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Abstract Lasers and light-emitting diodes are used for a
range of biomedical applications with many studies reporting
their beneficial effects. However, three main concerns exist
regarding much of the low-level light therapy (LLLT) or
photobiomodulation literature; (1) incomplete, inaccurate
and unverified irradiation parameters, (2) miscalculation of
‘dose,’ and (3) the misuse of appropriate light property termi-
nology. The aim of this systematic review was to assess
where, and to what extent, these inadequacies exist and to
provide an overview of ‘best practice’ in light measurement
methods and importance of correct light measurement. A re-
view of recent relevant literature was performed in PubMed
using the terms LLLT and photobiomodulation (March 2014–
March 2015) to investigate the contemporary information
available in LLLT and photobiomodulation literature in terms
of reporting light properties and irradiation parameters. A total
of 74 articles formed the basis of this systematic review.
Although most articles reported beneficial effects following
LLLT, the majority contained no information in terms of
how light was measured (73 %) and relied on manufacturer-
stated values. For all papers reviewed, missing information for
specific light parameters included wavelength (3 %), light
source type (8 %), power (41 %), pulse frequency (52 %),

beam area (40 %), irradiance (43 %), exposure time (16 %),
radiant energy (74 %) and fluence (16 %). Frequent use of
incorrect terminology was also observed within the reviewed
literature. A poor understanding of photophysics is evident as
a significant number of papers neglected to report or
misreported important radiometric data. These errors affect
repeatability and reliability of studies shared between scien-
tists, manufacturers and clinicians and could degrade efficacy
of patient treatments. Researchers need a physicist or appro-
priately skilled engineer on the team, and manuscript re-
viewers should reject papers that do not report beam measure-
ment methods and all ten key parameters: wavelength, power,
irradiation time, beam area (at the skin or culture surface; this
is not necessarily the same size as the aperture), radiant ener-
gy, radiant exposure, pulse parameters, number of treatments,
interval between treatments and anatomical location.
Inclusion of these parameters will improve the information
available to compare and contrast study outcomes and im-
prove repeatability, reliability of studies.

Keywords Radiometry . Low-level light therapy . Low-level
laser therapy . LLLT . Photobiomodulation

Introduction

‘Low-level light therapy’ (LLLT) or the recently accepted
Medical Subject Heading (MeSH) term, photobiomodulation
is the application of light typically within the wavelength
range ~600–1000 nm to directly stimulate or inhibit cellular
and biological processes. The application of low power
(<500 mW; non-thermal and non-destructive) lasers or light-
emitting diodes (LEDs; or even a combination of both) have
shown therapeutic effects with a number of light parameters
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that include irradiance, exposure time and total energy
delivered.

Many studies have reported beneficial effects of LLLT fol-
lowing trauma in improving tissue healing [1], reducing in-
flammation [2], reducing oedema [3], restoring blood flow [4]
and inducing analgesia [5] in a number of medical specialties
that include musculoskeletal injuries, skin diseases, degener-
ative diseases, neuropathic pain syndromes and even traumat-
ic brain injuries [1–8]. Favourable data for LLLT in other
biomedical areas now also exists, which includes several den-
tal specialties such as endodontics, maxillofacial surgery, oral
pathology, oral surgery, orthodontics, pediatric, periodontics
and prosthodontics [9] for a range of conditions including oral
mucositis [10], dentine hypersensitivity [11] and candidiasis
[12]. The application of LLLT may also prevent pain and
protect muscles prior to strenuous exercise or trauma, which
has significant implications for the wider use of this therapeu-
tic technology as a pre-conditioning modality prior to surgical
procedures [13].

Despite several thousand in vitro studies, in vivo studies
and clinical trials reporting positive beneficial effects, articles
exist where nil or negative effects have been reported, promot-
ing controversy surrounding the effectiveness of LLLT
[14–18]. In certain studies, non-significant effects can be at-
tributed to several factors relating to dosimetry; too much or
too little energy, irradiance and exposure time as well as pulse
structure and insufficient irradiation area [14, 19, 20]. It is
clear that there is a therapeutic window in terms of dosimetry
and a biphasic dose response which has been likened to the
Arndt-Schulz or hormesis curve [19]. Consequently, irradia-
tion parameters are likely to be key to whether outcomes have
a positive, nil or negative effect. Although LLLT parameters
are known and have been previously defined in the literature,
including specialised mandatory and volunteer laser safety
international standards such as US Code of Federal
Regulations, American National Standards Institute and the
International Standards Manual and other laser safety books
and review articles [21, 22], beam parameters are often not
measured, calibration of measuring instruments are rarely ver-
ified, critical data is often unreported, and in some cases, there
are elementary dose calculation errors, all of which leading to
misinformation in the literature. The importance of correct
measurement and reporting has been emphasised several
times within the literature [23–28] and brief ‘guidelines’ on
how tomeasure and report LLLT dose and beam parameters in
clinical and laboratory studies has also been published [23, 29,
30].

The aims of this work are to (1) review the adequacy
of reporting irradiation parameters in recent literature,
(2) describe fundamental concepts and appropriate meth-
odology for best practice in light property evaluation
and (3) define the correct terminology for reporting ra-
diometric parameters.

Methods

To assess the methods and variability of measuring and
reporting LLLT irradiation parameters, and radiometric termi-
nology used by researchers, a review of recent relevant litera-
ture was performed in PubMed. The following two searches
where performed separately: (low and level and light and ther-
apy) and (photobiomodulation). These specific search terms
were used as ‘LLLT’ has been widely recognised and used as
a MeSH term for many years, although more recently
photobiomodulation has become accepted as a more appropri-
ate description of the action of light on cellular behaviour.
Following the literature searches, the results were filtered for
‘full-text article’, published in a 1-year period between 19th
March 2014 and 19th March 2015 (Fig. 1) to ensure a man-
ageable number of articles whilst assessing the latest methods
used by researchers. Review articles, editorials, articles in lan-
guages other than English and those not relevant to LLLT or
photobiomodulation, were excluded and duplicates removed.
The selected articles were assessed in terms of the method
employed to measure light properties, reporting of light prop-
erties (source, wavelength, power, pulse frequency and beam
area) and reporting of irradiation parameters (irradiance, ex-
posure time, radiant energy and radiant exposure).

Results

The initial search of the PubMed database resulted in 2295
and 177 articles according to the search terms employed
(LLLT and photobiomodulation, respectively), which were
filtered and screened (Fig. 1a, b) to 56 [31–86] and 18
[87–104] articles, respectively. Thus, a total of 74 articles
formed the basis of this systematic review (Tables 1 and 2).

The majority (71/74; 96 %) of articles reported a positive
effect following LLLT, with three articles [43, 70, 87]
reporting nil effects following LLLT (Table 2) and none
reporting negative effects. Of the 74 articles, 73 % (54/74)
did not report methods for light measurement and relied on
manufacturers’ information. Only 5 % (4/74) of articles re-
ported a full set of data for the parameters/information
assessed in this review [83–86]. For articles that did report
light measurement methods, the most common was using a
power meter (22 %; 16/74), or equivalent. Remarkably, only
six (6/74; 8 %) employed a method that was able to measure
spectral properties such as wavelength [39, 45, 54, 67, 68, 83].
Two articles (3 %; 2/74) failed to report even manufacturers
quoted wavelength [48, 61]. Other parameters which were not
reported were power (41 %; 30/74), beam area (41 %; 30/74),
irradiance (43 %; 32/74), exposure time (16 %, 12/74), radiant
energy (74%; 55/74) and radiant exposure (fluence; 16%; 12/
74), and these are detailed in Tables 1 and 2.
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Discussion

The need for the measurement and standardisation of re-
ported irradiation parameters has previously been
emphasised [22, 29, 30], and it was proposed that eight
key beam parameters should be reported in all LLLT stud-
ies [29]: wavelength, power, irradiation time, beam area
(at the skin or culture surface), pulse parameters (frequen-
cy), anatomical location (skin colour, target location, i.e.
depth below skin), number of treatments and the interval
between treatments. Whilst other radiometric parameters
such as divergence, depth of field, beam polarisation, co-
herence length, beam profile and spectral width are also
important, the authors of that paper suggested those pa-
rameters were the minimum necessary for a repeatable
scientific study [29]. Thus, in agreement with that paper,
a ‘bare’ minimum approach should be adopted when

describing beam parameters and a more thorough ap-
proach should utilise more technically demanding tech-
niques such as beam profiling. The importance of describ-
ing light parameters and treatment protocol has also been
emphasised in several other publications [22–28]. Thus,
the focus of this current study was to provide an overview
of the fundamental concepts of light measurement and set
the basis for a proper evaluation of light properties.
Therefore, this study has reviewed the properties directly
related to light rather than treatment protocol (anatomical
location, number of treatments, interval between
treatments).

In the current literature search, 96 % of articles report-
ed positive effects of LLLT with only three articles [43,
70, 87] showing no beneficial effect following LLLT.
However, the number of articles that report measured in-
formation regarding light properties and irradiation

Excluded 

1) Not relevant to LLLT (N=62) 
2) Review ar�cles (N=16) 

Hypothesis (N=1) 
Ar�cle in language other than 
English (N=1) 

Total= 81 

Total included in review 

N= 56 (Refs: 31-86) 

Screening 

1) Releveance to 
LLLT/photobiomodula�on 

2) Ar�cle type 

Filtered for dates: 

19/03/2014 to 19/03/2015 (UK format) 

N= 136 

Filtered for: 

Full text ar�cles only 

N= 1850 

Papers found in ini�al PubMed data base search with 
the search string: 

Low AND level AND light AND therapy 
N= 2295 

(a)

Fig. 1 a Flow chart of search strategy to identify articles for review using ‘low and level and light and therapy.’ b Flow chart of search strategy to identify
articles for review using ‘photobiomodulation’
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parameters was remarkably low (27 %; Table 1) consid-
ering that the physics of light forms a fundamental basis
of this therapeutic process. Even when light is measured,
the methods employed are not always adequate to fully
assess light properties; only 8 % of articles reported a
method that was capable of characterising the spectral
(wavelength) light output [73–75, 80, 82, 102]. The most
common light measurement method used power or energy
meters (Table 1), which is obviously an improvement on
nil measurement; however, these devices are known to
have significant limitations, which is discussed in
‘Photodiodes and power meters’.

Table 2 details the current state of light measurement and
reporting of light parameters in LLLT studies where missing
information does not allow for key parameters to be assessed.
It is likely that these inadequacies are related to several factors
that include expense of equipment, lack of expertise in

equipment usage, poor appreciation of light properties and
deficiencies of LLLT research standardisation. Consequently,
this review continues by introducing fundamental concepts of
light measurement and radiometric terms in attempt to explain
their critical importance for LLLT research.

Light: the basics

Over recent centuries, units of measurement have been
established for quantifying and reporting the multitude of pa-
rameters that describe the wavelength, irradiance and incident
beam area, distribution and energy of light. These parameters
have significance for LLLT research, and when used properly
will fully describe the ‘medicine’ (the light source and its
properties) and the ‘dose’ (the irradiation parameters/protocol)
and will improve reproducibility and information between re-
searchers, manufacturers and clinicians.

Excluded

1) Not relevant to LLLT/photobiomodula�on (N=0)
2) Review ar�cles (N=12); 

Hypothesis (N=1); 
Editorials (N=3);

3) Reviewed under LLLT search (duplicates): (N=7)
Total= 23

Total included in review

N= 18 (Refs: 87-104)

Screening

1) Relevance to 
LLLT/photobiomodula�on

2) Ar�cle type
3) Duplicates from LLLT search

Filtered for dates:

19/03/2014 to 19/03/2015 (UK 
format)

N= 41

Filtered for:

Full text ar�cles only

N= 174

Papers found in ini�al PubMed data 
base search with the search string:

Photobiomodula�on
N= 177

(b)

Fig. 1 (continued)
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Radiometry

Radiometry is the measurement of electromagnetic radia-
tion between approximately 10 and 1,000,000 nm. Within
these wavelengths are the ultraviolet (UV; <400 nm), vis-
ible (~400–700 nm), near-infrared (~700–1400 nm) and
infra-red (IR; >1400 nm) bands. Since LLLT experiments
typically involve the application of light in the visible red
and near-infrared region of the electromagnetic spectrum,
radiometric terms should be employed to describe light
properties and irradiation parameters that adequately de-
pict key information needed for repeatable and reliable
results between researchers, manufacturers and clinicians,
which will ultimately improve clinical outcomes. Table 3
represents a summary of correct key terms, quantities and
units that should be used in LLLT, although commonly
incorrect terminology is stated. For example, studies will
often report radiant exposure using the term energy den-
sity which actually describes a volumetric parameter rath-
er than the amount of energy applied to a given area [66,
105–108] or use ambiguous terms such as intensity [108],
which in radiometry can lead to confusion with ‘radiant
intensity’ (the radiant power emitted, reflected, transmit-
ted or received). Likewise, in LLLT, the term intensity
does not distinguish whether the light is measured as ‘ra-
diant exitance’ which is the amount of light leaving
(emitted) from a surface, or ‘irradiance’ which is the
amount of light arriving (irradiated) onto a surface; a sub-
tle, yet critical consideration for accurate measurement of
incident light at a specimen surface such as treated tissue
or cell culture areas (‘Irradiance and radiant exitance’).
Another example of a commonly used, largely ambiguous
term is spot-size [39, 62, 91, 103] and the errors that may
arise in assuming a circular beam area, which may not be
representative of an elliptical laser speckle pattern (‘Beam
area’). These ambiguous terms can potentially lead to
misinterpretation of dosing parameters and poor reproduc-
ibility of data and should be avoided.

Spectral quantities

Radiometric quantities often have a spectral (or wavelength)
variable. The spectral variable describes the distribution of
these quantities with respect to their representative wave-
lengths: the total irradiance of a light source is defined by
the irradiance at each individual wavelength. Spectral mea-
surements are particularly important for chemical or biological
applications, as the knowledge of spectral content is often vital
in choosing or interpreting the effects of a particular light
source. This is potentially critical as popular work by Karu
[109] suggests light of appropriate wavelength is absorbed by
copper complexes within the mitochondrial enzyme, cyto-
chrome c oxidase (CCO), which then causes the release of
bound nitric oxide leading to further downstream cell signal-
ling effects [110, 111]. Therefore, there must be an effective
spectral overlap between the absorption of CCO and laser/
LED emission for therapeutic LLLT. Consequently, not only
is it important to characterise the spectral properties of the
light source but also the absorbance profile of materials or
tissue that can potentially absorb the therapeutic window of
emitted light. It follows that accurate measurement and
reporting of spectral information (peak wavelength, spectral
irradiance, spectral half-width and absorption profiles) would
confirm (or otherwise) the conclusions made in LLLT studies.

Light, quantities, units and symbols

Radiant energy

Electromagnetic radiation can be considered as both a wave
and a particle (depending on how it is measured), which trans-
ports energy through space. This energy can be absorbed by
physical objects and converted into other forms such as ther-
mal or electrical energy (solar cells). For example, in photo-
graphic light meters, incident visible light causes electric cur-
rent flow when the radiant light energy is transferred to elec-
trons as kinetic energy, fromwhich light power can be inferred

Table 3 Summary of quantities,
symbols and units Terminology commonly

used
Correct terminology Symbol Equation of relation Unit

Wavelength Wavelength λ nm

Frequency Pulse frequency ν Hz

Radiant energy Radiant energy Q Joule, J

Energy density Not applicable u J/cm3

Energy density/fluence Radiant exposure /(radiant) fluence H ∫ E dt J/cm2

Power (flux) Power/radiant flux) Φ dQ/dt watt, W

Spot size Beam area A cm2

Power density/intensity Irradiance E dφ/dA W/cm2

Intensity Radiant exitance M W/cm2

Exposure time/duration Exposure time/duration t s
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(‘Photodiodes and power meters’). Similarly, for LLLT, light
is transferred to cells as radiant energy that modulates cellular
responses via CCO absorption and is analogous to photosyn-
thesis, whereby the action of light, and light alone, directly
stimulates cell responses. Whilst radiant energy is important
[112], the parameter alone is not enough to determine treat-
ment efficacy since an infinite combination of irradiance and
exposure could lead to similar radiant energies. Radiant ener-
gy is denoted asQ and expressed in Joules (J). Spectral radiant
energy accounts for monochromatic (such as a single wave-
length laser) and polychromatic sources (for example, lights
which emit over a range of wavelengths) and is defined as
radiant energy per unit wavelength interval at wavelength, λ:

Qλ ¼ dQ

dλ
ð1Þ

The units of spectral radiant energy are Joules per
nanometre (J/nm)

Radiant flux or radiant power

‘Flux’ or ‘power’ describes the time rate of flow of radiant
energy. This is a parameter that is usually reported within
LLLT literature through manufacturers’ information or mea-
sured using power/energy meters (Tables 1 and 2).
Metaphorically, this describes the ‘potency’ of the light and
although important, does not provide adequate information
concerning spectral and spatial distribution of the energy or
the actual irradiance delivered to the target site. Lack of spatial
information assumes uniform irradiance over the output area
[113, 114], which can be far from accurate, especially consid-
ering the true irradiance across an active beam area (Fig. 2).
This may differ according to the type of light source, e.g. the
common elliptical profile of lasers (Fig. 2b) or the non-unform
irradiance distribution of LEDs (Fig. 2c) and the distance from
the light tip to the target area. Although power or radiant flux
should be reported, it only partially describes irradiation pa-
rameters that are necessary for complete information relevant
to LLLT research. Radiant power or flux has units of Joules
per second (J/s) or watts (W) and is defined as:

ϕ ¼ dQ

dt
ð2Þ

The radiant flux per unit wavelength interval at wave-
length, λ is given the term spectral radiant flux and is defined
as:

ϕλ ¼ dϕ
dλ

ð3Þ

and measured in watts per nanometre (W/nm).

Beam area

Beam area is often referred to as ‘spot-size’ in the LLLT liter-
ature [39, 62, 91, 103]. However, the term beam area should
be preferred over spot-size and reported in square centimetres.
The term spot is usually descriptive of a circular shape and
size is ambiguous although units may remove ambiguity. As
mentioned previously, lasers may emit an elliptical beam,
which would significantly affect the area calculation (Fig. 2)
and lead to misinterpretation of irradiation parameters. In
cases where the beam area is non-circular, or of circular
Gaussian, the beam area and/or diameter can be accurately
determined using techniques such as beam profilometry
which will be discussed in ‘Light measurement/detectors’.
Nonetheless, this review finds that a significant number of
LLLT studies fail to report beam area (Tables 1 and 2), a key
parameter that should be reported in all LLLT studies.

The radiant beam area acting on a target site is likely to
significantly influence biological response in both in vivo, in
vitro and clinical studies. Although systemic and local re-
sponses to LLLT irradiation have been reported [115] in vivo,
beam area is also important for dosing and radiometric calcu-
lations. In vitro, a localised effect of light irradiation is likely
to result in a significant biological response. Consequently, if
the beam area is much smaller than the target culture area, then
only a proportion of the host cells will be irradiated, attenuat-
ing the measured biological response and possibly resulting in
a false-negative result. Therefore, a suggested good practice
would be to ensure the whole culture well is irradiated evenly
with a round, flat top beam.

Irradiance and radiant exitance

The radiant flux per unit area received by a surface from any
direction can be termed irradiance (Fig. 3a). However, some-
times this is confusingly termed power density or intensity in
the LLLT literature, and this does not distinguish between
irradiance or light arriving (irradiance) or that leaving a sur-
face (exitance). Irradiance is defined as:

E ¼ dϕ
dA

ð4Þ

where dϕ is the radiant flux and dA is differential area. The
measured flux can also be that leaving the surface from any
direction due to emission and/or reflection (Fig. 3b) and is
given the term radiant exitance and defined as:

M ¼ dϕ
dA

ð5Þ

where dϕ is the radiant flux leaving and dA is differential area
where dϕ is leaving from. A possible use of this terminology
in LLLT could be to describe reflection off biological tissue
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Laser- 660nm

   Laser- 810nm

   LED- 810nm

(a)

(b)

(c)

Fig. 2 Examples of spatial
distribution of irradiance in lasers
and LED lights where the highest
to lowest irradiance is represented
by the rainbow colours, red to
violet, respectively, for a 660 nm
laser, b 810 nm laser and c
810 nm LED
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such as dentine, bone and other tissues.
Irradiance can be measured in space and is usually mea-

sured in watts per square centimetre. This includes the sur-
faces of physical objects, i.e. tissue or cell culture samples, and
the space occupied between them, i.e. air or through tissue
thickness. This is particularly important when characterising
lights that are highly divergent, as found in typical LED
sources, or through tissue which is highly scattering.

Commonly, irradiance is not verified by researchers and
only reported from manufacturers’ quoted values or is calcu-
lated using values gained from inadequate measurement tools
(Tables 1 and 2). Manufacturers’ values are typically mea-
sured at the aperture or fibre tip, but because the beams are
highly divergent, they are not useful for studies where the
beam may be projected to a target such as in an in vitro study.
Manufacturers’ specific methods of measurement are also
rarely divulged. Irradiation, in vivo or in in vitro cultures,
likely occurs through tissue or culture plastics at distances
greater than 0 mm. Therefore, replicating and measuring key
light parameters at, or through, relevant targets at specific
distances and geometry is far more accurate and clinically
and experimentally relevant than using manufacturers’ data
alone.

Spectral irradiance is the radiant flux per unit wavelength
interval at wavelength λ and can be defined for both irradiance
and radiant exitance with the following equations:

Eλ ¼ dE

dλ
ð6Þ

Mλ ¼ dM

dλ
ð7Þ

Spectral irradiance is measured in watts per square
centimetre per nanometre.

Exposure duration

Although the most straightforward irradiation parameter to
measure, exposure time (s) is not always reported in the liter-
ature. Sixteen per cent (12/74) of articles reviewed in this
study failed to report exposure duration (Tables 1 and 2),
which is likely due to a common misconception that wave-
length, flux (radiant energy) and fluence are all that are nec-
essary to replicate a successful treatment [29]. Exposure

duration is a key component of ‘dose’, which is the product of
irradiance and exposure time and should always be separately
defined (Section ‘Radiant exposure and exposure reciprocity’).

In addition to reporting exposure time, when multiple ex-
posures are performed, the number of treatment sites, the
number of exposures and the interval between exposures
should also be reported in order to fully describe the treatment
protocol [29, 30].

Radiant exposure and exposure reciprocity

The energy delivered per unit area of cells during light stim-
ulation for LLLT is also an important parameter since the
efficacy of the treatment would depend on the irradiance de-
livered over a given area. The quantity areal, measured in
joules per square centimetre and is often incorrectly termed
energy density, should only be used for volumetric energy
deposition (J cm−3). The proper terminology for the total
amount of energy delivered per unit area is ‘radiant exposure’,
or more commonly termed fluence in the LLLT literature,
where H (the radiant exposure or fluence) is defined as the
integral of the irradiance from Eq. 4

H ¼
Z T

0
E dt ð8Þ

However, many researchers merely quote radiant exposure
(sic. energy density) as an expression of dose within the liter-
ature with missing irradiance (W/cm2) or exposure duration
(s) values (or even both; Tables 1 and 2). This is potentially
unreliable, as it assumes an inverse correlation between the
effects of irradiance and exposure duration.

The Bunsen-Roscoe ‘Law of Reciprocity’ states that pho-
tochemical reactions will be independent of irradiance and
exposure time with the effects being directly proportional to
the total energy delivered [116–118]. Although it can be as-
sumed that this law is valid for photochemical reactions within
a certain dose range, photobiological responses of cells and
tissue usually involve a sequence of interacting biological re-
actions making a linear dose-time relationship less likely. A
true reciprocal relationship between irradiance and timewould
achieve similar therapeutic effects regardless of how radiant
exposure was achieved (e.g. 20 s at 100 mW/cm2 would ex-
hibit similar therapeutic effects compared with 200 s at

Irradiance Exitance(a): (b):

Fig. 3 The definitions of radiant
flux density arriving (a
irradiance) or leaving (b exitance)
a surface (the lines represent rays
of light travelling in the direction
of the arrow)
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10 mW/cm2 or 80 s at 25 mW/cm2). However, although an
effective radiant exposure for a specific cell type is an impor-
tant, and a largely unknown quantity in LLLT, the individual
parameters (irradiance and time) are critical and should also be
defined. Notably, if the irradiance is too low and/or the deliv-
ery time too short, any significant beneficial effect may not be
realised or even reduced [19, 81]. Furthermore, if the irradi-
ance is too high or the irradiation time is too long, any signif-
icant benefit may also be attributed to heat, or even sometimes
produce inhibitory, rather than therapeutic effects [19, 68].
Thus, any useful concept of exposure reciprocity may not be
applicable in biological systems such as LLLT, since treatment
modalities may only be effective within a window of specific
irradiation parameters [19]. However, using similar radiant
exposure by varying the combination of irradiance and time,
and its effect on stimulatory/inhibitory cell responses is not
fully understood and warrants a systematic approach to further
understanding of the photobiomodulation of different cell
types.

Pulse frequency

The pulse frequency is the number of pulses of a repeating
signal in a specific time frame and is usually measured pulse
per second (Hz), thus pulse operation of lasers or LEDs is not
classified as a continuous wave. This type of operation is
beneficial for heat dissipation and to achieve high peak irra-
diances, but since there is an on/off period, dosing parameters
such as radiant energy and radiant exposure are affected which
may affect the efficacy of LLLT [52, 64, 68]. For example, if
the irradiation was pulsed to deliver light at 0.5 s intervals,
then only half the energy would be delivered compared with
continuous delivery at similar irradiance and exposure time.
Thus, when pulsing regimes are utilised, the peak irradiance
should be defined along with pulse frequency and the on/off
durations as previously recommended [29, 30].

Light measurement/detectors

Spectro(radio)meters

A spectrometer is an instrument used to measure the proper-
ties of light over specific portions of the electromagnetic spec-
trum and provides a useful system to analyse spectral charac-
teristics critical for LLLT research. Spectrometers are coupled
with flexible, transparent optical fibres of varying diameters
made from high-quality glass that function as waveguides or
light guides to transmit light between the two fibre ends.
Opaline cosine correctors are usually attached, which have
diffusing material apertures allowing light measurement nor-
mal to its surface with 180° field of view (Fig. 4a). Whilst
cosine corrector probes provide a cheap, versatile, robust and
reliable method of light measurement, the measurement

accuracy is limited when analysing large light sources due to
its small collection area and its 180° field of view.
Alternatively, integrating spheres of varying diameter and port
size (dependent upon the source size) can be used, which
consist of hollow spherical cavities covered with diffuse white
reflective coating. Spheres can be used to capture and measure
light radiated in all directions from the light source as light
scattered by the interior of the integrating sphere is evenly
distributed over all angles (Fig. 4b). However, measurements
using integrating spheres are limited by the size of the sphere
and the size of the light source intended to be measured.
Nevertheless, the fibres and cosine corrector (or integrating
sphere) collectively become an optical probe, which can be
calibrated using a photometric standard or calibrated light
source to National Institute of Standards and Technology
(NIST) standards providing an accurate measurement system
known as a spectroradiometer.

Light is captured through the cosine corrector or integrating
sphere and travels through the optical fibre into the spectrom-
eter. The core of the spectrometer is formed by a diffraction
grating which splits radiant light into its spectral components
and projects the diffracted elements onto a detector. Computer
software is used to calculate all radiometric, photometric and
colourimetric quantities from spectral data. Two types of spec-
trometers exist, an array type, which has a fixed diffraction
grating and a detector array, and a scanning spectrometer,
which has a single detector and a rotating diffraction grating
(Fig. 4c). Spectrometers are popular light measurement sys-
tems for many aspects of photonics research although rarely
used in LLLT studies (Table 2). However, there are other lim-
itations of fibre-coupled spectrometers which use cosine cor-
rectors and integrating spheres, primarily that power unifor-
mity within the incident beam is assumed and the power dis-
tribution of light across the exit diameter of large light sources
cannot be measured [114]. For example, using a typical cosine
corrector diameter of 4 mm to measure an incident beam di-
ameter of 10 mm, the outer 6 mm of the beam will not be
captured by the sensor. Light sources used for LLLT typically
have a Gaussian distribution and therefore if the irradiance is
measured centrally, power is assumed to be equal over the
whole area and the measured irradiance would be
overestimated. Error is increased with the increasing ratio of
beam diameter to probe diameter (or vice versa) and re-
searchers need to cautiously interpret data in such situations.
Ideally, researchers should employ methods that will ade-
quately measure all of the light by considering the projected
beam area on a target and the distance that the beam is applied
from. For example, if LLLT studies are performed by irradiat-
ing culture dishes or tissue samples from a specific distance,
then the experimental light measurement methods should sim-
ulate this to accurately analyse light properties at the target site
(irradiance), i.e. measure light received by cells, not what the
light outputs. The effects of absorption, scattering and
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reflection by media, cell culture plasticware and other
materials/tissue on spectral irradiance at the target site are
critical and should be carefully considered, i.e. for cell culture
work, the irradiance delivered on the culture area through
plasticware should be measured to accurately determine the
irradiance delivered to cells.

Spectrometers can also be used to measure absorption char-
acteristics of specific cellular chromophores or photorecepetors
localised in the mitochondria that are responsible for the absorp-
tion of light. A light source emitting multiple wavelengths is
focused on to a samplewhich attenuates light through absorption,
scattering and reflection of the incident light. The action spectra,
a plot of relative effectiveness of different wavelengths, which is
believed to mimic the absorption spectrum of CCO, has been
reported byKaru et al. [119] and indicates several effective bands
relating to the copper complexes of CCO. Thus, by recording this
attenuation of light for various wavelengths, an absorption spec-
trum can be obtained and potential therapeutic windows for
LLLT can be identified for specific tissue.

Photodiodes and power meters

A photodiode (detector) is responsive to optical input from
UV to near infrared radiation and operates as a photoelectric
converter generating a current that is proportional to the inci-
dent light. A photon of sufficient energy creates an electron
hole pair by a mechanism known as the inner photoelectric
effect that is dependent upon the efficiency of the photodiode.
Quantum efficiency is dependent upon many factors, but in
general if the energy of the photon is greater than the energy
gap of the device, these photons will be absorbed very near the
surface where the recombination rate is high and will contrib-
ute to a photocurrent. Thus, the photocurrent produced by the
photodiode is proportional to the power of the light which can
be measured directly by a ‘power meter’ which uses an oper-
ational amplifier circuit known as a transimpedance amplifier.

Although this type of measurement system is most popular
within LLLT literature (Table 1), measurements from these
devices should be interpreted cautiously. The spectral

Fig. 4 Schematic representation of the internal workings of an a integrating sphere showing the 360° collection of light; b a cosine corrector probe
allowing a 180° field of view; and c the internal workings of a UV–vis spectrometer
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sensitivity differs with wavelength due to the quantum effi-
ciency of the photodiode and generally has a better response at
longer wavelengths. Thus, if broadband light sources are mea-
sured, the power emitted at short and longer wavelengths
maybe be under- or over-estimated, respectively.
Photodiodes also assume power uniformity across the beam
and do not therefore effectively characterise the distribution of
l ight for the same reasons descr ibed previously
(‘Spectro(radio)meters’). Although reproducible measure-
ments can be made at the sub-picoampere regime, the re-
sponse time is limited by the sensor size, which slows as
surface area increases. Furthermore, the detectors are usually
made from fragile or sensitive materials such as silicon (Si;
190–1100 nm), germanium (Ge; 400–1700 nm), indium gal-
lium arsenide (InGa; 800–2600 nm), lead(II) sulphide
(<1000–3500 nm) or mercury cadmium telluride (400–
14000 nm) which can be prone to damage and therefore mea-
surements usually must be made without contact with the
detector. Consequently, even small distances are likely to re-
sult in a loss of power due to divergence which will reduce the
measured power. More so and unlike spectrometers,

photodiodes do not provide spectral information and are usu-
ally only limited to power readings (W) and crude irradiance
measurements (W/cm2) based on the sensor size or inputted
tip or beam area values. However, photodiodes are relatively
insensitive to temperature fluctuation (not critical for LLLT as
low powered sources are used) and their main and unique
advantage lies in their ability to measure very small optical
powers which is specifically useful for basic light characteri-
sation in LLLT studies.

Thermopiles

Thermopiles are essentially thermal sensors, which are best
suited for measuring constant wave (CW) laser power, aver-
age power in pulsed lasers or the energy of long pulses.
Thermopiles are robust, reliable and are a well-established
method to measure light energy. They can be considered as
an array of miniature thermocouple junctions connected in
series as differential pairs. These differential pairs make up
cold and hot junctions that are connected by alternating n-
type and p-type materials. Thermopiles operate by using

Fiber op�c �p area; Diameter: 0.75cm Ac�ve beam 

Irradiance within the ac�ve area

D4σX: 0.11cm

D4σY: 0.10cm

(a) (b)

(c)

Fig. 5 A 2D beam profile image
of a LLLT laser device: a an
image of the actual tip area used
for light delivery, b the actual
active beam area and the location
of the beam within the fibre optic
tip and c the laser ‘speckle’ beam
pattern of the devices and its
active beam diameter/area
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temperature differences to create a voltage, which is correlated
to the temperature gradient between the hot and cold junctions
and proportional to the light energy. These systems are partic-
ularly useful for measuring high powered sources (>1 Watt)
which can damage other types of sensors. Thermopiles are
made from materials such as antimony (Sb), bismuth (Bi),
poly-silicon gold (Au) or alumininium (Al) and operate over
a broad spectral range (200–20000 nm). Thermopiles tend to
be more accurate than photodiodes but measurement sensitiv-
ity is reduced at low power. Since thermopiles work by using
temperature gradients, they can be used to map irradiance
distribution and offer uniform spatial response that is unaffect-
ed by changes in beam size, position or uniformity unlike
photodiodes and spectrometer based systems which rely on
inputted beam area values for irradiance calculation.
However, although this type of sensor validly characterises
the distribution of light and provides an accurate measure of
important light properties such as irradiance and beam area,
like the photodiode, it does not provide spectral information.
Furthermore, response times are slow (generally a few sec-
onds), which could be problematic in time-dependent experi-
ments and thus are only really capable of measuring average
powers. In addition, since the measurement is based on heat
exchange, rapid fluctuations in housing temperature will de-
crease accuracy.

Charge coupled device cameras and beam profilometry

A charge coupled device (CCD) is an integrated circuit etched
onto a silicon surface forming light sensitive elements called
pixels. Photons incident on this surface generate charge that is
converted into a digital copy of the light pattern. Following
appropriate calibration, beam profilometry is very useful for
characterisation and quantification of power distribution and
irradiance of a given light source and has the advantages of
both photodiodes (good response time and unaffected by tem-
perature) and thermopiles (unaffected by beam diameter, good
sensitivity and spatial distribution of power and irradiance,
which can be used over a large range of power outputs).
Light can be collected through lenses and directed onto the
CCD sensor which then creates a digital image of the beam.
Calibration using pre-determined power values may then be
used to calculate the average power delivered to each pixel
within the defined beam area to create a mapped irradiance
image [120]. This is known as the top-hat factor and can be
used to characterise the degree of spatial [114, 120–122] and
spectral [123] uniformity of the power distribution. For sys-
tem calibration, if the total measured power is calculated
(using, for example, a photodiode or thermopile), the power
received by each pixel in the detector’s diode array can be
calibrated to generate a 2- or 3-dimensional map of irradiance
distribution across the active beam area. Therefore, the beam
area can be accurately calculated rather than only measuring

the light delivery tip diameter by crude methods such as cal-
ipers. For example, if the tip size of a LLLT laser device is
much larger (7.5 mm diameter) than the actual beam diameter
(~0.11 mm diameter; Fig. 5), erroneous irradiance values are
inevitably obtained if the active beam area is assumed to be
the same as the tip diameter. Thus, the need for standardised
beam area calculation is required in LLLT, preferably using
the ISO standard method (D4σ or second moment width; ISO
11145 3.5.2 [122]) or 1/e2 as suggested previously [29, 30].

Although CCD cameras and beam profilers are widely
used for a variety of applications including dental research
[114], this method has only been utilised in a limited number
of LLLT studies [82, 120]. However, whilst beam profilers
provide a relatively accurate measurement system, they are
also unable to readily provide spectral information and are
sensitive to spectral variation. Accurate and reliable test cen-
tres for LLLT research would have a suite of complimentary
equipment including spectrometers or integrating spheres,
photodiodes and beam profilers.

Safety requirements for LLLT

Whilst the perceivable dangers of LLLT are mainly related to
retinal damage (both clinician and patient) and skin burn
(mainly related to shorter UV wavelengths), the safety of
LLLT is well documented in a number of standards such as
US Code of Federal Regulations, American National
Standards Institute and the International Standards Manual,
and other laser safety books and review articles [21, 22].
This includes ‘The Guidelines for Skin Exposure to Light’
in the International Standards Manual (IEC-825) which states
that an exposure of less than 200 mW/cm2 is safe, and the
marketing and the use of therapeutic LLLT is approved by
the Food and Drug Administration. Preventative measures
such as safety googles should always be utilised to minimise
any risks and therapeutic devices may utilise high-powered
light sources (>500 mW) may be spread over larger areas to
fall within the recommended irradiance exposure limits. The
operation of high-powered light sources may also be compen-
sated by pulsing which may reduce the risk of any adverse
effects caused by heating as discussed previously.

Recommendations

LLLT has generated markedly increasing interest in a wide
variety of biomedical disciplines. However, researchers fre-
quently report LLLT studies that have inadequate information
regarding light properties and use ambiguous terminology.
Thus, it is increasingly difficult to compare and contrast study
outcomes, which hinders the progress in this field.
Researchers working in LLLT should utilise a minimal set of
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standard criteria for light measurement and reporting of radio-
metric data that are necessary for a repeatable scientific study
and are sufficient to compare and contrast study outcomes.
These include ten key parameter: wavelength, power, irradia-
tion time, beam area (at the skin or culture surface), radiant
energy, radiant exposure, pulse parameters, number of treat-
ments, interval between treatments and anatomical location,
which will improve the information available to other re-
searchers. A similar approach is utilised in other biomedical
research areas such as mesenchymal stromal stem cell (MSC)
research which has a set of standard criterion to foster a more
uniform characterisation of MSC and facilitate better ex-
change of data among investigators [124].

The measurement of light is fundamentally important for
LLLT research, thus researchers should not merely rely on
manufacturers information which is what is reportedly rou-
tinely practiced in many LLLT studies (Tables 1 and 2).
Instead, researchers should use a combination of complimen-
tary methods that will accurately describe the ten key param-
eters previously mentioned. For example, to describe the spec-
tral output of a light source, spectrometer-based systems
should be used, improving accuracy by employing integrating
spheres to capture all of the light rather than cosine correctors.
Similarly, to describe spatial distribution of power and irradi-
ance, beam profilers or thermopiles could be employed.
Further, as good practice, light property information should
be fully reported in a standardised form as recommended pre-
viously [22, 29]. The terminology should also be consistent
from study to study, which will make comparison and exper-
imental repetition more straightforward. For example, instead
of power density, the term irradiance should be used; instead
of energy density, use radiant exposure or fluence, and so on
(Table 3). Finally, the units should also be appropriately
assigned, e.g. watts per square centimetre or milliwatts per
square centimetre for irradiance depending on the output of
the light source. Although these recommendations will prob-
ably require modification as new knowledge, technology and
techniques unfold, they provide a minimal standard criteria
that will facilitate a better exchange of information within
LLLT which could ‘drive’ this field forward.

Conclusions

It is apparent that a relatively poor appreciation of radiometric
properties exists within the literature associated with LLLT.
Proper radiometric measurements are fundamental for this ar-
ea of research and although it may appear straightforward,
concepts and appropriate measurement techniques are com-
monly misunderstood, or ignored. Furthermore, the literature
suffers greatly from missing information such as wavelength,
power, pulse parameters, beam area, beam profile informa-
tion, irradiance, exposure time, radiant exposure and evidence

of calibrated measurement tools, making reliability question-
able and reproducibility difficult all of which weakens the
strength of conclusions potentially giving rise to false or nil
results. The persistence of misunderstanding, inadequate ex-
perimentation and inaccurate reporting of radiometric data
within LLLT literature has, and will continue to affect the
reliability of LLLT information shared between scientists,
manufacturers and clinicians. Ultimately, accurate measure-
ments and reporting of light properties is essential to fully
understand the potential beneficial biological mechanisms of
LLLT, which could be achieved by following the recommen-
dations of this review.
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