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Abstract
We present various new results on greedoids. We prove a theorem that generalizes an
equivalent formulation of Edmonds’ classic matroid polytope theorem to local forest
greedoids—a class of greedoids that contains matroids as well as branching greedoids.
We also describe an application of this theorem in the field of measuring the reliability
of networks by game-theoretical tools. Finally, we prove new results on the optimality
of the greedy algorithm on greedoids and correct somemistakes that have been present
in the literature for almost 3 decades.
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1 Introduction

Greedoids were introduced by Korte and Lovász at the beginning of the 1980s as a
generalization ofmatroids. Themotivation behind the conceptwas the observation that
in the proofs of various results on matroids subclusiveness (that is, the property that all
subsets of independent sets are also independent) is not needed. Besides matroids, the
class of greedoids includes some further very important combinatorial objects such as
the edge sets of subtrees of a graph rooted at a given node.

Although the research of greedoids was very active until the mid-1990s, the topic
seems to have faded away since then. Most of the known results on greedoids are
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already included in the comprehensive book of Korte et al. [8] published in 1991.
The fact that greedoids have not gained as much importance within combinatorial
optimization as matroids is probably due to the fact that the class of greedoids is much
more diverse than that of matroids and classic concepts and results on matroids do not
seem to generalize easily to greedoids.

The motivations behind the results of this paper are threefold. Firstly, we identify a
class of greedoids, local forest greedoids, that includes both matroids and branching
greedoids and that admits a generalization of a fundamental polyhedral result on
matroids: Edmonds’ classic theorem on the polytope spanned by incidence vectors of
independent sets of a matroid. In particular, we prove a generalization of an eqivalent
formulation of this theorem to local forest greedoids. To the best of our knowledge, no
generalization of (any form of) the matroid polytope theorem to greedoids has been
known. We do this partly in the (perhaps vain) hope that further fundamental results
on matroids will turn out to be generalizable to this class of greedoids.

Secondly,we aimat generalizing some results obtained in [13]. Therewe considered
some attacker–defender games played on graphs with the aim of defining new security
metrics of graphs and better understanding others that had been known in the literature.
For this purpose, we defined a general framework involving matroids: the Matroid
Base Game is a two-player, zero sum game in which the Attacker aims at hitting a
base chosen by the Defender. In particular, the Attacker chooses an element of the
ground set of a given matroid and the Defender chooses a base of the same matroid;
then the payoff depends on both of their choices in such a way that it is favorable for
the Attacker if his chosen element belongs to the base chosen by the Defender. The
results of [13] on the Matroid Base Game served as a common generalization of some
results that had been known in the literature on measuring the security of networks
via game-theoretical means. In particular, the Nash-equilibrium payoff of the Matroid
Base Game was determined and it was proved that it is a common generalization of
some known graph reliability metrics. However, there are other known metrics of a
very similar nature which did not fit into the framework provided by the Matroid Base
Game. In this paper we further generalize the definition of the Matroid Base Game by
replacing matroids with local forest greedoids and we prove that some of the results
of [13] generalize to this case too. We also show that this more general framework
is capable of handling and generalizing some further graph reliability metrics known
from the literature beyond the ones already contained in the framework provided by
the matroid base game.

The third motivation behind the results of this paper is to better understand the
conditions under which the greedy algorithm is optimal on greedoids. This question
is a central topic in the literature of greedoids, the name greedoid itself comes from “a
synthetic blending of the words greedy and matroid” [8] which indicates that one of
the basic motivations of the notion was to extend the theoretical background behind
greedy algorithms beyond thewell-known results onmatroids. Accordingly, Korte and
Lovász proved some fundamental results on the optimality of the greedy algorithm
on greedoids in [6,7] which were also presented and further extended in [8]. Most
surprisingly however, they seem to have overlooked a detail which led them to some
false claims. These mistakes, which seem to have remained hidden in the literature of
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greedoids for almost 3 decades, will be pointed out and corrections will be proposed
and proved.

It should be emphasized though that, although the optimality of the greedy algorithm
in a certain special case (see Theorem 3) will be a crucial tool for proving the above
mentioned polyhedral result, the results of the present paper on the optimality of the
greedy algorithm are not needed for this proof, it is only Theorem 3 proved in [2] that
is relied on.

This paper is structured as follows. In Sects. 2 and 3 all the necessary background
on greedoids and the greedy algorithm on greedoids, respectively, is given. In Sect. 4
the above mentioned polyhedral result is clamied and proved and in Sect. 5 we briefly
outline an application of this result concerning the measurement of the reliability of
networks. Finally, Sect. 6 is dedicated to some results on the optimality of the greedy
algorithm on greedoids.

2 Preliminaries on greedoids

All the definitions and claims in this section are taken from [8].
A greedoid G = (S,F) is a pair consisting of a finite ground set S and a collection

of its subsets F ⊆ 2S such that the following properties are fulfilled:

(2.1) ∅ ∈ F
(2.2) If X ,Y ∈ F and |X | < |Y | then there exists a y ∈ Y − X such that X + y ∈ F .

When we apply (2.2) on the sets X ,Y ∈ F with |X | < |Y |, we say that we
augment X from Y . Members of F are called feasible sets. Obviously, the definition
of greedoids is obtained from that of matroids by relaxing subclusiveness, that is,
subsets of feasible sets are not required to be feasible any more. On the other hand,
(2.2) immediately implies that every X ∈ F has a feasible ordering: (x1, x2, . . . , xk)
is a feasible ordering of X if X = {x1, x2, . . . , xk} and {x1, x2, . . . , xi } ∈ F holds for
every 1 ≤ i ≤ k. The existence of a feasible ordering, in turn, implies the accessible
property of greedoids: for every∅ �= X ∈ F there exists an x ∈ X such that X−x ∈ F .

In this paper, the following notations will be (and have been) used: for a subset
X ⊆ S and an element x ∈ S we will write X + x and X − x instead of X ∪ {x}
and X − {x}, respectively. Furthermore, given any function c : S → R and a subset
X ⊆ S, c(X) will stand for

∑{c(x) : x ∈ X}.
Some of the well-known terminology on matroids can be applied to greedoids

without any modification. In particular, the rank r(A) of a set A ⊆ S is r(A) =
max{|X | : X ⊆ A, X ∈ F}. Given a subset A ⊆ S, a base of A is a subset X ⊆ A,
X ∈ F ofmaximum size. This, by property (2.2) is equivalent to saying that X+y /∈ F
for every y ∈ A − X . A base of S is called a base of the greedoid G = (S,F). The
set of bases of G will be denoted by B.

Minors of greedoids can also be defined almost identically to those of matroids. If
G = (S,F) is a greedoid and X ⊆ S is an arbitrary subset then the deletion of X yields
the greedoid G\X = (S− X ,F\X), where F\X = {Y ⊆ S− X : Y ∈ F}. If X ∈ F
is a feasible set then the contraction of X yields the greedoid G/X = (S − X ,F/X),
where F/X = {Y ⊆ S − X : Y ∪ X ∈ F}. Then a minor of G is obtained by
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applying these two operations on G. It is straightforward to check that minors are
indeed greedoids. (Note, however, that G/X was only defined here in the X ∈ F
case. The definition could be extended to a wider class of subsets, but unless some
further structural properties are imposed on the greedoid, not to arbitrary ones. See
[8, Chapter V.] for the details.)

In this paper the following terminology will also be used: X ⊆ S will be called
subfeasible if there exists a Y ∈ F such that X ⊆ Y . The set of subfeasible sets will
be denoted by F∨.

There are many known examples of greedoids beyond matroids and they arise in
diverse areas of mathematics, see [8] for an extensive list. For the purposes of this
paper, branching greedoids will be of importance. Let H = (V , Eu, Ed) be a mixed
graph (that is, it can contain both directed and undirected edges) with V , Eu and Ed

being its set of nodes, undirected edges and directed edges, respectively. Furthermore,
let r ∈ V be a given root node. The ground set of the branching greedoid on H
is Eu ∪ Ed and F consists of all subsets A ⊆ Eu ∪ Ed such that disregarding the
directions of the arcs in A ∩ Ed , A is the edge set of a tree containing r and for
every path P in A starting in r all edges of P ∩ Ed are directed away from r . It is
straightforward to check that G = (Eu ∪ Ed ,F) is indeed a greedoid. G is called an
undirected branching greedoid or a directed branching greedoid if H is an undirected
graph (that is, Ed = ∅) or a directed graph (that is, Eu = ∅), respectively.

Most of the known results on greedoids are about special classes of greedoids, that
is, further structural properties are assumed. Among these, the following will be of
relevance in this paper:

(2.3) Local Union Property:
if A, B ∈ F and A ∪ B ∈ F∨ then A ∪ B ∈ F

(2.4) Local Intersection Property:
if A, B ∈ F and A ∪ B ∈ F∨ then A ∩ B ∈ F

(2.5) Local Forest Property:
if A, A + x, A + y, A ∪ {x, y}, A ∪ {x, y, z} ∈ F then either A ∪ {x, z} ∈ F or
A ∪ {y, z} ∈ F

A greedoid G = (S,F) is called an interval greedoid if it fulfills property (2.3);
G is a local poset greedoid if it fulfills (2.3) and (2.4); finally, G is a local forest
greedoid if it fulfills (2.3), (2.4) and (2.5).

Obviously, all matroids are local forest greedoids and it is easy to check that so
are branching greedoids. However, there are further examples that do not belong to
either of these classes: for example, the direct sum of the uniform matroid U3,2 and a
branching greedoid that is not a matroid is also a local forest greedoid but it is neither
a matroid nor a branching greedoid (since all these classes are closed under taking
minors andU3,2 is clearly not a branching greedoid). Another type of example can be
obtained from any local forest greedoid (even a matroid): let G = (S,F) be a local
forest greedoid, X ∈ F a feasible set and (x1, x2, . . . , xk) an arbitrary (not necessarily
feasible) ordering of X ; then

F (x1,...,xk ) = {Y ∈ F : X ⊆ Y } ∪ {{x1, x2, . . . , xi } : i = 1, . . . , k} ∪ {∅}
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is also a local forest greedoid on S.
Observe that in interval greedoids (2.3) implies that every X ∈ F∨ has a unique

base; indeed, it is the union of all feasible sets in X . In this paper, this unique base
will be denoted by Δ(X). Analogously, (2.4) implies that if X ⊆ A and A ∈ F then
there is a unique minimum size feasible set containing X in A. This gives rise to the
definition of paths: if G = (S,F) is a local poset greedoid, A ∈ F and x ∈ A then
the x-path in A, denoted by PA

x (or simply Px if this is unambiguous) is the unique
feasible set in A containing x such that no proper feasible subset of PA

x contains x .
Clearly, in case of branching greedoids this notion translates to paths starting in the
root node r that are directed in the sense that all directed edges in the path are directed
away from r . The following theorem was proved in [11]; we also give a simple proof
here for the sake of self-containedness.

Theorem 1 (Schmidt [11], [8, Theorem VII.4.4]) Let G = (S,F) be a local poset
greedoid. Then the following are equivalent:

(i) G is a local forest greedoid (that is, it fulfills (2.5));
(ii) every path in G has a unique feasible ordering;
(iii) if (a1, a2, . . . , ak) is the feasible ordering of a path then {a1, a2, . . . , ai } is also

a path for every 1 ≤ i ≤ k.

Proof Assume by way of contradiction that (i) is fulfilled but (ii) is not and
choose a path Pz of minimum cardinality that has two different feasible orderings:
(a1, . . . , ak, x, z) and (b1, . . . , bk, y, z). We first show that x �= y can be assumed
without loss of generality. Indeed, if x = y then {a1, . . . , ak, x} is not a path by the
minimality of |Pz |, but since it is feasible, it contains an x-path Px as a proper sub-
set. Then augmenting a feasible ordering of Px from Pz by (2.2) we get a feasible
ordering of Pz the second to last element of which is not y. So assume x �= y and
let A = Pz − {x, y, z}. Then clearly A + x ∈ F and A + y ∈ F hold by the fea-
sibility of the two orderings and A ∪ {x, y, z} = Pz ∈ F . Hence by (2.3) and (2.4)
we have A ∪ {x, y} ∈ F and A ∈ F too. Therefore (2.5) implies A ∪ {x, z} ∈ F
or A ∪ {y, z} ∈ F . In both cases we get a smaller feasible set containing z than Pz
contradicting the definition of Pz .

Proving (iii) from (ii) is almost immediate: if {a1, a2, . . . , ai } were not a path then
it would contain an ai -path by definition which could be augmented by (2.2) from
P = {a1, . . . , ak} to obtain a different feasible ordering of P .

Finally, we show (i) from (iii). Let A and x, y, z be given according to (2.5) and
let B = A ∪ {x, y, z}. Clearly, if A ∩ {x, y, z} �= ∅ or |{x, y, z}| < 3 then (2.5)
is automatically fulfilled, so we can assume that neither of these is the case. Since
A + x ∈ F , we have PB

x ⊆ A + x and hence y /∈ PB
x . Similarly, x /∈ PB

y . This, by
(iii), implies that PB

z contains at most one of x and y; indeed, if it contained both and,
for example, x preceded y in a feasible ordering of PB

z then since the prefix of this
ordering up to y would be a path by (iii), we would get x ∈ PB

y . So assume y /∈ PB
z

without loss of generality. Then applying (2.3) on A + x and PB
z , both of which are

subsets of B ∈ F , we get A ∪ {x, z} ∈ F as claimed. ��
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3 Preliminaries on the greedy algorithm in greedoids

As mentioned in the Introduction, the notion of greedoids was motivated by the fact
that they provide the underlying structure for a simple greedy algorithm.

Let G = (S,F) be an arbitrary greedoid and w : F → R an objective function.
Assume that we are interested in finding a base B ∈ B that maximizes w(B) across
all bases of G. For every A ∈ F the set of continuations of A is defined as Γ (A) =
{x ∈ S − A : A + x ∈ F}. Then the greedy algorithm for the above problem can be
described as follows [6,8]:

Step 1. Set A = ∅.
Step 2. If Γ (A) = ∅ then stop and output A.
Step 3. Choose an x ∈ Γ (A) such that w(A + x) ≥ w(A + y) for every y ∈ Γ (A).
Step 4. Replace A by A + x and continue at Step 2.

Obviously, if one is interested in minimizing w(B) across all bases then, since this
is equivalent to maximizing −w(B), the only modification needed in the algorithm is
to require w(A + x) ≤ w(A + y) for every y ∈ Γ (A) in Step 3.

Many of the well-known, elementary algorithms in graph theory fall under this
framework as shown by the following examples.

Example 1 If M is a matroid and w is linear (meaning that w(A) = c(A) for some
weight function c : S → R) then the above greedy algorithm is nothing but the well-
known greedy algorithm on matroids. In particular, we get Kruskal’s algorithm for
finding a maximum weight spanning tree in case of the cycle matroid.

Example 2 Let G be the branching greedoid of the undirected graph H and w a linear
objective function. Then the greedy algorithm translates to Prim’s well-known algo-
rithm for finding a maximum weight spanning tree. (Note that this algorithm cannot
be interpreted in a matroid-theoretical context).

Example 3 LetG be the branching greedoid of themixed graph H = (V , Eu, Ed)with
root node r and let c : Eu ∪Ed → R

+ be a non-negative valued weight function. Then
let w(A) = ∑{c(PA

e ) : e ∈ A} for every A ∈ F . Korte and Lovász observed [6] that
in this case the greedy algorithm for minimizing w(B) translates to Dijkstra’s well-
known shortest path algorithm. Indeed, Dijkstra’s algorithm constructs a spanning tree
on the set of nodes reachable from r such that the unique path from r to every other
node in this tree is a shortest path and hence it clearly minimizes w.

Although the greedy algorithm finds an optimum base in the above examples, it is
obviously not to be expected that this is true in general. The first sufficient condition for
the optimality of the greedy algorithmwas given byKorte andLovász in [6]. There they
introduced an even broader framework: they considered objective functions defined on
all feasible orderings of feasible sets. Given a greedoid G = (S,F), let L(F) denote
the set of all feasible orderings of all feasible sets. Extending the greedy algorithm to
the case of an objective function w : L(F) → R is obvious: instead of augmenting a
feasible set A ∈ F , it keeps maintaining and updating a feasible ordering of A that is
always augmented by the best possible choice x .
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Theorem 2 (Korte and Lovász [6], [8, Theorem XI.1.3]) Let G = (S,F) be an arbi-
trary greedoid and w : L(F) → R an objective function. Assume that whenever
(a1, . . . , ai , x) is a feasible ordering of a set A + x ∈ F (where i = 0 is possi-
ble) such that w ((a1, . . . , ai , x)) ≥ w ((a1, . . . , ai , y)) for every y ∈ Γ (A) then the
following conditions hold:

(3.1) w
(
(a1, . . . , ai , b1, . . . , b j , x, c1, . . . , ck)

) ≥ w
(
(a1, . . . , ai , b1, . . . , b j , z, c1,

. . . , ck))
if both of these strings are in L(F) (and j = 0 or k = 0 is possible).

(3.2) w
(
(a1, . . . , ai , x, b1, . . . , b j , z, c1, . . . , ck)

) ≥ w
(
(a1, . . . , ai , z, b1, . . . , b j , x,

c1, . . . , ck))
if both of these strings are in L(F) (and j = 0 or k = 0 is possible).

Then the greedy algorithm finds a maximum base with respect to w.

Since in most applications the objective function only depends on the feasible sets
themselves and not on their orderings, one would want to formulate the corresponding
corollary of Theorem 2. Obviously, (3.2) is automatically fulfilled in these cases,
however, it is not at all straightforward to specialize (3.1) to such objective functions.
Both in [6] and [8, Chapter XI, condition (1.4)] it is claimed that for objective functions
w : F → R (3.1) is equivalent to the following:

(3.3) If A, B, A + x, B + x ∈ F hold for some sets A ⊆ B and x ∈ S − B, and
w(A + x) ≥ w(A + y) for every y ∈ Γ (A) then w(B + x) ≥ w(B + z) for
every z ∈ Γ (B).

This reformulation, however, clearly disregards the fact that {a1, . . . , ai , b1, . . . ,
b j , c1, . . . , ck} need not be a feasible set. In actual fact, (3.3) does not guarantee
the optimality of the greedy algorithm as shown by the trivial example of Fig. 1:
consider the undirected branching greedoid of the graph on the left hand side and
let the objective function be defined as in the table on the right hand side. It is easy
to check that (3.3) is fulfilled, however, the greedy algorithm gives {a, c} instead of
{b, c}. On the other hand, (3.1) is clearly violated: a is the best continuation of ∅ but
w((a, c)) < w((b, c)).

Unfortunately, as innocuous as the above mistake might look, it led the authors
of [8] to the following false claim (see [8, page 156]): if G = (S,F) is a local
poset greedoid and w : F → R is defined as w(A) = ∑{c(PA

x ) : x ∈ A}
for a c : S → R

+ analogously to Example 3, then the greedy algorithm finds
a minimum base with respect to w. To disprove this, let S = {x, y, z, u}, F =
{∅, {x}, {y}, {x, y}, {x, u}, {x, y, z}, {x, z, u}} and c(x) = 3, c(y) = 2, c(z) = c(u) =

b

cr

a
X ∅ {a} {b} {a, c} {b, c}

w(X) 0 2 1 3 4

Fig. 1 Property (3.3) does not imply property (3.1) for order-independent objective functions, nor does it
guarantee the optimality of the greedy algorithm
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z

x

a
br e x z a b

c(e) 1 2 0 4

Fig. 2 The optimality of Dijkstra’s algorithm does not follow from Theorem 2 for undirected graphs

0. Then it is easy to check that (S,F) is a local poset greedoid, but since the greedy
algorithm starts with choosing y, it terminates with {x, y, z} which is not minimum
as w({x, y, z}) = 10 and w({x, z, u}) = 9.

Moreover, it is worth noting that while the optimality of Dijkstra’s algorithm does
follow from Theorem 2 for directed graphs, it does not follow in the undirected case
as shown by the example of Fig. 2: although x is the best continuation of the empty
set, 11 = w((x, b, a)) > w((z, b, a)) = 10, hence (−w) violates (3.1).

On the other hand, the following was shown in [2].

Theorem 3 (Boyd [2]) Let G = (S,F) be a local forest greedoid, c : S → R
+ a non-

negative valued weight function and w(A) = ∑{c(PA
x ) : x ∈ A} for every feasible

set A ∈ F . Then the greedy algorithm finds a minimum base with respect to w.

Since both undirected and directed branching greedoids are local forest greedoids,
the above theorem implies the optimality of Dijkstra’s algorithm both for undirected
and directed graphs. A generalization of Theorem 3 will be given in Sect. 6 (see
Theorem 16) the proof of which will also be shorter than the rather technical one
given in [2].

Although the optimality of the greedy algorithm is a central topic in the theory of
greedois, most results regarding this question are about linear objective functions. In
[7] Korte and Lovász proved that on an arbitrary greedoid G = (S,F) the greedy
algorithm is optimal for all linear objective functions if and only if the following
strong exchange axiom is fulfilled: for every A ⊆ B, A ∈ F , A + x ∈ F , B ∈ B and
x ∈ S − B there exists a y ∈ B − A such that B − y + x ∈ B and A + y ∈ F . A
generalization of this result to arbitrary objective functions will be given in Sect. 6 (see
Theorem 13). In [5] another generalization of the above result of Korte and Lovász
[7] was given: a necessary and sufficient condition for the optimality of the greedy
algorithm for linear objective functions on accessible set systems. In [10] a variant of
the greedy algorithm on interval greedoids that “looks two step ahead” is defined and
a necessary and sufficient condition for its optimality on linear objective functions is
derived. As for general (that is, not necessarily linear) and possibly order-dependent
objective functions a generalization of Theorem 2wasmost recently given in [15] that,
among other applications, completely covers Example 3 (also for undirected graphs).

4 A polyhedral result

In this sectionweprove a generalization ofEdmonds’ classicmatroid polytope theorem
to local forest greedoids.
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Theorem 4 (Edmonds [4]) Let M = (S,F) be a matroid with rank function r and let
Pind(M) denote the polytope spanned by the incidence vectors of all independent sets
of M. Then

Pind(M) =
{
x ∈ R

S : x(U ) ≤ r(U ) for all U ⊆ S, x(s) ≥ 0 for all s ∈ S
}

.

The theoremhas someequivalent formulations, the one of relevance for the purposes
of this paper is the following. The up-hull of a polyhedron P ⊆ R

n , denoted by P↑, is
defined as P↑ = {x ∈ R

n : ∃z ∈ P, z ≤ x}; in other words, P↑ is theMinkowski-sum
of P and the non-negative orthant of Rn (and as such, it is also a polyhedron).

Theorem 5 Let M = (S,F) be amatroid with rank function r and let Pbase(M) denote
the polytope spanned by the incidence vectors of all bases of M. Then

P↑
base(M) =

{
x ∈ R

S : x(U ) ≥ r(S) − r(S −U ) for all U ⊆ S
}

.

As claimed above, this theorem is just a reformulation of Theorem 4. Indeed, by
applying Theorem 4 to the dual of a matroid one gets a description of the polytope
spanned by the incidence vectors of all spanning sets (that is, sets containing a base
of M); then it is easy to check that this polytope is nothing but the intersection of
P↑
base(M) and the hypercube [0, 1]S . The details are given in [12, Chapter 40.2].

Definition 1 Given a greedoid G = (S,F), a feasible set A ∈ F and an x ∈ S, the
shadow of x on A is shA(x) = |A| − r(A − x). The shadow vector of A is the vector
shA ∈ R

S for which shA(x) is the shadow of x on A for every x ∈ S. The shadow
polytope Pshadow(G) of G is defined as the polytope spanned by the shadow vectors
of all bases of G.

For example, if G = (E,F) is the undirected branching greedoid of a graph H
with root node r , A ∈ F is the edge set of a subtree T = (VT , A) of H such that
r ∈ VT and x ∈ E is arbitrary then it is easy to check that shA(x) is the number
of nodes in VT that are unreachable via a path from r in (VT , A − x). Obviously, in
every greedoid shA(x) = 0 if and only if x /∈ A. Furthermore, if M is a matroid then
shA(x) = 1 is obvious for every x ∈ A and hence shA is nothing but the incidence
vector of A. Consequently, Pshadow(M) = Pbase(M) holds for every matroid M .

The significance of the notion of the shadow vector for local poset greedoids is
indicated by the following lemma: it shows that for every weight function c : S → R

on the ground set, the value of the objective function already seen in Example 3 is the
dot product of the shadow vector and c. This observation, together with Theorem 3,
implies that for local forest greedoids the greedy algorithm minimizes non-negative,
linear objective functions over the shadow polytope. This fact will greatly be relied
on in the proof of Theorem 6.

Recall that Δ(X) denotes the unique base of a subfeasible set X ∈ F∨ in interval
greedoids.

Lemma 1 Let G = (S,F) be a local poset greedoid, A ∈ F and c : S → R a weight
function. Then

∑
x∈A c(x) · shA(x) = ∑

x∈A c(P
A
x ).
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Proof Weclaim that y ∈ PA
x if andonly if x ∈ A−Δ(A−y) for every x, y ∈ A. Indeed,

x ∈ Δ(A− y) implies PA
x ⊆ Δ(A− y) by Δ(A− y) ∈ F , hence x ∈ A− Δ(A− y)

follows from y ∈ PA
x . The converse follows from the local union property: since

PA
x ,Δ(A− y) ∈ F , PA

x ,Δ(A− y) ⊆ A, PA
x ∪Δ(A− y) ∈ F holds and thus y ∈ PA

x
by the definition of Δ(A − y).

Then the lemma follows by

∑

x∈A

c(PA
x ) =

∑

y∈A

|A − Δ(A − y)| · c(y) =
∑

y∈A

shA(y) · c(y).

��
We mentioned above that for matroids the shadow polytope and the base polytope

coincide. Therefore the following theorem, which is the main result of this section, is
indeed a direct generalization of Theorem 5.

Theorem 6 Let G = (S,F) be a local forest greedoid with rank function r . Then

P↑
shadow(G) =

{
x ∈ R

S : x(U ) ≥ r(S) − r(S −U ) for all U ⊆ S
}

.

To prepare the proof of Theorem 6, we need the following lemmas.

Lemma 2 (Local Supermodularity Property) If G = (S,F) is a local poset greedoid
then r(A) + r(B) ≤ r(A ∪ B) + r(A ∩ B) holds for A, B ⊆ S if A ∪ B ∈ F∨.

Proof Let X = Δ(A) and Y = Δ(B). Then X ∩ Y ∈ F by the local intersection
property. Furthermore, since for every feasible set Z ⊆ A ∩ B, Z ∪ X ∈ F and
Z ∪ Y ∈ F by the local union property, Z ⊆ X ∩ Y must hold by the definition of
Δ(A) and Δ(B). Therefore X ∩Y = Δ(A∩ B). Finally, since X ∪Y ∈ F is also true
by the local union property, we have r(A)+r(B) = |X |+ |Y | = |X ∪Y |+ |X ∩Y | ≤
r(A ∪ B) + r(A ∩ B) as claimed. ��

Note that the above local supermodularity property also characterizes local poset
greedoids among all greedoids since it implies both the local intersection and the local
union properties if applied to feasible sets.

Lemma 3 If G = (S,F) is a local poset greedoid, B ∈ F∨ is a subfeasible set and
∅ �= A ⊆ B then

∑

x∈A

r(B − x) ≤ r(B − A) + (|A| − 1) · r(B).

Proof We proceed by induction on |A|. The claim is trivial for |A| = 1, so let |A| ≥ 2
and A′ = A − z for an arbitrary z ∈ A. Then
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∑

x∈A

r(B − x) =
∑

x∈A′
r(B − x) + r(B − z) ≤ r(B − A′) + (|A| − 2) · r(B) + r(B − z)

≤ r(B − A) + r(B) + (|A| − 2) · r(B) = r(B − A) + (|A| − 1) · r(B),

where the first inequality follows by induction and the second by Lemma 2. ��
Proposition 7 Let G = (S,F) be a local poset greedoid, Pshadow(G) its shadow poly-
tope and Q = {

x ∈ R
S : x(U ) ≥ r(S) − r(S −U ) for all U ⊆ S

}
. Then P↑

shadow(G)

⊆ Q.

Proof Let B be a base of G, shB its shadow vector and U ⊆ S. Then using Lemma 3
we have

shB(U ) =
∑

x∈U∩B

(|B| − r(B − x)) = |U ∩ B| · r(S) −
∑

x∈U∩B

r(B − x)

≥ |U ∩ B| · r(S) − r(B −U ) − (|U ∩ B| − 1) · r(S)

= r(S) − r(B −U ) ≥ r(S) − r(S −U ).

Therefore all vertices of Pshadow(G) are in Q which implies Pshadow(G) ⊆ Q. Con-
sequently, P↑

shadow(G) ⊆ Q↑ = Q. ��

It can happen that P↑
shadow(G) is a proper subset of Q in the above proposi-

tion as shown by the example already seen in Sect. 3: let S = {a, b, c, d} and
F = {∅, {a}, {b}, {a, b}, {a, d}, {a, b, c}, {a, c, d}}. Then G = (S,F) is a local poset
greedoid, the shadow vectors of its two bases are (2, 2, 1, 0) and (3, 0, 1, 2) (if the
elements are arranged in alphabetical order), both of which fulfill 2xa + xb ≥ 6, hence
this inequality is fulfilled by every member of P↑

shadow(G). However, (2, 1, 1, 1) ∈ Q

is easy to check which shows that Q − P↑
shadow(G) �= ∅.

The claim of Theorem 6 is that ⊆ can be replaced by = in Proposition 7 in case of
local forest greedoids. The proof will follow the argument of Edmonds’ original proof
of Theorem4: the greedy algorithmwill be used to construct an optimumdual solution.
However, it should be noted that the construction we give below is not an extension of
that of Edmonds: even if applied tomatroids it gives a different optimum dual solution.
In particular, Edmonds’ construction (even if adapted to prove Theorem 5, which can
easily be done) yields a chain of subsets of the ground set which is not true for the
construction given below.

Theorem 8 Let G = (S,F) be a local forest greedoid, |S| = n, c : S → R
+

a non-negative valued weight function, w(A) = ∑{c(PA
x ) : x ∈ A} for every

A ∈ F and Bm a minimum base with respect to w. Then there exist the subsets
U1,U2, . . . ,Un ⊆ S and corresponding values y(U1), y(U2), . . . , y(Un) such that
y(Ui ) ≥ 0 for all 1 ≤ i ≤ n,

∑{y(Ui ) : x ∈ Ui } = c(x) holds for every x ∈ S and∑n
i=1 (r(S) − r(S −Ui )) · y(Ui ) = w(Bm).

Proof Assume that a running of the greedy algorithm gives the base B =
{s1, s2, . . . , sr } choosing the elements in this order and let B1 = ∅ and Bi =
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{s1, s2, . . . , si−1} for every 2 ≤ i ≤ r . Let S − B = {sr+1, . . . , sn} with the ele-
ments ordered arbitrarily. Finally, denote P0 = ∅ and Pi = PB

si for every 1 ≤ i ≤ r .
Then let

Ui =
{

Γ (Bi ), if 1 ≤ i ≤ r ,
{si }, if r < i ≤ n

and

y(Ui ) =
{
c(Pi ) − c(Pi−1), if 1 ≤ i ≤ r ,
c(si ) − ∑{y(Uj ) : j ≤ r , si ∈ Uj }, if r < i ≤ n.

We prove that the above choice of Ui and y(Ui ) fulfills all requirements of the
theorem through a series of claims.

Claim 1 Let x ∈ ⋃r
i=1Ui and j = min{i : x ∈ Ui }. Then P

Bj+x
x = Pj−1 + x .

Proof If j = 1 then P
Bj+x
x = {x} and thus the claim is obvious, so assume j ≥ 2 and

hence |PBj+x
x | ≥ 2. Since x ∈ Uj −Uj−1, we have Bj + x ∈ F and Bj−1 + x /∈ F .

Since Bj−1, P
Bj+x
x , Bj + x ∈ F , Bj−1 ∪ P

Bj+x
x ∈ F follows from the local union

property. This implies s j−1 ∈ P
Bj+x
x by Bj−1 + x /∈ F .

Since P
Bj+x
x − x ∈ F and s j−1 ∈ P

Bj+x
x − x ⊆ Bj , Pj−1 ⊆ P

Bj+x
x − x and

therefore Pj−1 + x ⊆ P
Bj+x
x follows from the definition of a path. The second to last

element in the unique ordering of P
Bj+x
x is obviously s j−1 otherwise s j−1 ∈ Pt ⊆

Bt+1 would follow from Theorem 1 for some t < j − 1, a contradiction. Therefore

P
Bj+x
x = Pj−1 + x as claimed. ��

Claim 2 Let x ∈ ⋃r
i=1Ui , j = min{i : x ∈ Ui }, k = max{i : x ∈ Ui , i ≤ r}. Then

x ∈ Ui holds for every j ≤ i ≤ k and
∑{y(Ui ) : x ∈ Ui , i ≤ r} = c(Pk) − c(Pj−1).

Proof From x ∈ Uj ∩ Uk we have Bj + x ∈ F and Bk + x ∈ F which, by the local
union property, imply Bi + x ∈ F and therefore x ∈ Ui for every j ≤ i ≤ k as
claimed. Consequently,

∑
{y(Ui ) : x ∈ Ui , i ≤ r} =

k∑

i= j

(c(Pi ) − c(Pi−1)) = c(Pk) − c(Pj−1).

��
Claim 3 c(P1) ≤ c(P2) ≤ . . . ≤ c(Pr ).

Proof If si ∈ Ui−1 for some 2 ≤ i ≤ r then c(Pi−1) ≤ c(Pi ) is implied by the
fact that the greedy algorithm could have chosen si instead of si−1. If, on the other
hand, si /∈ Ui−1 then Pi = Pi−1 + si follows from Claims 1 and 2. Hence c(Pi ) =
c(Pi−1) + c(si ) which proves the claim. ��
Claim 4 y(Ui ) ≥ 0 for all 1 ≤ i ≤ n and

∑{y(Ui ) : x ∈ Ui } = c(x) for all x ∈ S.
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Proof Let first x = st for some 1 ≤ t ≤ r . Then y(Ut ) ≥ 0 is immediate fromClaim 3.
Define j and k as in Claim 3. Then k = t is obvious and Claim 1 gives Pt = Pj−1+st .
Therefore from Claim 2 we have

∑{y(Ui ) : si ∈ Ui } = c(Pt ) − c(Pj−1) = c(st ) as
claimed.

Now let x = st for some r < t ≤ n. If st /∈ ⋃r
i=1Ui then

∑{y(Ui ) : st ∈ Ui } =
y(Ut ) = c(st ) ≥ 0 is clear. If, on the other hand, st ∈ ⋃r

i=1Ui then again define j
and k as in Claim 3. Since the greedy algorithm could have chosen x instead of sk by
x = st ∈ Uk , we have c(P

Bk+x
x ) ≥ c(Pk). Furthermore, Bj + x ⊆ Bk + x implies

P
Bj+x
x = PBk+x

x . These, together with Claims 1 and 2 imply

c(x) = c(PBk+x
x ) − c(Pj−1) ≥ c(Pk) − c(Pj−1) =

∑
{y(Ui ) : x ∈ Ui , i ≤ r},

hence we have the claim by the definitions of Ui and y(Ui ). ��
Claim 5

r(S −Ui ) =
{
i − 1, if 1 ≤ i ≤ r ,
r(S), if r < i ≤ n

Proof If r < i then B ⊆ S − Ui so r(S − Ui ) = r(S) is obvious. For 1 ≤ i ≤ r
we show that Bi is a base of S − Ui which will settle the claim by |Bi | = i − 1.
Bi ⊆ S − Ui and Bi ∈ F are obvious. Furthermore, if |Bi | < |X | and X ∈ F then
Bi + x ∈ F for some x ∈ X − Bi by (2.2) and hence x ∈ Ui , which proves that Bi is
indeed a base of S −Ui . ��

Finally, it remains to show that
∑n

i=1 (r(S) − r(S −Ui )) · y(Ui ) = w(Bm) holds.
Using Claim 5 we get

n∑

i=1

(r(S) − r(S −Ui )) · y(Ui ) =
r∑

i=1

(r(S) − i + 1) · y(Ui )

=
r∑

i=1

(r − i + 1) · (c(Pi ) − c(Pi−1)) =
r∑

i=1

c(Pi ) = w(B) = w(Bm),

where the last equation follows from Theorem 3. ��
Now we are ready for the

Proof of Theorem 6 Let P = P↑
shadow(G) for short. By Proposition 7 we have P ⊆ Q,

where Q = {
x ∈ R

S : x(U ) ≥ r(S) − r(S −U ) for all U ⊆ S
}
. To show equality it

suffices to prove that min{cx : x ∈ P} = min{cx : x ∈ Q} holds for every c ∈ R
S ,

c ≥ 0. (Indeed, since P↑ = P holds, P can be written in the form P = {x : Ax ≥ b}
for some matrix A ≥ 0. If a z ∈ Q − P existed then z would violate a constraint
cx ≥ δ of Ax ≥ b and hence min{cx : x ∈ P} > min{cx : x ∈ Q} would follow.)
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So let a c ∈ R
S , c ≥ 0 be fixed, let w(A) = ∑{c(PA

x ) : x ∈ A} for every A ∈ F
and Bm a minimum base with respect to w. Using Lemma 1 and since min{cx : x ∈
Pshadow(G)} is attained on a vertex of Pshadow(G) and Pshadow(G) ⊆ P ⊆ Q, we get

w(Bm) = min

{
∑

s∈B
c(PB

s ) : B ∈ B
}

= min

{
∑

s∈B
c(s) · shB(s) : B ∈ B

}

= min{cx : x ∈ Pshadow(G)} ≥ min{cx : x ∈ P} ≥ min{cx : x ∈ Q}.
(1)

From the duality theorem of linear programming we get

min{cx : x ∈ Q} = max
{ ∑

y(U )(r(S) − r(S −U )) :
∑

{y(U ) : s ∈ U } = c(s) for all s ∈ S, y(U ) ≥ 0 for all U ⊆ S
}
.

Theorem 8 implies that this maximum is at least w(Bm), which in turn implies that
every inequality in (1) is fulfilled with equation and hence concludes the proof. ��
Corollary 9 If G = (S,F) is a local forest greedoid and c : S → Z

+ is a non-negative
integer valued weight function then the linear programming problem

min
{
cx : x(U ) ≥ r(S) − r(S −U ) for all U ⊆ S

}

and its dual

max
{ ∑

y(U )(r(S) − r(S −U )) :
∑

{y(U ) : s ∈ U } = c(s) for all s ∈ S,

y(U ) ≥ 0 for all U ⊆ S
}

have integer optimum solutions.

Proof It follows from the proof Theorem 6 that the minimum of the primal problem is
attained on the shadow vector of a base of G which is obviously integer. Furthermore,
the construction of the proof of Theorem 8 yields an integer optimum solution of the
dual problem if c is integer. ��
Corollary 10 If G = (S,F) is a local forest greedoid then the system

x(U ) ≥ r(S) − r(S −U ) for all U ⊆ S

is totally dual integral.

Proof Immediately from Corollary 9 after observing that the minimum of the primal
program clearly does not exist if c contains a negative component. ��
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We remark that no similar description of Pshadow(G) is to be hoped for, not even
for branching greedoids. Indeed, it follows from Lemma 1 that maximizing a linear
objective function over Pshadow(G) translates to maximizing

∑
e∈E(H) c(Pe) which

is, as it was pointed out in [8, Chapter XI.], NP-hard as it contains the Hamilton path
problem. Therefore the existence of such a description of Pshadow(G) would imply
that, for example, the Hamilton path problem is in co-NP, which is highly unlikely.

5 An application: reliability of networks via game theory

The problem of measuring the robustness or reliability of a graph arises in many
applications. Themostwidely applied reliabilitymetrics are obviously the connectivity
based ones, however, these are unsuitable in many cases—for example because in
many applications the network is almost completely functional if removing some
nodes or links results in the loss of only a small number of nodes that are in some
sense insignificant or peripheral.

Applying game-theoretical tools formeasuring the reliability of a graph has become
very common. The basic idea is very natural: define a game between two virtual
players, the Attacker and the Defender, such that the rules of the game capture the
circumstances under which reliability is to be measured. Then analyzing the game
might give rise to an appropriate security metric: the better the Attacker can do in the
game, the lower the level of reliability is. This kind of analysis can give rise to new
graph reliability metrics and in some cases it can shed a new light on somewell-known
ones.

To illustrate this, consider the following Spanning Tree Game: a connected, undi-
rected graph G, a positive valued damage function d : E(G) → R

+ and a cost
function c : E(G) → R are given. For each edge, d(e) represents the “damage”
caused by the loss of e (or in other words, the “importance” of e) and c(e) represents
the cost of attacking e. The Attacker chooses (or “attacks and destroys”) an edge e
of G and the Defender (without knowing the Attacker’s choice) chooses a spanning
tree T of G (that she intends to use as some kind of “communication infrastructure”).
Regardless of the Defender’s choice, the Attacker has to pay the cost of attack c(e) to
the Defender. There is no further payoff if e /∈ T . If, on the other hand, e ∈ T then the
Defender pays the Attacker the damage value d(e). Since this game is a two-player,
zero-sum game, it has a unique Nash-equilibrium payoff (or, in simpler terms, game
value) V by Neumann’s classic Minimax Theorem. Since V is the highest expected
gain the Attacker can guarantee himself by an appropriately chosen mixed strategy
(that is, probability distribution on the set of edges), it makes sense to say that 1

V is a
valid reliability metric.

After some preliminary results on some special cases in the literature (see [14]
for the details), the Spanning Tree Game was solved in the above defined general
form in [13]. In fact, it was considered there in a more general, matroidal setting:
the Matroid Base Game was defined analogously to the Spanning Tree Game with
the only difference being that the Attacker chooses an element of the ground set of a
matroid M = (S,F) and the Defender chooses a base B of M . Then the following
result was proved.
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Theorem 11 ([13]) For every input of the Matroid Base Game the game value is

max
∅�=U⊆S

r(S) − r(S −U ) − q(U )

p(U )
,

where p(s) = 1
d(s) and q(s) = c(s)

d(s) for all s ∈ S. Furthermore, if M is given by
an independence testing oracle then there exists a strongly polynomial algorithm that
computes the game value of the Matroid Base Game and an optimum mixed strategy
for both players.

The running time of the algorithm given in [13] was later substantially improved
in [1].

If specialized to the Spanning Tree Game and to the c ≡ 0 case, the above theorem
implies that the game value is the reciprocal of a well-known graph reliability metric:
the strength of a graph is defined as

σp(G) = min

{
p(U )

comp(G −U ) − 1
: U ⊆ E(G), comp(G −U ) > 1

}

,

where comp(G −U ) is the number of components of the graph obtained from G by
deleting U and p : E(G) → R

+ is a weight function. This notion was defined in the
weighted case and its computability in strongly polynomial time was proved in [3].

While the Matroid Base Game has further relevant applications beyond the Span-
ning Tree Game (see [13]), there are other types of games of a similar nature which do
not fit into this framework. The followingRooted Spanning Tree Gamewas considered
in [9]: a (mixed) graph H with a “headquarters” node r is given such that every node
is reachable from r . (The role of r can be that all other nodes need to communicate
with r only, for example to transmit some collected data to r .) Furthermore assume
that a cost function c : E(H) → R is also given. Again, the Attacker chooses an edge
e, the Defender chooses a spanning tree T and the cost of attack c(e) is payed by the
Attacker to the Defender in all cases and there is no further payoff if e /∈ T . However,
if e ∈ T then the payoff from the Defender to the Attacker is the number of nodes that
become unreachable from r in T after removing e.

Since this number is nothing but the shadow shT (e) in case of the branching gree-
doid, the definition of the Local Forest Greedoid Base Game presents itself: given a
local forest greedoid G = (S,F) and weight functions d, c ∈ R

S with d > 0, the
Attacker chooses an element s ∈ S, the Defender chooses a base B of G and then the
payoff from the Defender to the Attacker is d(s) · shB(s) − c(s). Clearly, this game
is a direct generalization of the Matroid Base Game mentioned above. Then, using
Theorem 6 and following the proof of [13, Theorem 5] we can prove the following.

Theorem 12 For every input of the Local Forest Greedoid Base Game the game value
is

max
∅�=U⊆S

r(S) − r(S −U ) − q(U )

p(U )
,
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where p(s) = 1
d(s) and q(s) = c(s)

d(s) for all s ∈ S.

Proof Denote the game value by V and assume that a mixed strategy of the Defender
{δ(B) : B ∈ B} (that is, a probability distribution δ on B) is given. Then assuming
that the Attacker chooses a given fixed element s ∈ S in the game, the Defender’s
expected loss is

∑

B∈B
δ(B) · (

d(s) · shB(s) − c(s)
) = d(s) ·

(
∑

B∈B
δ(B) · shB(s)

)

− c(s). (2)

Let x(s) = ∑{δ(B) · shB(s) : B ∈ B} for all s ∈ S. Then the vector x ∈ R
S is

nothing but an element of Pshadow(G) by definition (since the values δ(B) form the set
of coefficients of a convex combination). Since, by definition, the Defender’s objective
is to minimize the maximum expected loss she has to suffer, her task amounts to the
following by (2):

min
{
μ : ∃x ∈ Pshadow(G), d(s) · x(s) − c(s) ≤ μ for all s ∈ S

}
. (3)

In other words, the minimum in (3) is equal to V by Neumann’s Minimax Theorem.
Rearranging (3):

V = min
{
μ : ∃x ∈ Pshadow(G), x ≤ μ · p + q}.

Using the definition of P↑
shadow(G) this is further equivalent to the following:

V = min
{
μ : μ · p + q ∈ P↑

shadow(G)}. (4)

By Theorem 6 μ · p + q ∈ P↑
shadow(G) is true if and only if

μ · p(U ) + q(U ) ≥ r(S) − r(S −U )

holds for all U ⊆ S. Then simple rearranging (and observing that this inequality is
trivial forU = ∅) immediately gives that μ · p+q ∈ P↑

shadow(G) is true if and only if

μ ≥ max
∅�=U⊆S

r(S) − r(S −U ) − q(U )

p(U )
.

Hence V , the minimum of all such μ’s is exactly this maximum. ��
If specialized to the branching greedoid and to the c ≡ 0 case it follows that

the value of the Rooted Spanning Tree Game is the reciprocal of another known
graph reliability metric, also defined in [3]. Interested readers are referred to [14]
for the details. Furthermore, the above theorem also generalizes the first statement of
Theorem 11. However, generalizing the algorithmic statement of Theorem 11 to the
Local Forest Greedoid Base Game is left as an open problem.
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6 Optimality of the greedy algorithm in greedoids

We start with the following theorem which seems to be new, but its proof is just an
adaptation of that of the result of Korte and Lovász [7], [8, TheoremXI.2.2] mentioned
at the end of Sect. 3 on the optimality of the greedy algorithm in case of linear objective
functions.

Theorem 13 Let G = (S,F) be an arbitrary greedoid and w : F → R an objective
function that fulfills the following property:

(6.1) If for some A ⊆ B, A ∈ F , A + x ∈ F , B ∈ B and x ∈ S − B it holds that
w(A + x) ≥ w(A + u) for every u ∈ Γ (A) then there exists a y ∈ B − A such
that B − y + x ∈ B and w(B − y + x) ≥ w(B).

Then the greedy algorithm gives a maximum base with respect to w.

Proof Assume by way of contradiction that the greedy algorithm gives the base
Bg = {a1, a2, . . . , ar } choosing the elements in this order, but Bg is not maximum
with respect to w. Choose a maximum base Bm with respect to w such that max{i :
a1, . . . , ai ∈ Bm} is maximum possible, let this maximum be k and A = {a1, . . . , ak}.
Then A ∈ F , A ⊆ Bm , ak+1 /∈ Bm andw(A+ak+1) ≥ w(A+u) for every u ∈ Γ (A)

by the operation of the greedy algorithm. Therefore, by (6.1), there exists a y ∈ Bm−A
such that Bm−y+ak+1 ∈ B andw(Bm−y+ak+1) ≥ w(Bm). Therefore Bm−y+ak+1
is also a maximum base with respect to w, but {a1, . . . , ak, ak+1} ⊆ Bm − y + ak+1
contradicts the choice of Bm . ��

It is worth noting that, in spite of its simplicity, the above theorem implies the
optimality of the greedy algorithm in all three examples listed in Sect. 3. This is easy
to check in case of Examples 1 and 2 and in case of Example 3 it will follow from the
results below. Furthermore, it is not too hard to show that Theorem 13 also implies
Theorem 2 in case of objective functions w : F → R that are independent of the
ordering. (This could be proved by an argument similar to that of Theorem 15 below,
we omit the details here.)

Moreover, Theorem13 is in a sense best possible as shownby the following theorem.
To claim the theorem, we need to extend the definition of minors of greedoids given
in Sect. 2 to incorporate modifying the objective function wG : F → R in an obvious
way: in case of a deletion G\X wG is simply restricted to S − X , while in case of a
contraction G/X the modified objective function becomes wG/X (A) = wG(A ∪ X).

Theorem 14 Assume that the objective functionwG : F → R violates condition (6.1)
for a greedoid G = (S,F). Then there exists a minor H of G such that a legal running
of the greedy algorithm on H gives a base that is not maximum with respect to wH .

Proof Assume that (6.1) is violated by an A ∈ F , B ∈ B and x ∈ S − B. Let
Y = S− B− x and H = (G\Y )/A. Then the greedy algorithm run on H with respect
to wH can start with x since wH ({x}) ≥ wH ({u}) for every u ∈ Γ (∅) holds in H
by (6.1). Therefore this running of the greedy algorithm terminateswith a base Bg of H
such that x ∈ Bg . Since the ground set of H is SH = B− A+ x and B− A is a base of
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H , SH −Bg = {y} for some y ∈ B− A. Since (6.1) is violated by A, B and x , we have
w(B−y+x) < w(B). Consequently,wH (Bg) = w(B−y+x) < w(B) = wH (B−A)

which proves that Bg is not maximum with respect to wH . ��
The following theoremwill beweaker thanTheorem13—not only because it applies

to interval greedoids only, but also because it will not cover Example 2 given in Sect. 3
(or the case of linear objective functions in general). However, it can also be regarded
as a corrected version of the faulty condition (3.3) mentioned in Sect. 3 and it will be
easier to work with later on.

Theorem 15 Let G = (S,F) be an interval greedoid and w : F → R an objective
function that fulfills the following property:

(6.2) If for some A ⊆ B, A ∈ F , A+ x ∈ F , x, z ∈ S − B and B + x ∈ B, B + z ∈ B
such that Δ(B) ∪ {x, z} /∈ F it holds that w(A + x) ≥ w(A + u) for every
u ∈ Γ (A) then w(B + x) ≥ w(B + z).

Then the greedy algorithm gives a maximum base with respect to w.

Proof We will show that (6.2) implies (6.1) which will obviously settle the proof by
Theorem 13. So let A, B and x be given such that A ⊆ B, A, A + x ∈ F , B ∈ B
and w(A + x) ≥ w(A + u) for every u ∈ Γ (A). We need to show the existence of a
y ∈ B − A according to (6.1).

Let (b1, . . . , bk)be a feasible ordering of A and, using (2.2), augment this repeatedly
to get a feasible ordering (b1, . . . , bk, bk+1, . . . , br ) of B. Denote B0 = ∅ and Bi =
{b1, . . . , bi } for every 1 ≤ i ≤ r . Let t ∈ {1, . . . , r} be the largest index such that
Bt−1 + x ∈ F . Obviously, t exists and t ≥ k + 1 since Bk + x = A + x ∈ F . Now
set y = bt ; we claim that this is a suitable choice for (6.1).

Trivially, y ∈ B − A by t ≥ k + 1. To show B − y + x ∈ F , augment Bt−1 + x
from Bt+1; then augment the obtained feasible set from Bt+2 and continue like this
until a base is obtained. Then bt can never occur as an augmenting element during this
process by the choice of t which implies B − y + x ∈ F as claimed.

Let C = B − y. We claim that Δ(C)∪{x, y} /∈ F , so assume the opposite towards
a contradiction. Since Bt−1 ∈ F and Bt−1 ⊆ C , we have Bt−1 ⊆ Δ(C). Furthermore,
Bt−1 + x ∈ F by the choice of t and Bt−1 + y = Bt ∈ F is also true. Since
Bt−1 + x, Bt−1 + y ⊆ Δ(C) ∪ {x, y}, Bt−1 ∪ {x, y} = Bt + x ∈ F follows by the
local union property (2.3). This either contradicts the choice of t if t < r or the fact
that B is a base if t = r .

Consequently, since we have C + y = B ∈ B, C + x = B − y + x ∈ B and
w(A + x) ≥ w(A + u) for every u ∈ Γ (A), we get w(C + x) ≥ w(C + y) from
(6.2), which concludes the proof by C + x = B − y + x and C + y = B. ��

The next theorem gives a generalization of Theorem 3.

Theorem 16 Let G = (S,F) be a local forest greedoid, P its set of paths and f :
P → R a function that satisfies the following monotonicity constraints:

(i) if A, B ∈ P and A ⊆ B then f (A) ≤ f (B);
(ii) if A, B, A ∪ C, B ∪ C ∈ P and f (A) ≤ f (B) then f (A ∪ C) ≤ f (B ∪ C).
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Finally, let w(A) = ∑{ f (Px ) : x ∈ A} for every A ∈ F . Then the greedy algorithm
gives a minimum base with respect to w.

We will need the following lemma for proving the above theorem.

Lemma 4 Let G = (S,F) be a local poset greedoid, B ⊆ S and x, z ∈ S − B such
that B + x ∈ F , B + z ∈ F and Δ(B) ∪ {x, z} /∈ F . Then PB+x

e ∩ (B − Δ(B)) =
PB+z
e ∩ (B − Δ(B)) holds for every e ∈ B − Δ(B).

Proof Since no feasible set in B can contain e by e ∈ B − Δ(B) and the local union
property (2.3), we have x ∈ PB+x

e and z ∈ PB+z
e . Let Di = PB+i

e ∩ Δ(B) and
Hi = PB+i

e ∩ (B − Δ(B)) for i ∈ {x, z}. We need to show Hx = Hz .
Since PB+x

e ,Δ(B), B+x ∈ F and PB+x
e ,Δ(B) ⊆ B+x , the local union property

implies Δ(B) ∪ Hx + x ∈ F .
We claim that Δ(B) ∪ Hx + z ∈ F . To show this, first observe that augmenting

Δ(B) from B + x and B + z implies Δ(B) + x,Δ(B) + z ∈ F by the definition of
Δ(B). Therefore Δ(B) ∪ {x, z} /∈ F also implies Δ(B) ∪ {x, z} /∈ F∨ by the local
union property. Consequently, repeatedly augmenting Δ(B)+ z from Δ(B)∪ Hx + x
yields Δ(B) ∪ Hx + z ∈ F as claimed since x can not augment.

Then since PB+z
e ,Δ(B)∪ Hx + z, B+ z ∈ F and PB+z

e ,Δ(B)∪ Hx + z ⊆ B+ z,
the local intersection property (2.4) implies Dz ∪ (Hx ∩ Hz) + z ∈ F . Since PB+z

e =
Dz ∪ Hz + z, Hz ⊆ Hx must hold by the definition of a path. By symmetry we also
have Hx ⊆ Hz , which completes the proof. ��

Now we are ready for proving Theorem 16. The proof follows the argument of [8,
page 156] where they showed that property (3.3) is fulfilled by a similarly defined
objective function w in local poset greedoids. As mentioned in Sect. 3, that was
insufficient for guaranteeing the optimality of the greedy algorithm, however, a similar
argument will work well with Theorem 15.

Proof of Theorem 16 We will show that (6.2) is fulfilled by (−w). So let A, B, x and z
given such that A, A+x ∈ F , x, z ∈ S−B, B+x, B+ z ∈ B,Δ(B)∪{x, z} /∈ F and
w(A+x) ≤ w(A+u) for everyu ∈ Γ (A)hold.Weneed to showw(B+x) ≤ w(B+z).

Since Δ(B) ∈ F , we have

w(B + i) = w(Δ(B)) + f (PB+i
i ) +

∑

e∈B−Δ(B)

f (PB+i
e ) (6)

for i ∈ {x, z}. Let (b1, . . . , bk = z) be the unique feasible ordering of PB+z
z according

to Theorem 1 and let j ∈ {1, . . . , k} be the smallest index such that b j /∈ A and denote
u = b j . Then since {b1, . . . , b j }, A, PB+z

z ∈ F and {b1, . . . , b j }, A ⊆ PB+z
z , we have

A+u ∈ F by the local union property. Thereforew(A+x) ≤ w(A+u), which implies
f (PA+x

x ) ≤ f (PA+u
u ) by w(A+ i) = w(A) + f (PA+i

i ) for i ∈ {x, u}. Furthermore,
PB+z
u = {b1, . . . , b j } byTheorem1,which implies f (PB+z

u ) ≤ f (PB+z
z ) byproperty

(i). Noting that PA+x
x = PB+x

x and PA+u
u = PB+z

u are obvious by A+ x, A+u ∈ F ,
these together imply f (PB+x

x ) ≤ f (PB+z
z ).
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First assume B ∈ F . Then B = Δ(B) and hencew(B+ i) = w(Δ(B))+ f (PB+i
i )

follows from (6) for i ∈ {x, z}. Therefore w(B+ x) ≤ w(B+ z) follows immediately
from f (PB+x

x ) ≤ f (PB+z
z ).

Nowassume B /∈ F . ThenbyLemma4wehave PB+x
e ∩(B−Δ(B)) = PB+z

e ∩(B−
Δ(B)) for every e ∈ B −Δ(B), denote this common set by He. Fix an e ∈ B −Δ(B)

and an i ∈ {x, z} and let the unique ordering of PB+i
e be (a1, a2, . . . , ak) according to

Theorem 1. Then i ∈ PB+i
e is again obvious by the definition of Δ(B), so let i = a j

for some 1 ≤ j ≤ k. Then {a1, . . . , a j } = PB+i
i by Theorem 1. Since Δ(B) + i ∈ F

is again true as in the proof of Lemma 4, PB+i
i ⊆ Δ(B)+ i by the definition of a path.

Furthermore, if y = at for some j < t ≤ k then i ∈ PB+i
y by Theorem 1 and hence

y ∈ Δ(B) is impossible because that would imply i ∈ PB+i
y ⊆ Δ(B) by Δ(B) ∈ F .

All these together imply PB+i
e = PB+i

i ∪He. Since f (PB+x
x ) ≤ f (PB+z

z )was shown
above, this implies f (PB+x

e ) ≤ f (PB+z
e ) by property (ii) for every e ∈ B − Δ(B).

This completes the proof by (6). ��
Since f (P) = c(P) obviously fulfills the monotonicity constraints (i) and (ii)

for all non-negative valued weight functions c : S → R
+, Theorem 16 is indeed

a generalization Theorem 3. Another application of Theorem 16 is to set f (P) =
max{c(x) : x ∈ P} for a weight function c : S → R, which again obviously fulfills
conditions (i) and (ii). Theorem 16 implies the fact, which was also proved in [2],
that in local forest greedoids the greedy algorithm finds a minimum base with respect
to w in this case. If applied to the branching greedoid (and for maximizing (−w)),
this implies the well-known fact that the corresponding modification of Dijkstra’s
algorithm solves the widest path problem (also known as the bottleneck shortest path
problem) in graphs.
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