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Abstract
Peatlands in the European Union are largely drained for agriculture and emit 25% of the total agricultural greenhouse gas 
emissions. Drainage-based peatland use has also negative impacts on water quality, drinking water provision and biodiversity. 
Consequently, key EU environmental policy objectives include the rewetting of all drained peatlands as an essential nature-
based solution. Rewetting of peatlands can be combined with site-adapted land use, so-called paludiculture. Paludiculture 
produces biomass from wet and rewetted peatlands under conditions that maintain the peat body, facilitate peat accumulation 
and can provide many of the ecosystem services associated with natural, undrained peatlands. The biomass can be used for 
a wide range of traditional and innovative food, feed, fibre and fuel products. Based on examples in Germany, we have ana-
lysed emerging paludiculture options for temperate Europe with respect to greenhouse gas fluxes, biodiversity and indicative 
business economics. Best estimates of site emission factors vary between 0 and 8 t CO2eq ha−1 y−1. Suitability maps for four 
peatland-rich federal states (76% of total German peatland area) indicate that most of the drained, agriculturally used peatland 
area could be used for paludiculture, about one-third of the fen area for any paludiculture type. Fen-specific biodiversity 
benefits from rewetting and paludiculture, if compared to the drained state. Under favourable conditions, paludiculture can 
be economically viable, but costs and revenues vary considerably. Key recommendations for large-scale implementation 
are providing planning security by paludiculture spatial planning, establishing best practice sites and strengthening research 
into crops, water tables and management options.
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Introduction

Peatlands are a key terrestrial ecosystem to address mul-
tiple environmental issues. Sound peatland management 
practices can achieve greenhouse gas (GHG) emission 
reductions, climate change adaptation, water security and, 
at the same time, soil organic carbon (SOC) sequestra-
tion (Joosten et al. 2012; Bonn et al. 2016; Rumpel et al. 
2020). Peatlands are lands with a naturally accumulated 
layer of peat at the surface (Joosten and Clarke 2002; 
Rydin and Jeglum 2013, Joosten et al. 2017). Peat is dead 
plant material with a high content of fixed carbon that has 
accumulated sedentarily under water-saturated conditions 
that induce incomplete decomposition. The presence or 
absence of vegetation and whether peat is currently being 
formed are irrelevant in this widely accepted broad defini-
tion of peatlands. Peatlands occur from tropical to arctic 
regions, cover c. 3% of the global land area (Parish et al. 
2008; Joosten 2009) and contain c. 500 Gt carbon (Gor-
ham 1991; Yu et al. 2010; Joosten et al. 2016a). This is 
equivalent to c. 20% of all global soil carbon and sub-
stantially more than the carbon stock in the global forest 
biomass (Joosten et al. 2016a). Peatlands can be either a 
carbon sink or—especially if drained—a carbon source 
(Couwenberg et al. 2011; Joosten et al. 2016a).

Globally, c. 10% of all peatlands are drained (Joosten 
2009). A drainage ‘hotspot’ is the European Union (EU) 
where more than 50% of the peatland area is in a drained 
state (Tanneberger et al. 2017, 2021a). Drainage allows 
oxygen to enter the peat which enhances decomposition 
and results in the release of CO2 from the fossil carbon 
store (Rydin and Jeglum 2013; Joosten et  al. 2016a). 
Drained, degraded peatlands globally emit c. 2 Gt CO2 
equivalents (eq) per year (y−1) (Joosten 2009; Leifeld and 
Menichetti 2018); those in the EU c. 220 Mt CO2eq y−1 
(Greifswald Mire Centre et al. 2020). This is both globally 
and EU-wide c. 5% of total GHG emissions. At the heart 
of peatland degradation is the unsustainable exploitation 
of land to maximise agricultural and forestry production. 
In the case of agriculture, 25% of total GHG emissions 
are from drained peatlands that only make up 3% of the 
agricultural land in the EU (Greifswald Mire Centre et al. 
2020). Agriculture and forestry policies may be the game 
changers for a sustainable peatland management when har-
nessed to climate and biodiversity objectives.

Rewetting can substantially lower GHG emissions. In 
temperate Europe, rewetting grassland on drained peat 
soils saves up to c. 20 t CO2eq ha−1 y−1, and rewetting 
croplands even up to c. 30 t CO2eq ha−1 y−1 (cf. Hiraishi 
et al. 2014; Wilson et al. 2016). The global mitigation 
potential from peatland rewetting (up to 2 Gt CO2eq y−1) is 
of similar size as that from SOC sequestration on all other 

agricultural lands (Leifeld and Menichetti 2018). In other 
words, comprehensive mineral soil abatement measures 
alone would only be able to compensate for the emissions 
from degrading peatlands instead of providing a net soil 
sink. Moreover, peatland restoration is, compared with 
mineral soil C sequestration, cheap in terms of nitrogen 
(N) demand, involves a much smaller land area and is thus 
more cost-effective (Leifeld and Menichetti 2018). Post-
poning rewetting increases the long-term warming effect 
of continued CO2 emissions (Günther et al. 2020). Rewet-
ting may also restore other ecosystem services of near-
natural, undrained peatlands (Bonn et al. 2016). Depend-
ing on the water table, vegetation composition and various 
other factors, peat can even start to regrow, leading not 
only to a reduction of emissions, but to a net uptake of 
CO2 (Wilson et al. 2016; Mrotzek et al. 2020). Peatland 
rewetting enables microbial recovery as a key prerequisite 
for new peat formation (Emsens et al. 2020). Until now, 
most peatlands have been rewetted for nature conserva-
tion purposes and productive land use was abandoned after 
rewetting. To respond to the globally increasing competi-
tion for land, to support rural livelihoods and to retain and 
restore wet grasslands as hotspots for biodiversity, in many 
cases, a simple cessation of land use is not an option. The 
solution is a fundamental transition to ‘wet’ agriculture 
or forestry, so-called paludiculture (Joosten et al. 2016b; 
Tanneberger et al. 2020a).

Paludiculture is productive land use of wet peatlands 
that stops subsidence and minimises emissions. Paludi-
culture comprises any biomass use from wet and rewet-
ted peatlands, from harvesting spontaneous vegetation on 
near-natural sites to artificially established crops on rewet-
ted sites (Wichtmann et al. 2016). Paludiculture produces 
biomass from peatlands under conditions that maintain the 
peat body, facilitate peat accumulation and can provide 
many of the ecosystem services associated with natural, 
undrained peatlands. It is a form of carbon farming with 
biomass use on organic soils (Tanneberger et al. 2020a). In 
the temperate zone, the subtropics and tropics, peat is often 
formed by roots and rhizomes and the above-ground bio-
mass of such peatlands can (partially) be harvested with-
out substantially harming peat formation and conservation 
(Joosten et al. 2016b). Besides traditional yields of food 
and fodder, the biomass can be used as fibre for construc-
tion materials, as fuel—also in form of high-quality liquid 
or gaseous biofuels—as well as raw material for industrial 
biochemistry, and for further purposes like extracting and 
synthesising pharmaceuticals and cosmetics (Wichtmann 
et al. 2016; Geurts et al. 2019). A comprehensive list of 
plant species that can be cultivated at peat-preserving water 
levels on peatlands can be found in the Database of Poten-
tial Paludiculture Plants (DPPP) (Abel et al. 2013).
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The questions associated with the implementation of 
paludiculture require the cooperation of many scientific 
and technical disciplines in close feedback with practice. 
New crops that can thrive under permanently wet condi-
tions have to be developed for, or adapted to, new produc-
tion concepts. Furthermore, the complex interactions and 
effects of management under wet and drained conditions 
have to be studied, and the positive and negative effects 
on various ecosystem services associated with land use 
have to be evaluated (Schröder et al. 2016). Pilot pro-
jects are essential to further develop management and 
harvesting techniques, obtain robust data on environ-
mental effects and create markets for products (Geurts 
et al. 2019). The urgently required research on paludi-
culture needs to not only capture the novelty of paludi-
culture use, but also that of the rewetted land, which may 
have long-lasting differences to pre-drainage conditions 
(Kreyling et al. 2021).

In this paper, we focus on paludiculture on fens, which 
are peatlands that receive ground- or surface water and that 
are widespread in temperate Europe (Joosten et al. 2017). 
Details on paludiculture types on fens addressed in this 
study can be found in Online Resource 1. To better under-
stand the GHG mitigation potential, we derive tentative 
GHG emission factors for key fen paludiculture options 
in Germany, collated from literature and based on exist-
ing IPCC datasets (Drösler et al. 2014; Blain et al. 2014). 
To analyse the area potential, we modified and transferred 
an existing paludiculture land classification (Tanneberger 
et al. 2020b) to three additional federal states of Germany 
(based on administrative restrictions). Hence, we present 
a tentative assessment for potential fen paludiculture areas 
in four peatland-rich German federal states (representing 
76% of the total German peatland area). For one of the 
three newly mapped federal states, we demonstrate the 
potential reduction of GHG emissions from implement-
ing paludiculture. Furthermore, we summarise knowledge 
on biodiversity impacts and the economic competitiveness 
for the studied fen paludiculture types based on literature 
reviews. The results may be also applied in other tem-
perate fens in Europe. We discuss gaps and opportunities 
and give an outlook on the large-scale implementation of 
paludiculture in Europe.

Methods

To comprehensively investigate the characteristics of the 
studied paludiculture types, we combine careful compila-
tion and analysis of literature data and unpublished data 
with spatial analysis of paludiculture suitability classes 
and GHG mitigation potential.

Delineation of soil types and drainage condition

There are no definitions of ‘peat’ and ‘peatland’ by the Inter-
governmental Panel on Climate Change (IPCC; Hiraishi 
et al. 2014), and both IPCC and United Nations Framework 
Convention on Climate Change (UNFCCC) national GHG 
inventories refer to ‘organic soils’. We follow the approach 
taken in the National Inventory Submission of Germany 
(UBA 2020) and include all soils meeting the UNFCCC 
criteria for ‘organic soils’, i.e. not only histosols but also 
peaty soils.

To characterise drainage conditions, we refer to soil mois-
ture classes (SMC) based on Petersen (1952), Koska (2001) 
and Joosten et al. (2015). SMCs are defined by the long-term 
median water table in the wet and in the dry season (see 
Online Resource 2). The main classes used in this study are 
6 + very wet, 5 + wet and 4 + very moist.

Estimation of greenhouse gas fluxes

The analysis of GHG fluxes was literature based. How-
ever, there are no direct flux measurements from cropping 
paludiculture sites that cover growth and harvest cycles. 
Instead, we estimated GHG fluxes of each paludiculture 
type using the closest greenhouse gas emission site type 
(GEST). GESTs are based on a meta-analysis of emission 
measurements from a wide range of central European peat-
land sites (see Online Resource 3). They focus on vegetation 
types, which reflect ecological site conditions, like water 
table depth/soil moisture class (SMC), nutrient availabil-
ity, acidity and land use (Couwenberg et al. 2011). These 
site conditions also affect GHG fluxes and render vegeta-
tion a good proxy for GHG emissions (Couwenberg et al. 
2011). Each type of paludiculture has a targeted vegetation 
and associated SMCs and we assigned emission values of 
the most similar GESTs. It is assumed that annual above-
ground biomass increment is harvested each year and that 
the fluxes represent soil fluxes only. Positive fluxes denote 
net emissions to the atmosphere. As direct measurements of 
actual paludiculture sites are missing, values are indicative 
best estimates.

For calculating global warming potential (GWP in 
CO2eq), we used a factor 28 for methane (CH4) (Myhre et al. 
2013). GHG fluxes presented here are site fluxes. We did 
not include emissions from machinery during management 
as they are considered to be negligible (Emmer and Cou-
wenberg 2017). Both drainage-based and ‘wet’ agriculture 
enclose emissions from machinery; paludiculture is poten-
tially less labour intensive as sites would be harvested at 
most once a year without further working of the land. Fur-
thermore, emissions by grazing livestock were not included. 
Nitrous oxide (N2O) was not considered, as N2O emissions 
are erratic in their occurrence and hard to assess, matter 
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mainly on drained peatlands and are negligible after rewet-
ting (Couwenberg et al. 2011). No GHG emissions were esti-
mated for forestry-based paludicultures as the measurement 
of GHG fluxes on wooded sites is complicated (Tiemeyer 
et al. 2013) and reliable data therefore scarce. For compari-
son, we also included GHG fluxes for drainage-based land 
use using emission factors from National Inventory Report-
ing (UBA 2020).

Derivation of paludiculture eligibility classes 
and assessment of potential greenhouse gas 
emission reductions

A cross-sectoral spatial planning approach for paludiculture 
has previously been developed in a multi-stakeholder discus-
sion process in the German federal state of Mecklenburg-
Vorpommern (Tanneberger et al. 2020b). Here, we modify 
and extend this approach to the North-German federal states 
of Brandenburg, Lower Saxony and Schleswig–Holstein. 
Vector data maps on the scale of the respective federal state 
on peatland/organic soil distribution (Tegetmeyer et  al. 
2020) served as a basis for eligibility maps for paludicul-
ture. First, the organic soil polygons were clipped down to 
polygons of agricultural land use (Mecklenburg-Vorpom-
mern, Brandenburg and Lower Saxony: field parcel scale; 
Schleswig–Holstein: higher aggregated data due to access 
restrictions), to only include areas currently under agricul-
tural use. Second, we identified areas currently under nature 
protection and attached this information to the polygons of 
organic soils under agricultural use. Depending on protec-
tion status, restrictions may exist concerning modification 
of the present vegetation. To consider these restrictions, we 
distinguish between ‘permanent grassland paludiculture’ 
and ‘cropping paludiculture’ (Tanneberger et al. 2020b). 
In cooperation with the relevant regional authorities, we 
assigned protected areas such as nature reserves, national 
parks, protected landscapes, biosphere reserves and Natura 
2000 sites to paludiculture eligibility classes. We used four 
classes (Tanneberger et al. 2020b):

• Class 1: any paludiculture is possible;
• Class 2: permanent grassland paludiculture is possible 
but cropping paludiculture only after an administrative 
assessment;
• Class 3: only permanent grassland paludiculture is pos-
sible and an administrative assessment is needed to safe-
guard nature protection goals;
• Ineligible (Class 4): area is not eligible for paludicul-
ture.

Depending on the approach of the authorities, the eligi-
bility of the same type of protection status differs between 
federal states (see Nerger & Zeitz 2021 for details). For 

example, some federal state authorities assumed that crop-
ping paludiculture is not compatible with permanent grass-
land protection and thus only eligible on current cropland or 
that paludiculture in general is not eligible in protected areas 
of the European Union (i.e. Natura 2000 sites). This may be 
reconsidered and harmonised in the future. The Geographic 
Information System software QGIS 2.18 as well as ArcMap 
10.3 (for Lower Saxony: ArcGIS Version 10.5.1.) were used 
to compile the spatially explicit data on soil types, agricul-
tural land use and protected areas. All geodata were either 
publicly available on geoportals or provided by federal state 
authorities.

The resulting paludiculture land classification was then 
used to assess potential emission reductions in a land use 
change scenario that follows the Paris Agreement and the 
IPCC 1.5 °C (2018) report, i.e. along a pathway towards net 
zero CO2 emissions at around 2050 (Abel et al. 2019; Tan-
neberger et al. 2021), for one federal state (Brandenburg) 
serving as an example. Following this pathway, we assume 
for 2030 that land use continues on all currently used peat-
lands, that cropland use on drained peatlands ceases and is 
largely replaced by cropping paludicultures and that 85% 
of the total area has a SMC of 3 + or 4 + and 15% a SMC of 
5 + or 6 + (see Online Resource 2).

Assessment of biodiversity effects

After rewetting, in all types of paludiculture, biomass will 
be harvested by mowing or grazing. Both are likely to have 
a significant effect on biodiversity. As paludiculture is not 
established on a large, commercial scale in temperate Europe 
yet and biodiversity studies on pilot sites are rare, we con-
ducted a literature review. In total, we reviewed 177 sources 
(peer-reviewed studies but also unpublished reports and 
assessments; see Närmann et al. 2021 and Online Resource 
4). In a subset of 82 sources from managed sites, we speci-
fied positive, positive and negative, and negative effects of 
paludiculture on abundance and diversity within different 
species groups. Furthermore, we incorporated the results of 
a workshop held in March 2019 with 32 experts on different 
aspects of biodiversity and from various peatland regions in 
Germany. We were careful in drawing conclusions as in most 
studies, near-natural managed (mown or grazed), wet areas 
are compared with near-natural unmanaged, wet controls. In 
contrast, future paludiculture will largely concern previously 
drained, intensively used and rewetted sites.

Assessment of business economics

To analyse the economic viability of different types of man-
agement, potential costs, revenues and profits from differ-
ent sources were compiled. For this purpose, both standard 
data sets (KTBL 2005, 2018) and special data sources and 
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literature (e.g. Kaphengst et al. 2005; Schätzl et al. 2006; 
Wichmann 2017; Sweers et al. 2014) were used. As some 
costs and revenues crucially depend on the prevailing con-
ditions, we looked at an unfavourable, a moderately and 
a highly favourable case, resulting in a range of possible 
values in the cost and revenue scenarios. As conditions 
determining costs, we included, e.g. in case of wet meadow 
paludiculture area size, obstacles for trafficability, biomass 
yield, available machinery, biomass harvesting technique 
and biomass transport distance (see Online Resource 5). As 
conditions determining revenues, we included sales oppor-
tunities and payment schemes.

Results

Greenhouse gas fluxes

The GWP of the studied paludiculture types varies 
between 0 and 8 t CO2eq ha−1 y−1 (Fig. 1). Paludiculture 
types at higher water levels emit more CH4, but consid-
erably less CO2. Common Reed at SMC 6 + (summer/
autumn median water table not lower than at soil surface) 
has the lowest GWP (0 t CO2eq ha−1 y−1) and the highest 
CO2 uptake (12 t CO2 ha−1 y−1). All three paludiculture 
types at SMC 5 + (summer/autumn median water table not 
lower than 10 cm below soil surface) have a GWP of c. 6 
t CO2eq ha−1 y−1; that of wet pastures is slightly higher 
(8 t CO2eq ha−1 y−1).

Area potential and potential greenhouse gas 
emission reduction

In northern Germany, there is 1,397,221  ha of organic 
soil (Table  1). Most of it are fen peatland/peaty soils 
(842,363 ha). The majority of this area is currently drained 
and under agricultural use (654,713 ha). Some 301,347 ha 
were classified as eligibility classes 2 or 3, i.e. an adminis-
trative assessment would be needed before a decision can 
be made to permit a certain type of paludiculture. There are 
also 232,597 ha classified as class 1, i.e. eligible for both 
permanent grassland as well as cropping paludiculture with 
regard to nature conservation requirements. The total area of 
fen peatland/peaty soils in North-Germany potentially eligi-
ble for paludiculture is 533,944 ha. Figure 2 is an example 
of a paludiculture suitability map for the federal state of 
Brandenburg.

In Brandenburg, 186,000 ha of organic soil is currently 
used for agriculture, of which about 147,000 ha is grass-
land. Potentially ~ 185,500 ha (classes 1 and 2–3) are suit-
able for paludiculture. In a 1.5 °C pathway similar to that 
in Abel et al. (2019) and Tanneberger et al. (2021b), we 
would assume that 156,500 ha have water tables no lower 
than 30 cm below the surface (SMC 4 + or 3 +) and that 
28,000 ha have water levels close to or above the surface 
(SMC 5 + or 6 +). Annual GHG emissions from this area 
would amount to 1.2 to 3.1 Mt CO2eq, as opposed to 5.5 Mt 
CO2eq at present (Online Resource 5).

Fig. 1   Estimated CO2 and CH4 
site emissions and global warm-
ing potential (GWP) of temper-
ate European fen paludiculture 
types based on GESTs. Positive 
fluxes denote net emissions to 
the atmosphere. Due to a lack 
of data for woody vegetation no 
emission values for Alnus were 
included, even though Alnus 
is known to be peat preserving 
under high water tables (Bar-
thelmes 2009). For comparison, 
also CO2 and GWP (exclud-
ing N2O) values for drained 
cropland and grassland based 
on UBA (2020) are given (see 
Online Resource 2 for details of 
soil moisture classes (6 + very 
wet, 5 + wet, 4 + very moist))
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Biodiversity

The literature review revealed, as an overriding result, that 
rewetting of drained fens will lead to an increase in fen char-
acteristic biodiversity. In both flora and fauna, a shift from 
xerophilic to hydrophilic species is highly likely to occur.

As the water level is a key factor determining the vegeta-
tion composition in fens (Wheeler and Shaw 1995; Jabłońska 
et al. 2011), rewetting will result in drastic changes in vege-
tation (Hellberg 1995). Species adapted to dry(er) conditions 
will be replaced by hygrophilic species (Richert et al. 2000). 
When areas are flooded (water tables above the surface), 
they are often rapidly colonised by Cattail (Typha latifolia 

and T. angustifolia) (Richert et al. 2000; Timmermann et al. 
2006). With continued succession, reeds dominated by Com-
mon Reed (Phragmites australis) or sedges (Carex spec.) are 
likely to establish (Zerbe et al. 2013). Conflicts of interest 
between climate protection and biodiversity conservation 
can arise where rare dry habitats, which would be impaired 
by rewetting, have been established on drained peatlands 
(Dolek et al. 2014, Vischer-Leopold et al. 2015).

Also a turnover towards hydrophilic, fen characteristic 
fauna is highly likely. For example, in Carabidae (Görn and 
Fischer 2015) and Staphylinidae (Hoffmann et al. 2018), 
an increase in habitat specialists but also in total species 
richness after rewetting was observed in North-Eastern 

Table 1   Paludiculture suitability classes on agriculturally used fen peatlands/peaty soils in North-Germany (federal states Mecklenburg-Vorpom-
mern, Brandenburg, Lower Saxony, Schleswig–Holstein)

a Tegetmeyer et al. (2020); bTanneberger et al. (2020b); cthis study; see Nerger and Zeitz (2021) for details; drecent estimate for total organic soil 
in 1:50,000 soil map is ~ 500,000 ha; values for fens excluding fens with < 30-cm peat layer; estimates for paludiculture classes: C. Beyer

Federal state Total area 
organic soil (ha) 
[% of the federal 
state]a

Fen area (ha) [% 
of the total area 
of organic soil]

Class 1
Any palu-
diculture 
(ha)

Class 2
Permanent grass-
land or cropping 
paludiculture 
(with admin. 
check) (ha)

Class 3
Only permanent 
grassland palu-
diculture (with 
admin. check) 
(ha)

Total potential 
paludiculture 
area on fen soils 
(classes 1–3) (ha)

Ineligible (ha)

Mecklenburg-
Vorpommernb

283,650 [12.2]  ~ 283,000 [99] 85,468 49,949 28,827 164,244 1,656

Brandenburgc 260,447 [8.8] 260,008 [99] 52,795 132,896 185,691 321
Lower Saxonyd 669,065 [14.0] 168,000 [25]  ~ 22,000  ~ 6,000  ~ 71,000  ~ 99,000  ~ 19,000
Schleswig-Hol-

steinc
184,059 [11.7] 131,355 [71] 72,334 12,675 85,009 21,792

Total 1,397,221 842,363 232,597 301,347 533,944 33,769

Fig. 2   Paludiculture classes for 
agriculturally used peatlands 
in the federal state of Branden-
burg, Germany (see Table 1 for 
more details)
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Germany. A clear increase in fen characteristic amphibians 
and reptiles was reported for rewetted fens in Belarus (Kozu-
lin et al. 2011). Especially the development of birds after 
rewetting is well documented. For example, Herold (2012) 
reports breeding bird communities of high conservation 
value after rewetting; critically endangered and previously 
lost species like Zapornia pusilla, Crex crex, Gallinago gal-
linago and Spatula querquedula returned as breeding birds.

The establishment of cropping paludiculture seems to 
promote fen biodiversity as well. In pilot sites for Cattail 
cultivation in Germany and Switzerland, several character-
istic fen plant species were established (Pfadenhauer and 
Wild 2001, SIG Rohrkolben 2009). A bird survey in a 1-ha 
site in Switzerland yielded twelve species with suspected 
breeding; among them were species like Porzana porzana 
and Acrocephalus arundinaceus (Graf 2014).

Management by mowing or grazing reduces litter accu-
mulation and leads to an increase in light availability and 
consequently to changes in microclimate (Bosshard et al. 
1988; Diemer et al. 2001). Light availability is crucial for 
seedling establishment in fens (Kotowski and van Digge-
len 2004) and litter cover impedes germination success 
(Jensen and Gutekunst 2003). Consequently, management 
of wet meadows and reed beds by mowing or grazing often 
results in a more species-rich vegetation (Cowie et al. 1992; 
Güsewell and Le Nédic 2004, Ausden 2010). A meta-anal-
ysis even found an increase of 90% in plant species richness 
in managed freshwater reed beds compared to unmanaged 
ones (Valkama et al. 2008).

With regard to fauna, management of fens by mowing or 
grazing promotes thermo- and heliophilic as well as open 
area species and phytophagous invertebrates. In other cases, 
management (especially mowing) impedes faunal biodiver-
sity by directly killing or harming animals and by modify-
ing microhabitats. Management effects are strongly taxon 
specific and may differ within orders or even families and 
between management types (Table 2). For example, cutting 
of Common Reed decreases characteristic reed bird species 
but promotes waders like Vanellus vanellus or Gallinago 
gallinago (Goc et al. 1997; Vadász et al. 2008). In contrast to 
mowing which cuts vegetation at a uniform height (McBride 
et al. 2011), grazed fens exhibit a greater variability in habi-
tat structures (e.g. Zahn et al. 2010).

Business economics

Taking into account potential costs, market revenues, if 
applicable, additional income from current agri-environmen-
tal schemes (AES) and profits, the studied fen paludiculture 
types can be economically viable under moderately favour-
able conditions (Table 3). This is the case for wet meadows, 
wet pastures and harvesting of common reed for thatch. Both 
costs and revenues can vary considerably between favourable 

and unfavourable scenarios. Wet pastures with robust breeds 
are profitable in all scenarios. In a highly favourable sce-
nario with good prices for insulating material, cultivation 
of Cattail offers the highest potential profit. Details of the 
economic assessment for one paludiculture type (wet mead-
ows) are presented in Online Resource 6.

Discussion

Improved assessments of paludiculture emission 
factors and reduction potentials

We present new GHG emission factors for different palu-
diculture types (i.e. SMC/crop combinations) that may be 
used as a reference for assessing the climate effects of shift-
ing drainage-based land use to paludiculture. GHG data are 
taken not only from Germany but from peatlands in temper-
ate Europe. It can thus be assumed the results are valid for 
the whole region. In practice, there will be sites that emit 
more and sites that emit less. The GESTs used for some 
paludiculture types have a small underlying sample size, 
which means that changes in emission values by several 
tonnes per hectare and year may occur as science advances 

Table 2   Effects (green and + : positive; yellow and + / − : positive and 
negative; red and − : negative, grey: not specified) of paludiculture 
on abundance and diversity within different species groups (meta-
analysis of 82 studies, see Närmann & Tanneberger 2021). Effects of 
rewetting were not taken into account

Wet meadow Wet pasture Common reed Cattail

Vegetation  +   +   +   + 
Aves  +   +   + / − 
Chironomidae  − 
Corixidae  − 
Thysanoptera  − 
Lepidoptera  +   + / −   − 
Hymenoptera  − 
Isopoda  − 
Araneae  + / −   + / −   + / − 
Coleoptera  +   + / − 
Aphidoidea  + 
Diptera  + 
Oligochaeta  + 
Acari  + 
Hydrophilidae  + 
Orthoptera  + / −   + / − 
Mollusca  −   −   − 
Formicidae  + 
Amphibia  + 
Odonata  + 
Staphylinidae  + 
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in the future. The emission factors refer to stable situations 
and there are considerable uncertainties about emissions 
during rewetting and establishment of paludiculture, as well 
as for emissions from ditches and (peat) dams in paludicul-
ture settings. A near-zero exchange of CO2 and N2O can be 
assumed under wet conditions, but CH4 emissions strongly 
vary spatially and temporally, and the driving parameters 
are not fully understood yet (Bhullar et  al. 2014; Hahn 
et al. 2015; Franz et al. 2016; Minke et al. 2016). Despite 
all uncertainties and expected variations, such factors are 
needed in order to assess the effects of land use scenarios on 
organic soils. Further research is urgently needed to lower 
the uncertainties and increase the understanding of underly-
ing processes.

Direct measurements are not available for complete 
growth-harvest cycles of cropping paludicultures and data 
from unmanaged systems were used as reference. Whereas 
emissions from rewetted sites do not differ substantially 
from undrained sites (Wilson et al. 2016), further research 
is needed whether emission factors from unmanaged peat-
lands can be transferred to paludiculture sites. In particular, 
long-term direct measurements that cover rewetting and 
establishment phases are needed. On the one hand, stud-
ies indicate that net fluxes from mown/grazed systems are 
hardly different from those of unused systems as long as 
water levels remain the same (Günther et al. 2015; John-
son 2016). On the other hand, there are differences because 
photosynthetic output declines sharply directly after har-
vesting, while respiration continues to take place (Koebsch 
et al. 2013). Yet, the mowing also stimulates plant growth 
and can increase the overall photosynthetic output (Herbst 
et al. 2013; Günther et al. 2015), depending on the time of 
mowing (Fogli et al. 2014). Below-ground productivity may 

increase in reaction to mowing as well (Luo et al. 2021). 
Still, the role of above-ground plant litter in the soil carbon 
balance may be more important than thus far acknowledged 
(Michaelis et al. 2020). With respect to CO2 fluxes, the thus 
far available data suggest that emissions are close to zero 
when water tables are close to the surface (Wilson et al. 
2016; Tiemeyer et al. 2020).

Very high methane (CH4) emissions have been observed 
from flooded, fertilised sites (Kandel et al. 2020), as well as 
from sites that receive nutrients-rich organic matter through 
lateral inflow (Augustin & Chojnicki 2008; Minke et al. 
2016) and as a result act much like ditches in agriculturally 
drained fields with comparable CH4 fluxes (Peacock et al. 
2021). Also, recently rewetted sites can show high methane 
emissions when vegetation not adapted to wet conditions 
dies off and provides ample easily degradable biomass for 
methanogenesis (e.g. Streck et al. 2017). Removal of vegeta-
tion and the topsoil before rewetting will drastically reduce 
methane emissions (Harpenslager et al. 2015; Zak et al. 
2018; Huth et al. 2020). In contrast to rewetting for nature 
conservation, paludiculture management may include active 
water management, allowing to minimise CH4 emissions by 
keeping the water table closely to the surface during the 
warm months.

Upscaling site emission factors to regional emission 
(reduction) estimates requires reliable spatial data. Data 
on organic soil distribution are often not up to date (Tan-
neberger et al. 2017; Tegetmeyer et al. 2020 for Germany). 
In this study (Online Resource 5), we have included the 
federal state of Brandenburg, as its map of organic soils 
has been updated more recently than that of other peat-
land-rich federal states (Tegetmeyer et al. 2020). A drained 
peat layer can disappear within decades due to accelerated 

Table 3   Indicative values for potential costs, revenues (incl. income 
from agri-environmental support) and profits of main fen paludicul-
ture types in Germany. Values are given for moderately favourable 

conditions (and for unfavourable and highly favourable conditions in 
brackets). Summarised from Pfister and Oppermann (2021)

a See Online Resource 6 for a detailed, exemplary economic assessment of this paludiculture type
b For harvesting natural stands (no costs for planting and hydrological infrastructure included), use as thatch
c Costs for planting and hydrological infrastructure included; the revenues are not based on real prices, but on calculations for prices to cover 
medium costs

Paludiculture type Potential costs (Euro/
ha)

Potential income 
(Euro/ha)

Potential AES (Euro/
ha)

Potential profit (Euro/
ha)

Literature for costs and 
yields

Wet meadowa  − 200 (− 870/ − 240) 330 (250/900) 320 (105/685) 450 (− 515/1345) KTBL (2005), KTBL 
(2018)

Wet pasture
Water buffalo  − 920 ( −) 950 (690/1080) 235 (100, 680) 260 (− 130/840) Sweers et al. (2014)
Robust breeds  − 600 (− 500/ − 690) 1010 (1080/1215) 280 (100, 860) 690 (680/1385) Kaphengst et al. (2005), 

Scholz (2019)
Common reedb  − 500 (− 770/ − 840) 1075 (610/2380) 570 (− 160/1540) Wichmann (2017)
Cattailc  − 3630 

(− 4330/ − 2760)
3540 (2105/5400)  − 90 (− 2225/2740) Schätzl et al. (2006)
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decomposition, possibly enhanced by ploughing. Repeated 
ground verification and correction are needed at drained 
sites with shallow peat deposits or non-peat organic soils 
to reliably assess the areal extent of organic soils (Roßkopf 
et al. 2015). New opportunities for an improved assessment 
of paludiculture area potentials arise from the increased data 
availability provided by modern Earth observation satellites, 
especially Sentinel-2 (Drusch et al. 2012). The two systems 
Sentinel-2A and 2B deliver imagery at 10–20-m spatial reso-
lution, 10 spectral bands and a theoretical combined obser-
vation frequency of 2–4 images per 10 days, which allow for 
fine-scale analysis of vegetation phenology or visible water. 
When combined with Landsat-8 data (Roy et al. 2014), the 
Sentinel 2 data has been successfully employed for national-
scale grassland management characterisation including 
mowing event detection (Griffiths et al. 2020). Similarly, 
crop types and hence detailed information on agricultural 
land use and cover can be derived over large areas and on 
an annual basis (Griffiths et al. 2019). Metrics derived from 
such time series have only recently been shown to contribute 
to an assessment of rewetted surfaces (Kreyling et al. 2021), 
as spectral indices change significantly when water levels 
surpass soil/vegetation. In combination, the different pos-
sible information levels will further help in a wall-to-wall 
mapping of the status of rewetted fens.

Outcomes of regional scenarios for future agricultural use 
on organic soils such as presented in Table 2 vary strongly 
according to the underlying assumptions. Here, we assume 
a substantial proportion of the land to be managed under 
moist or very moist conditions. This may allow for stepwise 
adaption of farms to higher water levels (Tanneberger et al. 
2021). A recent report on climate neutrality of agriculture 
in Germany argued that omitting the ‘moist’ stage may be 
a better solution for many farms, especially for those using 
cropland (Grethe et al. 2021).

Improved assessments of biodiversity effects 
and business economics of paludiculture

In the past, rewetting was carried out mainly for the resto-
ration of biodiversity, which is also reflected in the stud-
ies included in the literature review (Online Resource 4). 
Untouched peatlands rightly served as a reference (e.g. Dijk 
et al. 2007; Klimkowska et al. 2007; Herold 2012). The bio-
diversity of rewetted, mown or grazed paludiculture fens 
should, however, not be compared with that of near-natural 
fens. Rather, the status prior to rewetting, mostly intensively 
used grassland or arable land, in Eastern-European countries 
also peat extraction sites in fens, should be used for com-
parison. Large-scale drainage from the 1960s onwards led 
to the extinction of fen mire biodiversity typical of Central 
Europe (Succow 2001). The drained fens are intensively 
used as grassland and arable land and are of low ecological 

value (Klimkowska et al. 2010). Rewetting and cessation of 
high-intensity land use will certainly lead to a significant 
improvement compared with the current status. Whereas 
evidence for plants and birds is available from various stud-
ies, invertebrate taxa and other organism groups have been 
insufficiently studied so far. A major information deficit is 
also seen in the potential effects of wet pastures and cat-
tail cropping paludiculture on biodiversity. Generally, the 
studies to date have largely investigated either rewetting or 
management of fen sites. However, both processes must be 
considered together in the case of paludicultures, and in our 
study, we provide such a combined insight applicable not 
only to Germany, but also to other temperate fen peatlands 
in Europe. Biodiversity monitoring should be carried out on 
all paludiculture demonstration sites, and wherever possible 
be compared with the status prior to rewetting.

For many forms of paludiculture, there are still data gaps 
with regard to costs and revenues. Even for the relatively 
widespread wet meadows, where much detailed information 
is available, there is still a lack of information on which site 
conditions and biomass yields are most frequently encoun-
tered on paludiculture sites in practice. Yet, site condi-
tions and characteristics like area size, firmness of the soil, 
unevenness of the soil, frequency of obstacles and distance 
from the farm in combination with biomass yields determine 
the machinery that can be used, the necessary labour input, 
and the resulting costs and revenues. Therefore, several sce-
narios should be calculated. Point estimates of profitability 
are easily miscalculated and deterministic accounting using 
fixed values is restricted to specific cases. Simulations dem-
onstrating the conditions and the possible range of loss or 
profit are likely to provide a more accurate picture of reality 
(Wichmann 2017). Also, potential income from agri-envi-
ronmental schemes substantially affects the outcome, and 
future funding frameworks need to be considered carefully.

Recommendations for enhancing biodiversity in fen 
paludiculture and fair remuneration

The intensification of agricultural practices in recent decades 
has led to a substantial loss of biodiversity in the agricultural 
landscape (Tscharntke et al. 2005; Donald et al. 2006; Stoate 
et al. 2009). Our review has shown that rewetting of drained 
fens and implementation of paludiculture is very likely to 
enhance fen biodiversity compared to the previous drained 
condition. The following measures should be applied as 
standard in paludiculture in order to avoid stepping into the 
same pitfalls conventional agriculture has stepped into in the 
past (Närmann and Tanneberger 2021):

- Abstain from nitrogen or phosphate fertilisation
- Abstain from insecticides
- Abstain from tillage and turning of the soil
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- Biodiversity-enhancing design and maintenance of 
ditches.

To enable the full potential of biodiversity restoration and 
conservation, biodiversity-promoting measures in wet fen 
management can be pursued. Such measures can both enhance 
positive effects and mitigate inhibiting factors. Possible measures 
in fen paludiculture include (Närmann and Tanneberger 2021):

- Establishment of 1-year rotational fallows
- No rolling, dragging and harrowing in spring before 
mowing
- High cut of at least 8 cm
- Use of cutting (oscillating) instead of rotating mowing 
technology
- Bird breeding time restrictions

Measures to promote biodiversity often incur additional 
costs that need to be met. Biodiversity-promoting measures 
that receive payments exist already on mineral soils, e.g. use of 
special equipment (Pfister and Oppermann 2021). If we want 
the ecosystem services of wet peatlands and paludiculture to 
benefit society, we need to remunerate them generously and 
clearly beyond a reimbursement of costs. Farmers must see their 
own advantage in providing ecological services (Hampicke 
2018). In the end, wet peatland management is only interesting 
for the farmer if the sum of revenues (biomass sales, direct 
payments and agri-environmental support) significantly exceeds 
total costs. A long-term prospect of substantial net income for 
the farmer is a prerequisite for large-scale implementation.

Towards large‑scale implementation 
of paludiculture

Until now, rewetting has largely focussed on areas of high 
interest for nature conservation but little interest in terms of 
land use (Barthelmes et al. 2021). To comply with the Paris 
Agreement, a much stronger emphasis must be placed on 
rewetting deeply drained peatlands/organic soils currently 
under high-intensity land use (Greifswald Mire Centre et al. 
2020; Tanneberger et al. 2021b; Grethe et al. 2021). These 
deeply drained lands have a high potential for climate change 
mitigation (Tiemeyer et al. 2020), but rewetting them currently 
still incurs large opportunity costs (Buschmann et al. 2020). 
Implementing paludiculture can reduce these opportunity costs 
if it is supported by strong public incentives and investments. 
Current agri-environmental support is not sufficient to make 
paludiculture interesting and lack of incentives obstructs 
large-scale roll-out (Tanneberger et al. 2021b; Grethe et al. 
2021). Based on our analysis, key recommendations are (i) 
to provide planning security for land users by extending and 
refining spatial planning for paludiculture, (ii) to initiate the 
establishment of the pilot and best practice demonstration sites 

with special attention to decentralised solutions to address the 
large variety of environmental and socio-economic conditions 
and (iii) to strengthen research into paludiculture crops, water 
tables and management options to optimise climate and other 
environmental effects and economic consequence.

These results are in line with the summary of recommenda-
tions for large-scale implementation of paludiculture by some 
200 scientists and practitioners during the globally largest palu-
diculture conference in 2017 (RRR 2017). Here, also additional 
recommendations that reach further into societal and political 
dimensions were presented, e.g. (i) adjustment of legal frame-
works, including stopping incentives which maintain or stimu-
late peatland drainage, and ensuring accounting for emissions 
from organic soils under the Paris Agreement; (ii) provision 
of financial incentives from the public sector (e.g. for rewet-
ting and investments, payments for ecosystem services), and 
improved access to finance, and (iii) stimulation and support of 
innovation along the entire paludiculture value chain, includ-
ing breeding, cultivation, harvesting, transport and processing 
technologies, logistics, economy and markets (RRR 2017).

Paludiculture is a new, future-orientated concept for the sus-
tainable use of peatlands (Joosten et al. 2016b; Wichtmann et al. 
2016). The fen paludiculture types presented in this article are 
probably only the beginning of multiple possibilities in temper-
ate Europe. Methods to assess GHG emissions, biodiversity 
effects and indicative business economics of paludiculture are 
suggested and discussed, and ways to arrive at a large-scale 
implementation of paludiculture are indicated. The large-scale 
implementation of paludiculture requires a consequent and con-
sensually pursued paradigm change. The solution of problems 
that originate from drainage-based peatland utilisation will 
depend decisively on political will and successful best practice 
examples (Wichtmann et al. 2016; Tanneberger et al. 2020b).
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