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Abstract In Atlantic salmon aquaculture, early sexual matu-
ration represents a major problem for producers. This is espe-
cially true for grilse, which mature after one sea winter before
reaching a desirable harvest weight, rather than after two sea
winters. Salmon maturing as grilse have a much lower market
value than later maturing individuals. For this reason, most
companies desire fish that grow fast and mature late. Marker-
assisted selection has the potential to improve the efficiency of
selection against early maturation and for late sexual matura-
tion; however, studies identifying age of sexual maturation-
related genetic markers are lacking for Atlantic salmon.
Therefore, we used a 6.5K single-nucleotide polymorphism
(SNP) array to genotype five families from the Mainstream
Canada broodstock program and search for SNPs associated
with early (grilsing) or late sexual maturation. There were 529
SNP loci that were variable across all five families, and this was
the set that was used for quantitative trait loci (QTL) analysis.
GridQTL identified two chromosomes, Ssa10 and Ssa21, con-
taining QTL related to grilsing. In contrast, only one QTL, on
Ssa18, was found linked to late maturation in Atlantic salmon.
Our previous work on these five families did not identify
genome-wide significant growth-related QTL on Ssa10,
Ssa21, or Ssa18. Therefore, taken together, these results suggest

that both grilsing and late sexual maturation are controlled
independently of one another and also from growth-related
traits. The identification of genomic regions associated with
grilsing or late sexual maturation provide an opportunity to
incorporate this information into selective breeding programs
that will enhance Atlantic salmon farming.
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Introduction

The Atlantic salmon (Salmo salar) exhibits a great deal of
variability in age and size at sexual maturation. This variation
is observed both between and within strains and year classes
(Garcia de Leaniz et al. 2007; Taranger et al. 2010). The
timing of sexual maturation is controlled by a complex pro-
cess that involves genetic and environmental components
(Thorpe and Metcalfe 1998). Internal factors, such as age
and lipid reserves, together with external factors, like light
abundance, temperature, and food intake, seem to have an
impact on the initiation of sexual maturation (Gardner 1976;
Herbinger and Friars 1992; Simpson 1992). The interactions
of these factors result in the enormous variability in the age of
sexual maturation, especially in male Atlantic salmon, which
are able to reach maturity at 1 to 7 years of age (Simpson
1992). There is also a genetic component to age at sexual
maturation in Atlantic salmon, and estimates of heritabil-
ities (h2) for this trait in Atlantic salmon range widely from
0.09–0.17 (Gjerde et al. 1994; Wild et al. 1994; Gjedrem
2000) to 0.39 (Gjerde and Gjedrem 1984) to 0.48 (Gjerde
1984). These observations strongly indicate that age at
sexual maturity in Atlantic salmon is a heritable trait.
Thus, it should be possible to select for Atlantic salmon
that do not become sexually mature as grilse and also for
late sexually maturing fish.
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In salmon aquaculture, early sexual maturation can be amajor
economic problem. This is particularly costly in terms of feed
and cage space if fish mature as grilse (i.e., after 1 year in a sea
cage; Gjedrem 2000). Salmon maturing as grilse have a much
lower market value than later maturing individuals (Saunders
et al. 1983). The maturation process is energetically expensive,
and this is reflected in a decrease in growth rate, lower meat
quality, and increased mortality through susceptibility to patho-
gens (Gjerde 1984; Thorpe 1994). Late-maturing salmon are
desired in commercial operations, and to reduce the frequency
of grilsing, early maturing Atlantic salmon are discarded as
potential breeding candidates (Gjedrem 2012). Selection for the
economically important production traits of fast growth and late
sexual maturation has been considered problematic as it has been
suggested that there is a correlation between the phenotypes of
fast growth and early sexual maturation (Thorpe et al. 1983).

Marker-assisted selection has the potential to improve the
efficiency of selection for traits such as age of sexual matura-
tion and growth in Atlantic salmon breeding. Genomic re-
gions linked to sexual maturation have been identified in other
salmonid species such as rainbow trout and Arctic charr
(Easton et al. 2011; Haidle et al. 2008; Küttner et al. 2011;
Martyniuk et al. 2003; Moghadam et al. 2007). However, such
studies in Atlantic salmon are lacking. The identification of
genetic markers independently related to either early or late
sexual maturation, especially in male Atlantic salmon, would
enable the implementation of selective breeding based on
improved genetic selection practices by identifying animals
with favorable genotypes. We previously identified QTL for
growth at different stages of the production cycle in five
families from the Mainstream Canada broodstock (Gutierrez
et al. 2012). Here we report QTL for grilsing and late sexual
maturation in the same families and show that the genomic
locations of these QTL are independent of one another as well
as the QTL associated with growth.

Materials and Methods

Mapping Families and Phenotype Data

Families were part of a commercial broodstock program de-
veloped byMainstream Canada and based on the Mowi strain
of Atlantic salmon, which was derived from a breeding pro-
gram established using Norwegian populations (Gjedrem
et al. 1991). In November/December 2005, 130 single-pair
mating families were established. At the fry stage (February
2006), 120 offspring from each family were pooled (15,600
fish in total) and grown communally at the Oceans Farms
Hatchery, Vancouver Island. In September/October 2006,
5,000 of the fish were passive integrated transponder (PIT)-
tagged, and phenotypic measurements were taken until early
2009. Maturation times in Atlantic salmon were classified as:

precocious (≤12 months of age), grilse (36 months of age, at
first sea winter (SW)), normally maturing (48 to 60 months of
age at second SW or third SW), and late-maturing fish
(>60 months) (Gjedrem 2000; Taranger et al. 2010). Sex
was recorded during the confirmation of maturation status.
The sex of an individual in the late-maturing group could not
be ascertained phenotypically; therefore, we predicted the sex
of the late-maturing Atlantic salmon using a polymerase chain
reaction test, developed by Eisbrenner et al. (2013) that am-
plifies two exons of the sdY gene, which has been shown to be
the sex-determining gene in rainbow trout and probably other
members of the Salmoninae (Yano et al. 2012, 2013). It should
be noted that the precocious Atlantic salmon that matured
before 1 year of age were discarded during a standard grading
procedure, and so no samples were available from this group.

DNA Extraction and Parental Assignments

These procedures were as described by Gutierrez et al. (2012).
Briefly, DNAwas extracted from the adipose fins of the PIT-
tagged progeny and the parents used to produce the 130
families (Withler et al. 2005). The DNAwas then genotyped
using eight microsatellite markers, and parental assignment
was carried out as described by Withler et al. (2007).

SNPArray and Linkage Mapping

The single-nucleotide polymorphism (SNP) data used for this
analysis have been described previously (Gutierrez et al. 2012).
Five families were selected for SNP genotyping at CIGENE,
Norwegian University of Life Sciences, Ås, Norway, using an
Atlantic salmon 6.5K Illumina iSelect SNP-array (Kent et al.
2009). Analyses were based on an Atlantic salmon linkage
map, which contains ∼5,650 SNP markers and was constructed
using genotyping data from 143 families comprising 3,297 fish
(Lien et al. 2011). This map contains 29 linkage groups, which
were assigned to their specific chromosome number according
to the nomenclature established by Phillips et al. (2009). All
non-informative markers were removed from the datasets, and
subsequently, independent male and female linkage maps were
manually created for each family and adjusted to the distances
on the SNP map of Lien et al. (2011). Given the differences
between the sets of informative markers present in each family,
for this study, we restricted the analysis to the 529 markers
which are informative in all of the five families. These markers
are distributed across all 29 Atlantic salmon chromosomes. We
have previously commented on some of the possible reasons
why only ∼10% of the markers were variable in all of the five
families (Gutierrez et al. 2012). It may reflect the starting
population for the Mainstream Canada broodstock or past
selection (e.g., primarily for growth in terms of days in salt
water to reach 5 kg), or it may reflect the nature of biallelic
SNPs. We note that many QTL studies in salmonids have
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traditionally used microsatellite markers, and these studies tend
to have employed fewer variable markers and also fewer fam-
ilies. Even when SNPs were used as the genetic marker, the
overall number tested for QTL analysis has been less than 350,
and not all of these were variable in each family. Therefore, we
consider this study to be robust in terms of what is currently
available in the salmonid aquaculture literature.

QTL Analyses

QTL analyses were performed using a regression-interval map-
pingmethod available through the GridQTL portlet (Seaton et al.
2006). GridQTL is a portlet environment (available at http://
www.gridqtl.org.uk/) that allows the analysis of extensive
datasets. The datasets were analyzed as sib-pairs using the com-
bined genotypic data from the 529 informative markers shared
by all families. For the grilsing analysis, given the absence of
female grilse, only the genotypic information from males was
used. The phenotypic data were scored as a binary trait, i.e., male
fish recorded as grilse were scored 0, and male fish recorded as
maturing at second or third SW were scored as 1. The same
procedure was used for the analysis of late sexual maturation, but
bothmale and female fishwere used in this case. Atlantic salmon
that did not show evidence of gonadal development at 60months
were considered “late-maturing” and scored as 0. The results
were illustrated using the female map as it provides a greater
resolution than the male genetic map.

The percentage of phenotypic variance (PEV) explained by
the QTL in the sib-pair analysis was calculated as a proportion
of the phenotypic variance obtained from the observations. F-
statistic values were calculated at 1 cM intervals on each
chromosome for each analytical approach to yield the most
likely position of the QTL. Empirical chromosome-wide sig-
nificance thresholds were determined by permutation tests
(Churchill and Doerge 1994). The 10,000 permutations were
performed at the chromosome-wide level in order to establish
the F-value thresholds for a p<0.05 and p<0.01. F-critical
values corresponding to 0.05>p>0.01 were considered as
“suggestive” QTL, whereas those corresponding to p<0.01
were considered “significant” QTL. Those chromosomes

which contained QTL that were found to be “significant”were
tested for their significance at a genome-wide level of p<0.05
by performing a 1,000 permutation test.

Results

QTL Analysis for Male Grilsing

As described previously (Gutierrez et al. 2012), five families
were chosen from the 2005 year class of the Mainstream
Canada selective breeding program for analysis. Each family
contained from five to eight male grilse. No female grilse were
observed in any of these families (Table 1). As shown in Fig. 1
and Table 2, QTL analyses restricted to male grilsing revealed
the presence of two statistically meaningful QTL, one on
chromosome 10 (Ssa10) and the other on chromosome 21
(Ssa21). The QTL on Ssa21 was considered significant
(p<0.01), whereas the other on Ssa10 only reached the sug-
gestive level of significance (0.05>p>0.01). Neither of these
QTL reached genome-wide significance, which is in keeping
with the relatively small sample size as well as the rather low
h2 estimates in Atlantic salmon for age at sexual maturation
(Gjerde 1984; Gjerde et al. 1994; Wild et al. 1994). The PEV
explained by these QTL was 16.7% and 25% in Ssa10 and
Ssa21, respectively.

QTL Analysis of Late Sexual Maturation

From the 195 individuals used in the analysis of late sexual
maturation, 40 were fish that did not show gonadal develop-
ment after their third SW. The sex of the individuals in this latter
group was determined based on the presence of two of the four
exons of the sdY gene (Eisbrenner et al. 2013). Seventeen of the
late-maturing 40 fish were male and 23 were female (Table 1).
The GridQTL analysis revealed the presence of only one sta-
tistically significant (p<0.01) QTL on chromosome 18 (Ssa18),
which did not reach genome-wide significance, even though it
was the only QTL found for this particular trait (Fig. 2). This

Table 1 Number of grilse, normally maturing and late-maturing individuals per family used in this study

Family # Grilse individuals # Normally maturing indiv. # Late maturing indiv. Total

Male Female Male Female Male Female Grilsing analysis Sexual mat. analysis

F7 5 0 8 25 2 5 13 40

F23 5 0 16 24 3 5 21 48

F76 8 0 9 17 3 3 17 32

F88 5 0 8 20 3 2 13 33

F107 8 0 9 19 6 8 17 42

Total 31 0 50 105 17 23 81 195
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QTL explained 14.7 % of the PEV associated with late sexual
maturation in these Atlantic salmon families.

Discussion

Previous studies performed in rainbow trout and Arctic charr
have shown an apparent link between QTL for sexual matu-
ration and growth (Haidle et al. 2008; Martyniuk et al. 2003;
Moghadam et al. 2007); however, our results indicate a dif-
ferent scenario for Atlantic salmon in the Mainstream Canada
breeding program. Here we only detected two QTL associated
with male grilsing in Atlantic salmon, on Ssa10 and Ssa21.
Previously using the same families, Gutierrez et al. (2012)
found genome-wide significant growth-related QTL on chro-
mosomes Ssa02, Ssa07, Ssa13, Ssa09, Ssa17, and Ssa26.
Although Gutierrez et al. (2012) found some suggestive evi-
dence for growth-related QTL on Ssa10 and Ssa21, neither
reached genome-wide significance, and they mapped to dif-
ferent regions of the chromosomes compared with the grilsing
QTL. Moreover, the results of QTL analyses for growth and
sexual maturation in the Mainstream Canada broodstock fam-
ilies indicate that sexual maturation is controlled by fewer
genomic regions than growth in Atlantic salmon. Therefore,
it should be possible to tease apart these traits genetically and
so select for each independently using specific genetic
markers. A different situation was observed for the QTL for

late sexual maturation detected on Ssa18. To date, no growth-
related QTL have been reported on this chromosome in
Atlantic salmon or on homologous chromosomes in other
salmonids (Gutierrez et al. 2012).

Correlations between the phenotypes of growth (as estimat-
ed by body weight) and early sexual maturation have been
reported in Atlantic salmon (Gjerde 1984; Gjerde et al. 1994;
Wild et al. 1994). Moreover, considerable genetic variation in
age at sexual maturity has been described in farmed fish spe-
cies. For example, in Atlantic salmon h2 estimates range from
0.09 to 0.17 (Gjerde 1984; Gjerde et al. 1994; Wild et al. 1994)
to 0.39 (Gjerde and Gjedrem 1984) to 0.48 (Gjerde 1984)
whereas in rainbow trout h2 estimates range from 0.12 to 0.35
(Gjerde and Schaeffer 1989; Kause et al. 2003). Nevertheless,
selective breeding programs have been effective in increasing
body size while also controlling undesired early sexual maturity
in farmed fish (Gjedrem 2000), giving clues that these traits are
influenced by different genes. Our previous results showed that
growth-related QTL were spread across the Atlantic salmon
genome (Gutierrez et al. 2012); however, none of the QTL
associated with grilsing or late sexual maturation were found
in the same chromosomal positions andwith the same statistical
significance indicating that different genes are associated with
these traits.

Comparative genetic mapping in salmonid species has
revealed homologous regions of the genomes of Atlantic
salmon, rainbow trout, and Arctic charr (Danzmann et al.

Fig. 1 QTL detection for male
grilsing across the 29 Atlantic
salmon chromosomes

Table 2 Chromosomes containing male grilsing and late sexual maturation QTL in Atlantic salmon

Trait Chromosome Position F-value LOD %PEV RT AC

Grilsing Ssa10a 60 cM 11.18 2.43 16.7 27 MT 4 MT

Grilsing Ssa21b 17 cM 21.49 4.67 25.0 5 MT 36 BW, K

Late maturation Ssa18 b 6 cM 20.17 4.38 14.7 – –

RT indicates homologous linkage group in rainbow trout, AC indicates homologous linkage group in Arctic charr,MT indicates a QTL associated with
maturation, BW indicates a QTL associated with body weight, K indicates a QTL associated with condition factor
a Indicates suggestive QTL
b Indicates significant QTL
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2005, 2008; Phillips et al. 2009). Ssa21 corresponds to rain-
bow trout linkage group 5 (RT-5) (equivalent to chromosome
22) (Phillips et al. 2009) and Arctic charr linkage group 18
(AC-18) (Danzmann et al. 2005), whereas Ssa10 corresponds
to RT-8q and RT-27q (equivalent to chromosomes 5q and 2q,
respectively) (Phillips et al. 2009) and Arctic charr linkage
groups 4, 16, and 40 (AC-4, AC-16, and AC-40) (Danzmann
et al. 2005). Genome-wide significant QTL for early male
sexual maturation were mapped to RT-8, RT-17, and RT-24,
whereas chromosome-wide QTL for this trait was found on
RT-3 and RT-19 (Haidle et al. 2008). Martyniuk et al. (2003)
did report an association (p=0.043) between microsatellite
locus OmyRGT1TUF on RT-5 and precocious maturation
and noted that one allele was associated with both a higher
bodymass and precociousness. However, this association was
not considered significant after a sequential Bonferroni cor-
rection. Similarly, no p values less than 0.01 were identified
for microsatellite marker alleles segregating with male sexual
maturation in Arctic charr, although SSOSL32 on AC-4 gave
a suggestive value of 0.014 (Moghadam et al. 2007).

It is believed that sexual maturation in salmonids depends on
the ability of the fish to reach certain developmental thresholds
during a “critical period” over the winter/spring (Adams and
Thorpe 1989; Thorpe 1994), in a direct relationship with so-
matic growth and/or energy storage during this period
(Taranger et al. 1999). Further investigation of genotype–envi-
ronment interactions are required to improve Atlantic salmon
breeding programs. Photoperiod manipulation using artificial
light exposure has proven effective as a means of preventing
Atlantic salmon from reaching an anticipated sexual maturation
(Endal et al. 2000; Oppedal et al. 2006), and this procedure is
used with many other farmed fish (reviewed by Taranger et al.
2010). A clear link between feeding and age of sexual matura-
tion has been described in salmonids (Shearer et al. 2006;
Silverstein et al. 1998; Taranger et al. 2010; Thorpe et al.
1990), suggesting that by restricting rations, energy storage
and, in particular, lipid stores decrease, thereby delaying sexual

maturation (Duston and Saunders 1999; Rowe et al. 1991;
Shearer et al. 2006; Shearer and Swanson 2000). This also
explains the increasing use of tetradecylthioacetic acid to reduce
early sexual maturation in Atlantic salmon (Arge et al. 2012) as
it affects the β-oxidation of fatty acids, reducing levels of
plasma lipids and adipose lipid stores, and enhancing transport
of fatty acids to the liver.

Candidate Genes

To identify candidate genes associated with the traits of early
or late sexual maturation, we made use of the currently avail-
able information from the Atlantic salmon genome sequenc-
ing project (Davidson et al. 2010), which is publicly available
at ASalBase (www.asalbase.org). Most of the SNPs in the 6.
5K array correspond to an expressed sequence tag (EST) or
are linked to a specific genomic sequence, and these se-
quences were assigned to a specific whole genome shotgun
(WGS) contig by sequence similarity searches. WGS contigs
were then annotated using an in-house annotation pipeline
(trutta.mbb.sfu.ca) (see Table 3).

There are four SNPs linked to the QTL associated with
grilsing on Ssa10, of which two could be linked to two genes
by a BLASTn search (Altschul et al. 1990) and subsequent
sequence annotation. These genes were a leukocyte elastase
inhibitor (SERPIN-like) and a GDP-L-fucose synthase-like pro-
tein. We cannot speculate how these genes may be related to
grilsing in Atlantic salmon. In the case of the SNPs linked to the
grilsing QTL on Ssa21, one is associated with a gene encoding a
formimidoyl transferase-cyclodeaminase, a protein related to
metabolic processes. Two other SNPs (from the same EST)
identified E3 ubiquitin-protein ligase (UBR3), a protein that
has been shown to have a regulatory role in sensory pathways,
including olfaction in mammals (Tasaki et al. 2007). The QTL
detected for the late-maturation trait on Ssa18 was linked to two
SNPs, but only one of them could be related to a known gene,
namely, myopalladin-like gene. Studies in pig and cattle suggest

Fig. 2 QTL detection for late
sexual maturation across the 29
Atlantic salmon chromosomes
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that this gene is associated with meat quality and carcass traits
including fat content (Chong et al. 2007; Jiao et al. 2010).

Conclusions

In this study, we were able to identify a limited number of
QTL associated with age at sexual maturation in Atlantic
salmon. Moreover, our results suggest that these traits are
controlled by genes independently from growth-related traits.
Age at sexual maturation is a trait that has been heavily
selected and improved after several generations of selective
breeding based on family selection and individual selection
(Gjedrem 2000; Gjerde 1984; Gjøen and Bentsen 1997).
However, these improvements have been based on phenotypic
observations, and thus, the identification of genetic markers
and genomic regions associated with grilsing and late sexual
maturation provides new resources for Atlantic salmon selec-
tive breeding programs.
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