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Abstract
In this study, we estimated the contribution of managed grasslands to the “4 per 1000” initiative in Basque Country under two 
climate scenarios (RCP4.5 and RCP8.5) adopted by the IPCC in its Fifth Assessment Report. For this purpose, the RothC 
model was calibrated and validated with a historic database of grassland soil organic carbon (SOC) (1983 to 2019). The results 
at field-scale show a rate of increase of 1.26 t C ha−1 year−1 at a depth of 0–30 cm over a 36-year simulation. The model was 
run at the regional scale in short- (2020–2040), medium- (2041–2070), and long-term (2071–2090) future climate scenarios. 
For all the simulations, agricultural practices and available data for grassland systems were considered. RothC model projec-
tions showed how SOC stock responses varied depending on initial SOC and climate subregions, with higher values for a lower 
initial SOC stock under the highest precipitation regime subregion. A 4 per 1000 storage rate could be achieved in grassland 
soils with an initial SOC < 80 t C ha−1. The overall trends showed that future climate change will lead to a decrease in the 
SOC stock in grasslands with a higher initial SOC if appropriate practices are not implemented to maintain the SOC stock.

Keywords  RothC model · 4 per 1000 Initiative · Soil organic carbon · Grassland · Climate change

Introduction

Soil organic carbon (SOC) constitutes a part of the carbon 
(C) cycle, incorporating atmospheric C and acting as a sink 
of C (FAO 2017). The “4 per 1000—Soils for Food Security 
and Climate” initiative (hereinafter referred to as the “Initia-
tive”) was launched with the objective of increasing global 

SOC stocks by 0.4% per year over 20 years as compensation 
for global greenhouse gas emissions (GHGs) due to anthro-
pogenic sources (Minasny et al. 2017). Previous studies have 
indicated that adopting recommended management practices 
to maintain the SOC concentration could potentially increase 
the global stock by 1.2–3.1 Pg C year−1 over 25 to 50 years 
(Lal 2013).

Grasslands are one of the most important and widespread 
terrestrial ecosystems, covering approximately 40% of the 
global land surface and containing the largest share (39%) 
of terrestrial soil C stocks (White et al. 2000). SOC com-
prises 47% of the mitigation potential for agriculture and 
grasslands (Bossio et al. 2020). Grassland systems in Basque 
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Country are an important resource for livestock production. 
They represent 45% of the total cultivated area (Departamento 
de Desarrollo Económico 2020), thus offering considerable 
potential as C sinks through the connection between livestock 
and grasslands for climate change mitigation. In this region, 
sustainable grassland intensification aims to increase plant 
yields destined for forage production while maintaining soil 
function as a C sink. The remaining challenge is to reliably 
quantify rates of change in soil C across intensively managed 
grasslands.

Climate change is a key driver of change in soil C dynam-
ics (Gottschalk et al. 2012). Increasing mean air temperatures 
are likely to accelerate SOC decomposition and loss of SOC 
in the future if soil moisture is not a limiting factor. However, 
the magnitude and the duration of this effect on soil acting as 
a C sink in intensive livestock systems are uncertain (Fornara 
et al. 2020).

Due to the complexity of the soil–plant–atmosphere sys-
tem, it is helpful to study SOC dynamics through simulation 
models combined with local measured data. SOC turnover 
models have been used to simulate SOC dynamics under vari-
ous land uses, management practices, and climatic conditions 
(Smith et al. 1997b; Smith 2002). Different soil-process models 
have been developed and applied to understand soil functions 
(e.g., DayCent-Parton et al. (1994); DNDC-Li et al. (1992); 
RothC-Coleman and Jenkinson (1996)). The RothC model is a 
process-based model to estimate SOC dynamics that has been 
widely used in a variety of ecosystems (Coleman et al. 1997; 
Smith et al. 2008; Xu et al. 2011) and climate regions (Falloon 
and Smith 2006; Powlson et al. 2011; Meyer et al. 2018). It has 
also been used to predict future SOC dynamics under the effect 
of climate change (Gottschalk et al. 2012; Chenu et al. 2019; 
Afzali et al. 2019). SOC modelling under climate change con-
ditions has also been previously studied in Spain at a regional 
scale (Nieto et al. 2010; Segura et al. 2016; Jebari et al. 2018), 
but there are no modelling studies specific to the C stock in 
grasslands in this region. In addition, most of the modelling 
efforts have focused on forests and arable lands, while grass-
lands have received less attention (Soussana et al. 2006; Wies-
meier et al. 2019) due to the complexity of the process-based 
modelling of grassland systems compared to annual cropping 
systems.

The objectives of this study were to (1) calibrate the 
RothC model with long-term data on intensively man-
aged grasslands for livestock production at the field scale 
and (2) evaluate the long-term (2020–2090) contribution 
of the Basque Country grassland soils to the Initiative 
under two climate change scenarios (RCP4.5 and RCP8.5) 
adopted by the IPCC in its Fifth Assessment Report 
(IPCC 2013).

Materials and methods

Study area

Basque Country is situated on the north coast of Spain and 
has a highly diverse climate. On the northern slope, the 
dominant climate is Atlantic (Jones et al. 2020) and has led 
to the development of pastures and forests for livestock and 
timber production, while on the southern slope, a Mediter-
ranean transitional climate is suited for crop production and 
dominated by extensive crops.

Two studies were performed, one at a field scale using 
long-term historical soil data to validate the functionality 
of the RothC model. Information obtained from this work 
was used to analyse the effect of climate change on SOC 
dynamics at the regional scale.

Field‑scale approach

Data from 1983 to 2019 from grassland fields located in 
Basque Country (42°59′0.04"N, 2°36′27.8"W) were used 
to run the RothC model (Fig. 1). The regional climate is 
typically Atlantic (Jones et al. 2020), with the area of study 
being a hybrid zone transitioning to a Mediterranean cli-
mate, with a mean annual (1971–2016) temperature of 
11.4 °C and a mean annual rainfall of 1410 mm. The site 
has a mean elevation of 560 m above sea level and an area 
of 22,000 hectares, and the soils are mainly Acrisols. The 
clay content of the soils ranges from 18.2 to 34.5%, and the 
bulk density ranges from 0.94 to 1.41 g cm−3 (0–30 cm) 
(Supplementary file. Section 1, Tables 3 and 4).

The sampled soils were part of a monitoring programme 
established to determine the soil fertilization recommenda-
tion at 31 sites established in the area, of which 21 were 
selected for the study due to having the same management 
practices and conditions. Datasets covered a period of 
36 years and included full daily meteorological records and 
at least two measurements of soil organic matter content.

Soil sampling was carried out following standard methods 
as required for the fertilization assessment (details of data 
sampling are given in Supplementary file. Section 1). For 
the last sampling event, replicated soil samples were taken 
at a depth of 0–30 cm in 3 geolocated random plots on each 
site with a Monterra™ Garmin. Soil texture was determined 
by laser diffraction with a Mastersizer 2000, organic matter 
(%) was measured according to Walkley and Black (1934), 
and soil bulk density was measured using the core method 
(Grossman and Reinsch 2018). The most recently meas-
ured (2018–2019) SOC stock ranged from 77.27 to 122.14 
t C ha−1. These data agree with those reported for Basque 
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Country by Calvo de Anta et al. (2020), with grassland soils 
(0–30 cm) recorded at 103 ± 61 t C ha−1.

Site locations were chosen to provide representative land 
use and management practices for forage production. Plant 
composition was predominantly composed of two botanical 
groups: Lolium spp. and Trifolium spp. Based on surveys with 
farmers, we established, for modelling purposes, that grass-
lands were fertilized with slurry twice a year (5.3 t C ha−1), 
in April and September, and the forage yield averaged 9.5 t 
DM ha−1.

Regional‑scale approach

A regional-scale approach was undertaken to study the effect 
of climate change on the SOC in grasslands of Basque Coun-
try. Basque Country has a surface area of 7234 km2, of which 
24% of land is occupied by grasslands. The soil C stock map 
of Basque Country showed a range from 20.2 to 179.4 t C 
ha−1 for grassland soil, where most of the soils with a lower 
SOC stock were found in the southern part of the region. This 
map shows soil organic C and texture from the first 30 cm 
of soil (details are given in Supplementary file. Section 2).

Climate data sources and projections

Historic climate data (monthly precipitation and air tempera-
ture) from 1971 to 2019 for the field-scale study area were 
obtained from the Basque Agency of Meteorology.1 To begin 

simulations, climate data from at least 12 previous years 
were averaged. From 1983 onwards, annual climate data 
were used. The monthly open-pan evaporation was calcu-
lated from potential evapotranspiration (Hargreaves-Samani 
equation) using the ETo calculator, developed by the Land 
and Water Division of FAO (Allen et al. 1998) and dividing 
it by 0.75, as suggested by Coleman and Jenkinson (1996).

To obtain a climate classification of Basque Country for 
the regional simulations, an isocluster unsupervised classifi-
cation was conducted introducing average daily temperature, 
average annual precipitation, and annual ETo for 1971–2016 
as input bands and using 3 class differentiations and a mini-
mum class size of 20 cells. The three resulting climate sub-
regions are shown in Fig. 1. Subregion 1 is located in the 
southern part of Basque Country and is characterized by the 
lowest temperature and rainfall values. Subregions 2 and 3 
are located on the coast, and they do not differ in tempera-
ture, while subregion 3 is the most humid (Table 1).

The climate projections used in this study were obtained 
from KLIMATEK 2016. Data are available online2 and 
include historical data and projections for three periods. 
On the one hand, historical data on daily temperature and 
precipitation for the period 1971–2015 were obtained by 
interpolating historical data from 180 meteorological sta-
tions distributed throughout Basque Country. On the other 
hand are climate projections based on the EURO-CORDEX 

Fig. 1   Study area at the field-
scale approach (hatched area) 
and subregions selected based 
climate parameters (yellow area, 
subregion 1; green area, subre-
gion 2; blue area, subregion 3)

1  https://​www.​euska​lmet.​euska​di.​eus/

2  https://​www.​euska​di.​eus/​docum​entac​ion/​2017/​klima​tek-​elabo​
racion-​de-​escen​arios-​de-​cambio-​clima​tico-​de-​alta-​resol​ucion-​para-​el-​
pais-​vasco/​web01-​a2ing​kli/​es/

Page 3 of 14    34Regional Environmental Change (2022) 22: 34

https://www.euskalmet.euskadi.eus/
https://www.euskadi.eus/documentacion/2017/klimatek-elaboracion-de-escenarios-de-cambio-climatico-de-alta-resolucion-para-el-pais-vasco/web01-a2ingkli/es/
https://www.euskadi.eus/documentacion/2017/klimatek-elaboracion-de-escenarios-de-cambio-climatico-de-alta-resolucion-para-el-pais-vasco/web01-a2ingkli/es/
https://www.euskadi.eus/documentacion/2017/klimatek-elaboracion-de-escenarios-de-cambio-climatico-de-alta-resolucion-para-el-pais-vasco/web01-a2ingkli/es/


1 3

initiative, which provides regional climate projections for 
Europe up to 0.11° resolution (EUR-11, ~ 12.5 km) as part 
of the global CORDEX framework (the World Climate 
Research Programme Coordinated Regional Downscaling 
Experiment).3 In Basque Country, thirteen simulations have 
been used for RCP4.5 and for RCP8.5, combining six dif-
ferent RCMs and five different GCMs (more detail in Sup-
plementary file, Sect. 3, Table 5). These thirteen EURO-
CORDEX simulations were used by combining the delta 
method (Zahn and von Storch 2010) with historical data to 
achieve climate projections at a resolution of ~ 1 × 1 km2.

RothC model description

The Rothamsted Carbon Model (RothC-26.3) was used to 
simulate SOC dynamics (Coleman and Jenkinson 1996). 
RothC-26.3 is a process-oriented model for the turnover of 
SOC in nonwaterlogged topsoil that runs at a monthly time 
step.

As described by Coleman et al. (1997), the RothC model 
separates SOC into four active fractions: decomposable plant 
material (DPM), resistant plant material (RPM), microbial 
biomass (BIO), humified organic matter (HUM), and a small 
amount of inert organic matter (IOM) that is resistant to 
decay. Each fraction, except for IOM, undergoes decompo-
sition by first-order kinetics at its own unique rate, which is 
determined by using modifiers for soil moisture, tempera-
ture, and plant cover, which are the main input parameters 
for running the model. The initial IOM pool was set using 
the equation proposed by Falloon et al. (1998).

The model can be run in ‘inverse’ mode when inputs are 
calculated from known changes in soil organic matter or in 
‘forward’ mode using known inputs to calculate the changes 
in soil organic matter. A more detailed description of the 
model is given by Coleman and Jenkinson (1996).

Application and input data of the RothC Model

Field‑scale approach

The model was first calibrated for fields selected from the 
study area (Fig. 1) considering land management and his-
torical SOC data as model inputs. The model performance 
was then validated using data available from the rest of the 
grassland sites.

RothC was first run to equilibrium in inverse mode (i.e., the 
C input was adjusted so that the modelled SOC matched the 
initial measured SOC of 27.13–81.59 t C ha−1). We assumed 
that the soils were in equilibrium with regard to SOC. To 
establish this initial SOC, we used inverse mode simulation, 
determining that grasslands need a monthly plant C input to 
the soil of 0.11–0.33 t C ha−1. Once the starting C content had 
been established, the model was used to predict changes in the 
organic carbon in 19 plots for model validation.

The DPM/RPM ratio or litter quality factor was set to the 
default value for grasslands (1.44). A value of 0.25 was used 
for the first year of the series for those fields converted to 
grassland from forest.

The average measured grassland yield in the area of 
study (9.5 t DM ha−1) was used to calculate the monthly 
plant input, which was distributed across the different 
months depending on the soil cover. The contribution of C 
to the roots was calculated based on the shoot-to-root ratio 
described by Bolinder et al. (2002) for grasslands, yielding 
a proportion of 1.5 considering a shoot C content in grass-
lands of 42%. After setting these equilibrium conditions, the 
model was run in forward mode (1983–2019) to adjust the 
inputs for plants and farmyard manure (FYM). The FYM 
inputs were 66.54% of the total C incorporated into the soil 
annually.

Regional scale

A total of 16,207 grassland plots (857.44 km2) were selected 
to carry out regional simulations. For the land management 
file, we used the same plant C inputs per month for subre-
gions 2 and 3 (0.25 t C ha−1) since they were associated with 
Atlantic production of grasslands in Basque Country with an 

Table 1   Climatic parameters at the field-scale and regional-scale in the current and final periods (2071–2090) of climate change scenarios

Average temperature (°C) Annual precipitation (mm) Annual open-pan evaporation (mm)

Current RCP4.5
(2071–2090)

RCP8.5
(2071–2090)

Current RCP4.5
(2071–2090)

RCP8.5
(2071–2090)

Current RCP4.5
(2071–2090)

RCP8.5
(2071–2090)

Field scale 11.4 - - 1410.3 - - 1147.7 - -
Subregion 1 12.1 14.1 15.6 919.8 888.6 858.5 1217.7 1290.9 1387.5
Subregion 2 13.8 15.7 17.1 1329.4 1296.9 1253.1 1150.6 1215.6 1297.6
Subregion 3 13.5 15.3 16.7 1670.2 1659.5 1609.6 1088.0 1135.4 1195.5

3  https://​cordex.​org/
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average of 10.85 t DM ha−1. For subregion 1 (under the influ-
ence of a Mediterranean climate), the grassland yields were 
lower (4.93 t DM ha−1), and the plant C inputs were set as 
0.12 t C ha−1 month−1 (Oyanarte and Rodríguez 1993). The 
C input from the FYM application for the 3 different climatic 
zones was set the same as that in the farm-scale study. We 
simulated SOC changes for the period 2020–2090 under two 
climate change scenarios (RCP4.5 and RCP8.5). Three differ-
ent periods were simulated to analyse the short- (2020–2040), 
medium- (2041–2070), and long-term (2071–2090) effects of 
the different climate projections. Soils were classified into 5 
ranges to detect SOC changes: < 50, 50–79, 80–109, 110–139, 
and > 140 t C ha−1. We automatized the total number of simu-
lations of grassland sites for the period of 2020 to 2090 using 
the RothC Microsoft Excel version provided by Meyer et al. 
(2018). For the regional-scale study, soil, climate, and land use 
data were processed in GIS format (ArcMap 10.6).

We assumed constant plant and fertilizer C inputs without 
considering the effect of future climate. We further tested the 
sensitivity of the model to C input from plants and FYM. To 
reflect the variability in C inputs from plants within a subre-
gion, simulations were performed considering the range of 
grassland yield production data from previous regional stud-
ies to estimate plant residues (Oyanarte and Rodríguez 1993). 
Although grassland yield production was not available for each 
spatial unit, we included the variability resulting from using 
the maximum, median, and minimum C inputs from plants. 
Spatial data on organic amendment application were not 
available; thus, we assumed a 20% variation in carbon inputs 
derived from animal manure over the annual mean value. A 
total of 16,207 units × 2 scenarios (RCP4.5 and RCP8.5) × 2 
parameters (C input from plants and from FYM) simulations 
were performed.

Statistical analysis

We compared model output in relation to a set of data that had 
not been calibrated. Simulated and observed data were statis-
tically analysed to determine the degree of fit. Methods for 
evaluating the accuracy of a simulation are discussed in detail 
elsewhere (Smith et al. 1997a). The quantitative calculations 
described below provide information on a distinct aspect of 
the accuracy of the simulation. The coefficient of determina-
tion (R2), root mean square error (RMSE), standard deviation 
(SD), Nash–Sutcliffe efficiency model (EF), and average rela-
tive error (ARE%) were calculated. The R2, RMSE, and EF 
are statistical tests to determine the level of model fit for the 
observed and simulated data. The RMSE value ranges from 
0 to a positive value, which should be on the same order of 
magnitude as the standard deviation (Willmott and Matsuura 
2005); the closer it is to 0, the closer the simulation is to reality. 
The maximum value of EF is 1, indicating a perfect fit (Nash 
and Sutcliffe 1970). Finally, ARE% was calculated to quantify 

model overestimation (positive) or underestimation (negative) 
(Yang et al. 2014).

where Pi is the simulated value, Oi is the observed value, O 
is the average of the observed values, P is the average of the 
simulated values, and n is the number of measured values.

A statistical analysis using the least significant difference 
(LSD) test was performed for regional-scale climate change 
scenarios.

Results

Field‑scale model performance

Once the model was set at equilibrium, the simulated SOC 
was similar to the measured value, with a range of 27.13 to 
81.59 t C ha−1 at 30 cm depth (Supplementary file, Table 3). 
The model estimated SOC values of 73.86 to 112.58 t C ha−1 
in 2019. The field-specific temporal dynamics of C accumula-
tion are given in Fig. 5 (Supplementary file). Good agreement 
between the modelled and observed SOCs was observed. The 
RothC model could generally simulate SOC changes at most 
grassland sites, as reflected in the statistical indexes calculated 
(Fig. 2). A linear relationship was found between the measured 
SOC and simulated values (R2 = 0.71). Positive EF values are 
indicative of satisfactory model simulations. RMSE values of 
model performance were smaller than the standard deviation 
of observations, demonstrating that the model can simulate the 
measured values. The RothC model marginally overestimated 
the SOC (0.002% of ARE).

Our simulations, which considered land management and 
changes in climate parameters, suggested that SOC stocks con-
tinuously increased from 1983 up to 2019. Simulations show 
an average C stock change rate of 1.26 t C ha−1 year−1 for 
grassland soils during the period of 1983–2019, which repre-
sented a total accumulation of 44.17 t C ha−1.
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Regional‑scale soil organic carbon dynamics 
in response to climate projections

Table 2 shows the simulated change in SOC from 2020 to 
2090 for different ranges of an initial SOC recorded in the 
region for the 3 climatic subregions identified.

Grassland soils of Basque Country would have a total 
potential C accumulation of 1.62 Tg under RCP4.5 and 1.37 
Tg under RCP8.5, and the difference was statistically sig-
nificant (p < 0.001). The overall trend indicates faster rates 
of increased SOC stock in soils with a lower initial SOC 
(< 50 and 50–79 t C ha−1), with values higher than 0.56 t C 
ha−1 year−1 for subregion 1 (Table 2). In contrast, a nega-
tive impact on SOC was observed in the soils of subregions 
2 and 3 with a high initial SOC stock (> 110 t C ha−1), with 
a maximum average SOC reduction of 0.68 t C ha−1 year−1. 
The specific patterns of SOC change under the RCP4.5 and 
RCP8.5 scenarios are shown below.

Figure 3 also shows that there is a range of variability in 
the cumulative SOC. The ranges vary depending on FYM 
or plant production inputs. The medians obtained under 
both scenarios show differences in the accumulation of 
SOC of 21.11 t C ha−1 during 2020–2090. This variability 
was 4.11% lower in the RCP8.5 scenario than that in the 
RCP4.5 scenario. The worst and best scenarios were found 
in response to plant production inputs, with accumulations 
of only 1.03 t C ha−1 for low plant input in RCP8.5 (second 
quartile) and 43.59 t C ha−1 for high plant input in RCP4.5 
(third quartile) over 70 years. This result shows the higher 
range of variation in C plant inputs under RCP4.5.

Characteristics of soil organic carbon change 
under the RCP4.5 and RCP8.5 scenarios

The results showed a similar trend of SOC variation in the short 
term (2020–2040) under both the RCP4.5 and RCP8.5 sce-
narios. From that time, it can be observed that the SOC stock 
increases at a lower rate until a stable trend is reached in 2070. 
Under RCP4.5, 0.25 Tg more is estimated than under RCP8.5.

According to the simulations under RCP4.5, in general, 
grassland soils with a current SOC < 110 t C ha−1 would 
increase their SOC over the period 2020–2090 (Table 2). 
The rate of SOC stock would increase more under soils with 
lower SOC stocks, especially for grassland soil with a current 
SOC < 50 t C ha−1, where the increase in SOC would reach, on 
average, 48.40 t C ha−1 for the period 2020–2090. Similarly, the 
largest SOC reduction (13.56 t C ha−1 on average) was found 
in soils with the highest initial SOC stocks (> 110 t C ha−1).

Among climatic subregions, coastal sites (subregions 2 
and 3) would show higher losses of soil C than the southern 
part of the region (Table 2). In fact, SOC losses are minimal 
in subregion 1 under RCP4.5 and only in soils with high 
concentrations of carbon in 2020. However, SOC losses in 
subregion 3 occurred at a lower initial SOC (80–109 t C 
ha−1), reaching a total SOC reduction of 46.88 t C ha−1 in 
the soils with the highest initial SOC.

Figure 4 shows the simulated percentage of annual change in 
SOC compared with 2020 values under both climatic scenarios 
(RCP4.5 and RCP8.5). Overall, simulations show an increase in 
SOC over the period 2020–2090 under RCP4.5, which included 
89.06% of the total grassland soils studied, but the rate of SOC 
increase would slow over time. In 2090, most soils will show an 
increase between 0 and 0.8%. The areas of higher SOC change 
are estimated in subregion 1, where the soils start with a lower 
SOC stock than those for subregions 2 and 3. In subregion 1, 
most soils show an SOC increase from 0.39 to > 0.94%.

Under RCP8.5, an SOC increase would take place at a 
rate lower than 0.4% in comparison to RCP4.5. Most of the 
SOC reductions are predicted in subregions 2 and 3, where 
losses of SOC would begin sooner than in subregion 1.

Contribution to the 4 per 1000 objective

If we express the values from 1983 to 2019 in terms of the 
Initiative, it can be said that grassland soils in the area of 
study incorporate an average of 2.7%, more than the Initia-
tive objective.

Overall, our results suggest that the Initiative would 
be feasible as long as SOC stocks are maintained or even 
increased under both scenarios in soils with an initial SOC 
stock of < 80 t C ha−1. For most topsoil data, the increase in 
SOC stock varied within the subregion and by initial SOC 
stock. Thus, during the whole period, soils with a low initial 
SOC (< 50 t C ha−1) presented the highest SOC variation 

Fig. 2   Relation between the observed and simulated soil organic car-
bon (SOC) in RothC model in grasslands compared with the 1:1 line. 
The statistical analysis to determine model accuracy used; coefficient 
of determination (R2), R2 = 0.71; root mean square error (RMSE), 
RMSE = 9.31; standard deviation (SD), SD = 14.15; the Nash–Sut-
cliffe efficiency model (EF), EF = 0.95, and average relative error 
(ARE%), ARE = –0.002; n = 56
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per year, with an average increase of 1–1.65%. Soils with an 
initial SOC of up to 50–80 t C ha−1 increased 0.4% per year 
in subregions 1 and 2, while those in subregion 3 presented 
an increase of 0.23% per year under both climate change 
scenarios.

Therefore, at least a 0.4% increase in SOC per year would 
be reached from 2020 to 2090 in grasslands located in cli-
matic subregions 1 and 2 with initial SOC stocks up to 80 
t C ha−1 under both scenarios (Table 2). For subregion 3, 
this goal would be met for grasslands containing up to 50 
t C ha−1.

In the short term (2020–2040), the objective of increasing 
SOC by 0.4% would be met for 83.51% of the area occupied 
by grasslands under both climate scenarios (Fig. 4). These 
percentages would be reduced to 61.48% and 47.60% and to 

57.14% and 38.78% under the RCP4.5 and RCP8.5 scenarios 
in the medium and long term, respectively. Future data from 
soil monitoring programmes could validate these estimates.

Discussion

Model performance

The first phase of this study was to calibrate and validate 
the RothC model with a historical dataset of grassland 
soil parameters. The site was selected as representative 
of the climatic subregions defined for the Basque Coun-
try region. The fields are located in an area that exhibits 

Table 2   Variation in simulated soil organic carbon (SOC) for the future period (2020–2090) under two climate scenarios (RCP4.5 and RCP8.5) with standard errors

Subregion Climate scenario Initial SOC range n ∆ SOC
(t C ha−1)

∆ SOC per year (t 
C ha−1)

∆ SOC per year (%)

1 RCP 4.5  < 50 523 48.59 ± 0.15 0.68 ± 0.01 1.65 ± 0.02
50–80 1392 39.8 ± 0.12 0.56 ± 0.01 0.94 ± 0.01
80–110 786 24.7 ± 0.14 0.35 ± 0.01 0.39 ± 0.01
110–140 186 10.52 ± 0.31 0.15 ± 0.01 0.13 ± 0.01
 > 140 69 –2.89 ± 0.50 –0.04 ± 0.01 –0.03 ± 0.01

RCP 8.5  < 50 523 45.06 ± 0.15 0.63 ± 0.01 1.53 ± 0.02
50–80 1392 35.94 ± 0.12 0.51 ± 0.01 0.85 ± 0.01
80–110 786 20.34 ± 0.14 0.29 ± 0.01 0.32 ± 0.01
110–140 186 5.67 ± 0.31 0.08 ± 0.01 0.07 ± 0.01
 > 140 69 –8.35 ± 0.51 -0.12 ± 0.01 -0.08 ± 0.01

2 RCP 4.5  < 50 0
50–80 4615 31.91 ± 0.05 0.45 ± 0.01 0.64 ± 0.01
80–110 4524 21.97 ± 0.06 0.31 ± 0.01 0.36 ± 0.01
110–140 147 3.85 ± 0.42 0.05 ± 0.01 0.05 ± 0.01
 > 140 53 –17.14 ± 0.79 –0.24 ± 0.01 –0.16 ± 0.01

RCP 8.5  < 50 0
50–80 4615 28.23 ± 0.06 0.40 ± 0.01 0.57 ± 0.01
80–110 4524 18.07 ± 0.07 0.25 ± 0.01 0.30 ± 0.01
110–140 147 –0.52 ± 0.44 –0.01 ± 0.01 0 .00± 0.01
 > 140 53 –21.9 ± 0.79 –0.31 ± 0.01 –0.2 ± 0.01

3 RCP 4.5  < 50 5 29.10 ± 1.23 0.41 ± 0.02 1.03 ± 0.11
50–80 1133 11.68 ± 0.09 0.16 ± 0.01 0.23 ± 0.01
80–110 2321 –0.07 ± 0.10 0.00 ±0.01 0.01 ± 0.01
110–140 286 –20.63 ± 0.35 –0.29 ± 0.01 –0.24 ± 0.01
 > 140 167 –46.88 ± 0.57 –0.66 ± 0.01 –0.41 ± 0.01

RCP 8.5  < 50 5 28.17 ± 1.25 0.40 ± 0.02 1.00 ± 0.11
50–80 1133 11.53 ± 0.09 0.16 ± 0.01 0.23 ± 0.01
80–110 2321 –0.26 ± 0.10 0. 00± 0.01 0.00 ± 0.01
110–140 286 –21.03 ± 0.36 –0.30 ± 0.01 –0.24 ± 0.01
 > 140 167 –47.96 ± 0.58 –0.68 ± 0.01 –0.42 ± 0.01
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climate variability in the region and represents grassland 
management for forage production.

Acceptable correlation parameters were found between 
most observed and simulated SOC values, suggesting that 
the model was able to capture temporal dynamics in SOC. 
This result could be attributed to the fact that model ini-
tialization was adjusted for each field, which is a favour-
able aspect to reduce the error, as reported by Smith et al. 
(1997a). The model fit the data with an R2 of 0.71, which 
is comparable to similar studies in the literature (Cerri 
et al. 2007; Nakamura et al. 2011; Afzali et al. 2019).

The increase of 1.26 t C ha−1 year−1 in the 0–30 cm layer 
during 36 years of simulation agrees with results published 
by Conant et al. (2001), who reported a range of 0.11 to 3.04 
t C ha−1 year−1 in grassland under different management 
practices. They observed that C accumulation rates were 
highest during the first 40 years after the application of treat-
ments aimed at grassland improvement. Fornara et al. (2016) 
reported a soil C accumulation rate of 0.88 t C ha−1 year−1 
in intensively managed grassland fields in Ireland during a 
45-year-long grassland experiment, reflecting high applica-
tion rates of cattle slurries that led to significant increases 
in soil C stocks.

The increase in SOC recorded can be attributed to 
repeated practices of C input for forage production, which 
is consequently modelled in our simulation setup. Neverthe-
less, this value should be interpreted with caution, as there 
are other factors affecting soil C dynamics, such as soil type, 
deep soil horizons, and microorganism interactions (Chenu 
et al. 2019).

In our study area, several good practices had taken place 
for years, such as organic fertilization, diversification of 
grass species, and use of legumes. In temperate grasslands, 
it has been reported that the intensity of management, num-
ber of cuttings, and nitrogen (N) fertilization strongly affect 
SOC storage (Soussana et al. 2006). Grassland fertilization 
has been used for a long time in our study area to increase 
forage production. Additionally, legume species can increase 
soil N, resulting in superior soil fertility and increasing 
aboveground and belowground production.

Animal manure is assumed to be more easily decomposed 
than plant material (Coleman and Jenkinson 1996). In con-
trast to inorganic fertilization, a portion of increased soil C 
is attributable directly to the addition of manure C to the 
soil, and the effect of this variable depends on the quantity 
and quality of the organic material applied (Bhogal et al. 
2018). In this sense, characterizing the decomposability of 

Fig. 3   Top panel; total change 
in soil organic carbon (SOC) 
during the 2020–2090 period 
under the RCP4.5 (line) and 
RCP8.5 (dotted) scenarios 
in Basque Country. Shaded 
areas indicate standard error. 
Bottom panel, SOC variation 
estimates for the region in the 
2020–2090 period for plant 
and farmyard manure (FYM) C 
inputs represented with box and 
whisker plots. The box shows 
the upper and lower quartiles 
and the median. Whiskers show 
upper and lower percentiles. 
Dots are considered as outliers. 
Values on the X axis represent 
C inputs for plant and FYM 
used in the simulations. A value 
of 0.115–0.253 t C ha−1 was 
used as the mean plant produc-
tion of the subregions. Lower 
and higher values were set at 
0.14–0.07 and 0.21–0.37 t C 
ha−1 respectively. For FYM, 5.3 
t C ha−1 and a variation of 20% 
were used to cover a reason-
able range of organic fertilizer 
applications
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the organic amendments applied would help improve model 
performance.

In addition, it is well recognized that clay offers physico-
chemical protection to SOC, allowing long residence times 
of organic matter (Hassink 1997; Six et al. 2002). Soils sam-
pled at the field scale show a clay composition of approxi-
mately 25%, which would contribute to preserving the SOC 
that can be stored in association with this fraction.

Furthermore, even though our study site is located at 
the intersection of different climate subregions, weather 
data tended to be cooler than those at coastal sites, which 
may have contributed to maintaining and increasing SOC 
stocks, as observed in other studies (Minasny et al. 2017), 
together with continuous organic fertilizer application for 
forage production. Climate constitutes an important factor 
for SOC storage, and strong relationships between SOC and 

Fig. 4   Percentage change in 
soil organic carbon (SOC) per 
year in the grassland soils of 
Basque Country compared 
with that in 2020 under the 
RCP4.5 scenario (left): a short 
term (2020–2040), b medium 
term (2041–2070), and c long 
term (2071–2090); and under 
the RCP8.5 scenario (right): 
d short term (2020–2040), e 
medium term (2041–2070), and 
f long term (2071–2090). Map 
obtained with ArcMap 10.6
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rainfall and temperature have been described (Wiesmeier 
et al. 2019).

Regional estimation

It is standard practice to upscale SOC models from the plot 
to regional level with the aim of predicting changes in SOC. 
Regional analysis involves subdividing the study area into 
several spatial units (i.e., grid cells) for which sets of driving 
variables (e.g., climate, soil characteristics, and land man-
agement) are derived and then supplied to the model. In this 
study, these grids were developed using a regional climate 
model at 1 × 1 km resolution. After establishing the baseline 
SOC level for 2020, a 70-year simulation was run for grass-
land soils classified depending on their SOC stock. Correla-
tions found between the observed and simulated SOC can 
be used to estimate the SOC change in response to climate 
change (Falloon and Smith 2006; Ludwig et al. 2007).

At the regional scale, most grassland soils fall within the 
range of 50–109 t C ha−1, which coincides with the value 
given by Soussana et al. (2006) for land under permanent 
grassland in France with average stocks of nearly 70 t C 
ha−1. Our results show that soils with the lowest initial SOC 
stock would present the highest SOC increase under all sub-
regions and climate scenarios, reaching an annual increase 
ranging from 1 to 1.65%.

This value considerably decreased for soils containing 
50–79 t C ha−1, with an annual increase from 0.23 to 0.94%. 
According to Minasny et al. (2017), who analysed the accu-
mulation potential from 20 regions around the world, there is 
a tendency of a higher C accumulation potential in soils with 
a low initial SOC stock. Conant et al. (2001) also established 
that large changes were slightly more likely for soils with 
low initial C and slightly less likely for soils with high C. 
As expected, low-C soils may have a higher capacity for C 
storage. Wan et al. (2011) also predicted the highest decrease 
in net SOC, possibly because of the relatively higher original 
SOC stock than that in other areas. In our study, future esti-
mates in relation to the historical period showed a 2.95 times 
slower accumulation rate under the RCP4.5 and RCP8.5 sce-
narios for soils in the 50–79 t C ha−1 initial SOC range.

Climate change was expected to have an impact on SOC 
in the long term, while changes in the short term would more 
likely be driven by land management practices and land 
use change (Pedroli and Meiner 2017). Our results show a 
higher response to SOC change when high C plant inputs 
were simulated under RCP4.5. Our explanation is that dif-
ferences in yield production among subregions in response 
to climate change would be lower under scenario RCP8.5 
than those under RCP4.5, thus leading to lower variability 
among plant C input parameters, which would reduce SOC 
change variability.

Soils in the initial SOC range of 110–139 t C ha−1 showed 
a slight increase under both scenarios in subregions 1 and 
2 (RCP4.5), while those in subregions 3 and 2 (RCP8.5) 
presented even negative SOC change. In fact, we found the 
lowest SOC stock change in soils located in subregion 3, 
with no difference between climate scenarios. These results 
agree with those reported for Irish grassland fields by Byrne 
and Kiely (2009). These authors found that the SOC stocks 
decrease with increasing rainfall. In our study, the rainfall 
records for subregion 3 differed significantly compared to 
those for subregions 1 and 2. The rate modifier for soil mois-
ture depends on precipitation, clay content, and evaporation 
rate (Coleman and Jenkinson 1996). In addition, subregion 
1, with current cooler average temperatures and lower pre-
dicted temperature increases in RCP4.5 and RCP8.5, showed 
higher SOC increases than subregions 2 and 3, even for soils 
with high organic matter due to lower SOM mineralization 
rates. In this sense, previous studies have found that SOC 
stocks are highest under cool conditions even at the subre-
gional scale (Wiesmeier et al. 2019).

Under temperate climate, SOC stock change takes 
place slowly, and periods of years and even decades can 
be required to allow for quantification of rates of change 
(Poulton et al. 2018). Our data from regional simulations 
show that there is substantial variability in the rates of C 
storage over time, but it appears that increased soil C may 
persist for grassland soil for 70 years. Previous long-term 
studies have reported that changes in SOC may take as long 
as 60 years for degraded soils (Potter et al. 1999). Neverthe-
less, it is difficult to determine how long soil C will continue 
to increase with improved management due to the interaction 
of other factors, such as climate and soil type. Nevertheless, 
it is well established that SOC does not increase indefinitely 
but moves towards equilibrium (Smith 2004). In our study, 
equilibrium will be attained sooner for region 3 soils under 
scenario RCP8.5 with organic matter content in the range of 
80–110 t C ha−1. As indicated by Stockmann et al. (2013), 
increases in SOC following a change in management are ini-
tially rapid and then slow, reaching a new quasi-equilibrium 
at some point in the future. Grassland sites with an initial 
SOC ≥ 80 t C ha−1 had been subjected to improved manage-
ment for years; thus, the change in SOC stock was lower or 
even negative for soils with a high initial SOC, with soil C 
loss up to 0.42% year−1 under RCP8.5. Regarding clay con-
tent, soils with an initial SOC higher than 80 t C ha−1 would 
apparently not be affected by clay content, as SOC was high 
enough to saturate the clay particles. These observations are 
in agreement with those of Hassink (1997), who also found 
that the amount of organic compounds that can be bound to 
clay particles is limited.

Thus, C loss would be attributed to the combination of 
initial SOC stock, clay, and climate change scenarios or cli-
mate characteristics at the subregional scale. In this sense, 
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Bellamy et al. (2005) reported C losses in soils with a high 
initial SOC up to 2% per year. They found that these C losses 
took place irrespective of land use, suggesting a link to cli-
mate change. The effects of temperature will interact in a 
complex way with changes in soil moisture brought about 
by changing rainfall and evapotranspiration patterns. In wet 
anoxic soils, increased temperature will lead to increased 
evaporation, which in turn will accelerate the rate of decom-
position. The increasing rainfall and soil water content could 
have promoted higher decomposition rates (Sommers et al. 
1981), counteracting the effect of higher temperatures. In 
our study, the climate subregion had a greater influence than 
the climate change scenario due to the larger differences in 
rainfall found between subregions.

Predictions under the RCP4.5 scenario presented either a 
significantly higher increase or lower reduction in SOC than 
under the RCP8.5 scenario in subregions 1 and 2. Given that 
the RCP4.5 scenario was associated with lower changes in 
rainfall and temperature, modelled changes in SOC using 
the RCP4.5 scenario seemed to favour SOC stock increases 
or maintenance depending on the initial SOC stock. This 
observation is in agreement with the fact that SOC stocks 
generally increase as the mean annual temperature decreases 
provided there is no limitation in soil water content. Kirsch-
baum (2000) concluded that global warming is likely to 
reduce SOC by stimulating rates of decomposition. In fact, 
whether SOC stocks increase or decrease under climate 
change depends upon which process dominates at a given 
location. Increasing temperatures can accelerate decomposi-
tion and promote the loss of soil C but can also be slowed 
by lower soil moisture.

Contribution to the 4 per 1000 objective

This work showed that grassland management carried out 
in the study area for 36 years led to SOC increases of 27 per 
1000 at 30 cm depth. Poulton et al. (2018) found that for 
permanent pastures under organic fertilization application 
every 4 years, which is considerably less frequent than ours, 
reported an annual SOC increase from − 0.1 to 7.4 per 1000 
during the first 20 years.

We evaluated to what extent grassland soils in the region 
would comply with the 70-year simulation with the Initiative 
for three regional climatic subregions under the same usual 
grassland management to assess the effect of climate change. 
The rates of SOC increments averaged 0.42% for all grassland 
soils evaluated. According to Minasny et al. (2017), although C 
accumulation rates varied between countries and climatic con-
ditions, there was a trend according to the type of management, 
and SOC stock rates were 0.5 t C ha−1 in the case of organic 
amendments. At the end of the simulation period, in 44–54% 
of cases, SOC increases occurred by more than 0.4% per year.

SOC increases occurred mostly at a rate greater than 
1.48% per year at 0–30 cm depth during the first 20 years 
of the simulation period under both scenarios. Small differ-
ences were found between scenarios RCP4.5 and RCP8.5 
within each period, with increases exceeding the 4 per 1000 
per year objective continuing in some areas after 70 years. 
Simulations show that SOC changes would take place 
slowly, as also observed by Poulton et al. (2018) in long-
term agricultural field experiments. Poulton et al. (2018) 
reported a rapid increase in SOC during the first 20 years 
following the application of organic fertilizer to soil with 
initially poor in organic matter (< 30 t C ha−1). The rate of 
SOC increase after applying FYM for many years was pre-
dicted to be higher (> 0.85% per year) in subregion 1 than 
in subregions 2 and 3, where most soils showed an SOC 
increase between 0 and 0.57% per year. As mentioned above, 
although we cannot provide a complete explanation for this 
finding, it could be due to differences in climate parameters 
at the subregional scale.

Minasny et al. (2017) also observed that high C accu-
mulation rates (up to 10 per 1000) can be achieved for soils 
with a low initial SOC stock (less than 30 t C ha−1 in the 
topsoil) during the first 20 years after the implementation of 
best management practices. In contrast, and as mentioned 
above, areas that have reached equilibrium will not be able 
to further increase their accumulation.

Overcoming uncertainties and limitations 
of modelling

C inputs from plants play an important role in the RothC 
model due to the sensitivity of the model to that param-
eter and the fact that this is the most uncertain parameter 
(Poeplau 2016). In this study, a calibration of the C input 
from the plant was carried out during the initialization of the 
model. According to FAO (2019), this is a useful method for 
improving estimates of C input, so for future simulations, the 
amount of C input from plants is less uncertain. The extent 
of climate change impacts has shown complexity and differ-
ences over space and time (Ainsworth et al. 2019; Liu et al. 
2021). For this reason, we undertook a variability analysis 
to ascertain the model response to a range of C inputs from 
plants and FYMs.

The opposite is true for climate data. Due to the simplicity 
of obtaining climate data from a site, this is a parameter with 
low uncertainty, while the sensitivity of models to climate 
is very high. In our study, the precision of C stock estimates 
relied on using specific climate data for the number of points 
in the region at 1 × 1 km resolution, although climate vari-
ability at the local scale is frequently small (Wiesmeier et al. 
2019). This approach allowed us to identify and characterize 
climate parameter differences at the subregional scale that 
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had an important effect on rate modifiers of the model, such 
as precipitation.

Initial SOC stock is another sensitive parameter (FAO 
2019). We used initial SOC values that are based on numer-
ous measures covering the whole region simulations. In this 
way, we considerably reduced the uncertainties associated 
with initial SOC stocks.

At the regional scale, each spatial unit is treated independently, 
and there are no interacting processes between them. Thus, 
exchanges between grid cells such as water, and lateral transport 
of C in sediments and soil (i.e., erosion) are not included and 
can contribute to additional uncertainty in C stock changes at a 
specific location, as observed by Paustian et al. (2016).

In this study, we combined measurements and model-
ling approaches, and we reduced the typical uncertainties of 
regional modelling by calibrating the model for a study area 
that captures climate variability and C inputs from plants 
and FYMs.

Conclusions

We conclude that RothC could adequately simulate changes 
in C in grassland soils in Basque Country. However, more 
soil sampling sites for grasslands should be established to 
increase the capacity to calibrate and validate SOC mod-
els for Basque Country conditions. Our findings show that 
for future predictions, soil C change in Basque Country is 
highly dependent on the initial C stock, and C input from 
plants and climate subregions, with a higher risk of C loss in 
soils rich in organic matter under higher precipitation regime 
subregions. The overall trends showed that future climate 
change might decrease SOC in soils containing 110–139 t 
C ha−1 if no appropriate practices are taken to maintain the 
SOC stock.
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