countries, the high costs per QALYare over the willing-
ness-to-pay-threshold.

Present era in the surgical treatment of gliomas

Why spend effort in trying to demonstrate that one tool is
better than the other, instead of trying to find synergism be-
tween them? As stated above, it is known that the extent of
resection maximizes not only progression-free survival but
also overall survival [7, 32, 41, 44, 45, 53, 54, 62].
Consequently, as neurosurgeons, we should use all available
tools to increase the impact of our surgery [4]. A multimodal
approach, however, is difficult to evaluate. In such setting, it is
a challenge to dissect the independent individual clinical value
of each tool applied. Only a few of the available articles per-
formed multivariate analyses tackling this problem [3].
Another important fact is that the available series often includ-
ed retrospective analyses of patients treated before the com-
bined radio-/chemotherapy with temozolomide was intro-
duced as an adjuvant treatment for glioblastoma, as described
by Stupp et al. [80], which significantly increased PFS and
OS. Other authors have already recognized this problem and
are offering more recent data in the new era of glioma treat-
ment [13].

Despite access to the discussed tools, neurosurgeons will
still require a profound understanding of neuroanatomy and
function localization with mapping and monitoring
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techniques. Resection is limited by eloquent regions, as in
regions with motor and language functions, and function pres-
ervation should be prioritized against radical tumor removal to
keep patients’ quality of life and independence as high as
possible [50]. By cortical and subcortical stimulations, the
surgeon can identify functional pathways that should be
avoided during surgery [84]. Intraoperative neurophysiologic
monitoring (IOM) consists of Bmapping,^ with the surgeon
identifying and defining language and sensory and motor
areas with the aid of cortex stimulation during surgery, and
Bmonitoring^, defined by the continuous assessment of the
functional integrity of neural pathways [59, 60]. Different
types of evoked potentials can be assessed, i.e., motor-
evoked potentials, somatosensory-evoked potentials and,
more rarely, visual-evoked potentials [59].

In a prospective trial, Kombos and colleagues evaluated
both tumors in non-eloquent areas without IOM and tumors
within or next to eloquent areas with IOM and found no sig-
nificant difference in EoR without jeopardizing neurological
outcome. This important finding suggests that equally aggres-
sive surgical removals of eloquent tumors are warranted under
the right settings [36].

The undisputed advantage of 5-aminolevulinic acid and
fluorescence-guided surgery is the real-time information
provided during the actual surgery. Nevertheless, efforts
should be woven into finding synergism between these
tools. Hence, both methods can complementarily improve
the extent of resection in malignant gliomas [25]. Resources
should be used as available, since all of them, to a certain
level, increase patients’ safety while maximizing tumor re-
section [4, 24, 40].

Summary

ALA-induced fluorescence goes beyond the borders of Gd
contrast enhancement. For identifying tumor tissue, present
evidence suggests FGS with ALA to be superior for intraop-
erative tumor identification and iMRI should only be used in
combination with FGS in HGG. On the other hand, iMRI can
help overcome FGS weakness regarding depth and tumor re-
sidual due to limited view of the tumor tissue, i.e., after too
small craniotomies. The combination of a 2-D imaging sur-
face tool, as it is with FGS with ALA, together with the infor-
mation of intraoperative 3-D imaging, as it is with iMRI, can
help achieve high rates of GTR. For LGG, iMRI could be
relevant to increase EoR, since FGS with ALA is not useful
in most cases. However, iMRI is an expensive adjunct and is
not everywhere available. For these centers, we believe that
FGS together with mapping and monitoring techniques,
neuronavigation, and, when needed, intraoperative ultrasound
provides an excellent setting for achieving state-of-the-art
GTR of malignant gliomas.
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