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Abstract To improve (pre)malignant lesion identification in
Barrett’s esophagus (BE), recent research focuses on new de-
velopments in fluorescence imaging and spectroscopy to en-
hance tissue contrast. Our aim was to validate the chorioallan-
toic membrane (CAM) model as a preclinical tool to study the
fluorescence characteristics such as autofluorescence and ex-
ogenously induced fluorescence of human Barrett’s tissue.
Therefore, esophageal biopsy specimens from Barrett’s pa-
tients were freshly grafted onto the CAM of fertilized hen’s
eggs to simulate the in vivo situation. The BE biopsy speci-
mens stayed between 1 and 9 days on the CAM to study the
persistence of vitality. Fluorescence spectroscopy was per-
formed using six excitation wavelengths (369, 395, 400,
405, 410, 416 nm). Obtained autofluorescence spectra were
compared with in vivo spectra of an earlier study. Exogenous
administration of 5-aminolevulinic-acid to the biopsy speci-
mens was followed by fluorescence spectroscopy at several
time points. Afterwards, the biopsy specimens were harvested
and histologically evaluated. In total, 128 biopsy specimens
obtained from 34 patients were grafted on the CAM. Biopsy
specimens which stayed on average 1.7 days on the CAM
were still vital. Autofluorescence spectra of the specimens
correlated well with in vivo spectra. Administered 5-

aminolevulinic-acid to the biopsy specimens showed conver-
sion into protoporphyrin-IX. In conclusion, we showed that
grafting freshly collected human BE biopsy specimens on the
CAM is feasible. Our results suggest that the CAM model
might be used to study the fluorescence behavior of human
tissue specimens. Therefore, the CAM model might be a pre-
clinical research tool for new photosensitizers.
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Introduction

Patients with Barrett’s esophagus (BE) are recommended to
undergo regular surveillance endoscopy to detect malignant
lesions at an early stage. Esophageal adenocarcinoma de-
velops from premalignant stages of dysplasia, which can be
histologically graded. These precursor lesions are amenable to
curative and minimally invasive endoscopy therapy, due to the
low risk of lymph node metastasis. With a low morbidity and
mortality compared to esophagectomy and an excellent 5-year
survival rate, the timely detection of early dysplasia is of great
clinical importance [1–4].

Early changes in tissue during the progression into malig-
nancy occur at a (sub)cellular level and consist of morpholog-
ical and chemical changes which cannot be seen during stan-
dard endoscopic diagnostic procedures such as white light
endoscopy. Recent developments to improve real-time diag-
nostics focus on imaging such as high-resolution white light
endoscopy (HR-WLE), confocal endomicroscopy, narrow-
band imaging (NBI), and autofluorescence imaging (AFI);
the latest suffers from a high false-positive rate [5–11].
Although a lot of effort has been put in these new
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technologies, none are currently able to clearly discriminate in
real time healthy from premalignant tissue during standard
surveillance endoscopy. But these (sub)cellular changes in
premalignant tissue do affect the optical absorption and scat-
tering properties of the tissue which might be detected by
fluorescence spectroscopy [12–15]. In addition, photosensi-
tizers, such as 5-aminolaevulinic acid (5-ALA)may be admin-
istered to enhance the tissue contrast [16, 17]. Administration
of 5-ALA leads to the formation of the fluorescent
protoporphyrin-IX (PpIX). Metabolic differences between tis-
sue types cause concentration variations. At specific times, the
concentration of PpIX inside the (pre)malignant tissue [13] is
higher compared to normal tissue levels, which shows as in-
creased fluorescence and is therefore often used to improve
the discrimination between dysplastic and non-dysplastic ep-
ithelium. This so-called photodiagnosis provides real-time in-
formation that can be used to red flag areas of interest during
medical procedures for the detection of (early) cancer.

For developing new photosensitizers and the characteriza-
tion of current sensitizers, usually cell experiments and/or an-
imal experiments are used. The physiology and overall drug-
cell interactions are far from the in vivo situation. Animal
experiments are expensive and cumbersome. A model which
is very suitable for studying the localization of the particles
and the treatment efficacy is the chick embryo chorioallantoic
membrane (CAM) model which uses the well-vascularized
chorioallantoic membrane of fertilized chicken eggs on which
tumors can be implanted [18–20]. After implantation, angio-
genesis allows the tumor to grow. Because of the easy acces-
sibility of the systemic and tumor circulation, it is possible to
illuminate the CAM and study the fluorescence yield and, if
applicable, treatment effect. The CAM model is the bridge
between the preliminary cell experiments and the in vivo
tumor-bearing animal models. To mimic the in vivo situation
even better, we grafted freshly excised tissue biopsies directly
onto the CAM, thereby maintaining the heterogeneity and
tumor architecture, which are lost in homogenous cultures of
tumor tissue.

Our aim was to validate the CAM model as a preclinical
tool to study the fluorescence characteristics of human
Barrett’s tissue and therefore the potential use to test future
photosensitizers. First, we studied the vitality of freshly hu-
man BE tissue biopsies grafted onto the CAM by examining
the hematoxylin and eosin (H&E)-stained slices of the har-
vested biopsies. Furthermore, the autofluorescence spectra ob-
tained from the grafted tissue were compared with in vivo
autofluorescence spectra, and the well-known 5-ALAwas top-
ically administered to test the CAM model for the usage of
photosensitizer. As light source, a multi-wavelength spectros-
copy system consisting of several discrete excitation wave-
lengths around the 405-nm Soret absorption peak of PpIX
was used. This setting was chosen to find the optimal excita-
tion wavelength of PpIX in Barrett’s tissue to optimize new

imaging and spectroscopy technologies for improved prema-
lignant lesion identification.

Materials and methods

Spectroscopy system

A custom-made spectroscopy system was developed (2M
Engineering Ltd., Veldhoven, the Netherlands) for endoscopic
in vivo measurements comprising a LED with 369 nm (FWHM
of 16 nm) and laser diodes at 395, 400, 405, 410, and 416 nm
[15]. The system was connected to an optical fiber probe which
delivered the excitation light to the tissue and the fluorescence
light back to the connected spectrometer USB4000 (Ocean
Optics Inc., Dunedin, Florida, USA) and laptop for spectral re-
cording. The distal fiber probe tip had an outer diameter of 2mm
and an inner functional diameter of 0.82 mmwhich consisted of
a bundle of 30 fibers, thus 15 illumination and 15 collection
fibers. Proximal, the 15 collection fibers were aligned to the
200-μm entrance slit of the spectrometer. The biopsy specimens
were placed perpendicular under the tip of the probe, thus mim-
icking the in vivo endoscopic setting.

CAM model

Fertilized hen’s eggs obtained from Drost Loosdrecht BV
(Loosdrecht, The Netherlands) were incubated for 3 days in
a Polyhatch incubator (Brinsea Products Inc., Titusville,
Florida, USA) at 38–39 °C, 60–80 % humidity, rotating every
1 h. At embryonic day 3, a volume of 2–3 mL albumen was
removed from the egg using a 21-G needle injected into the air
pocket of the egg in order to lower the level of the CAM inside
the egg. Awindow of approximately 1.5 cm2 was cut into the
outer shell on top of the egg in order to gain access to the
CAM, using blades and scissors. After checking if the embryo
was alive, the window was covered with transparent plastic
and the egg was placed in a hatcher (Brinsea Products Inc.,
Titusville, Florida, USA) at 37.5 °C, 50–70 % humidity.
When outside the hatcher, the eggs were handled on a heating
plate at 37 °C in a laminar flow hood.

Patient selection and biopsy grafting onto the CAM

Patients scheduled for surveillance endoscopy of non-dysplastic
BE (NDBE) or work-up or treatment of early Barrett’s neoplasia
at the department of Gastroenterology and Hepatology of the
Academic Medical Center (AMC) Amsterdam were included.
The Medical Ethics Committee of the AMC Amsterdam ap-
proved the study and all included patients were informed and
signed a consent form. Biopsies of lesions suspicious for dyspla-
sia within the BE and of endoscopically unsuspicious areas of
BE were obtained from 34 patients (two to four biopsies per

138 Lasers Med Sci (2016) 31:137–144



patient). Immediately after the biopsies were obtained, they were
transferred into preheated 37.5 °C transport medium (DMEM,
FCS, PenStrep, L.Glut, Fungizone).

At embryonic day 6 of incubation, the egg was placed in
the laminar flow hood on a heating plate at 37 °C. The plastic
cover was lifted from the egg, and the CAMwas cleaned at the
location for tissue grafting with ethanol-treated lens paper.
The freshly obtained biopsy specimens were subsequently
spread on a gloved finger and with the help of two pairs of
tweezers carefully spread and placed on the CAM.One biopsy
specimen was grafted per egg. The transparent cover was
closed, and the egg put back in the hatcher.

Spectroscopy procedure

The egg was placed in the laminar flow hood and positioned
under the spectroscopy set-up. All measurements were per-
formed in a dark room. The optical fiber probe was placed
about 1 mm above the biopsy specimen, followed by sequen-
tial illumination by all light sources and recording of the fluo-
rescence spectra, including a dark measurement (all light
sources off). Subsequently, spectra were recorded adjacent to
the biopsy specimen and on the CAM only which was approx-
imately 2 cm from the biopsy specimen. Each saved spectrum
was composed of the average of three measurements per site.
For the fluorescence spectroscopy measurements with 5-ALA
administration, 20 μL of 10 mM 5-ALA (Sigma Chemical
Co.) dissolved in 0.9 % NaCl solution was topically adminis-
tered to each biopsy specimen. Fluorescence spectroscopy
was performed at several time points between 0 h before and
23 h after 5-ALA administration. After the last measurement,
the biopsy specimens were removed from the CAM and fixed
in formalin, embedded in paraffin, and cut and stained with
hematoxylin and eosin (H&E). Histopathological assessment
of the biopsy specimens was performed by an expert GI pa-
thologist. Biopsies which were considered vital were classified
into two groups, suspicious for dysplasia called Bdysplastic^
and not suspicious for dysplasia called Bnon-dysplastic.^
Finally, the embryo was terminated by high-dose isoflurane.

Data analysis

The obtained autofluorescence spectra of the biopsy specimens
on theCAMwere analyzed in the sameway as the in vivo spectra
which we obtained in an earlier study [15]. Pearson’s correlation
coefficient r and the coefficient of determination r2 were calcu-
lated to assess the relationship between the autofluorescence
spectra from the biopsy specimens and the in vivo spectra.

From all emission spectra, obtained from the biopsy spec-
imens used for 5-ALA measurements, the corresponding dark
spectrum was subtracted. The intensity ratio I636/I600 of the
PpIX fluorescence peak at 636 nm to a reference emission
wavelength at 600 nm was calculated for each spectrum.

This corrects for variations in applied laser power, probe po-
sitioning, and system noise. The mean intensity ratios, the
standard deviation (SD), and the standard error of the mean
(SEM)were calculated. The statistical relevance of differences
in intensity ratios per excitation wavelength and time point
was determined by repeated measures one-way ANOVAwith
subsequent Bonferroni correction using Prism 5 (GraphPad
Software Inc., La Jolla, California, USA). The results of
Bonferroni’s multiple comparison test were considered signif-
icant when the p value was <0.05.

Imaging

Images were obtained from the biopsy specimens on the CAM
using a Dino-Lite digital microscope in cross-polarized white
light imaging mode (AM413ZT, AnMo Electronics Corp.,
Hsinchu, Taiwan) before and after 5-ALA administration.
Fluorescence imaging was performed to obtain an overview
of the PpIX distribution on the biopsy specimens and CAM.
Fluorescence images were obtained at blue light illumination
ranging from 400 to 430 nm (Crime-lite® 2, Foster+Freeman
Ltd., Evesham, UK). A digital camera (Nikon D40X) with a
long pass filter (GG455, Foster+Freeman) in front of the lens
was used to allow only the detection of emitted fluorescence at
longer wavelengths than 435 nm.

Fig. 1 a Image of Barrett’s esophageal biopsy specimen on the CAM; b
fluorescence spectroscopy performed on a biopsy specimen; cwhite light
microscope image with ×10 magnification of H&E-stained slice of a
human biopsy specimen which stayed 1 day on the CAM

Lasers Med Sci (2016) 31:137–144 139



Results

Biopsy assessment and autofluorescence spectra
evaluation

In total, 63 biopsy specimens, obtained from 25 Barrett’s pa-
tients, stayed between 1 and 9 days on the CAM. Twenty-six
biopsy specimens showed necrosis and were not classified his-
topathologically. Fourteen other histology slices did not contain
enough tissue for an assessment. From the remaining 23 biopsy
specimens, 9 were classified as not suspicious for dysplasia
(non-dysplastic) thus squamous or non-dysplastic Barrett’s
esophagus (NDBE) and 14 as suspicious for dysplasia (dys-
plastic). The 23 biopsies which could be classified stayed on
average 1.7 days on the CAM. Figure 1a shows an image of a
Barrett’s biopsy specimen on the CAM.

Autofluorescence spectroscopy was performed, see
Fig. 1b, on 8 of the 9 non-dysplastic biopsies and on 10 of
the 14 dysplastic-classified biopsies. Pearson’s correlation co-
efficient r and the coefficient of determination r2 (Table 1)
were calculated to correlate ex vivo and in vivo averaged
autofluorescence spectra obtained with the same system

[15]. The ex vivo dysplastic autofluorescence spectra correlat-
ed well with the in vivo (HGIN/CA) spectra with an r2 value
of around 0.99. The non-dysplastic spectra correlated less with
the in vivo (IM) spectra having an r2 value of around 0.97.
Figure 2 shows the averaged autofluorescence spectra at 395-
nm excitation from in vivo (HGIN/CA) and ex vivo
(dysplastic) esophageal tissue with an r2 value of 0.987.

Figure 1c shows the H&E-stained slice of a human biopsy
specimen which stayed 1 day on the CAM. In the upper part,
the CAM cells are seen, and in the lower part, the human
tissue seemed to be vital and attached to the CAM tissue.

5-ALA-induced fluorescence spectra evaluation

A total of 65 biopsies, obtained from 20Barrett’s patients, stayed
between 2 and 4 days on the CAMandwere then examinedwith
5-ALA-induced spectroscopy. Histopathological evaluation of
the harvested biopsies was not possible for 25 biopsy specimens
due to intensive necrosis and 10 more slices contained not
enough tissue for an assessment. From the remaining 30 biopsy
specimens, 12 were classified as not suspicious for dysplasia
(non-dysplastic) thus squamous or NDBE and 18 as suspicious
for dysplasia (dysplastic). Three spectra of non-dysplastic biopsy
specimens were excluded from the analysis due to measurement
issues. Table 2 gives an overview of the spectra included for the
analysis at all six excitation wavelengths obtained from 12
patients.

Figure 3 shows typical emission spectra with subtracted
dark spectrum before normalization at all six excitation wave-
lengths, 6 h after 5-ALA administration, of a biopsy specimen
(dysplastic) on the CAM (a), the CAM adjacent to the biopsy
specimen (b), and the CAM only (d). Fluorescence spectra of
the biopsy specimens on the CAM showed PpIX fluorescence
peaks at 636 nm. Maximum autofluorescence was observed

Fig. 2 Averaged
autofluorescence spectra at 395-
nm excitation from in vivo
(HGIN/CA) and ex vivo
(dysplastic) esophageal tissue

Table 1 Coefficient of determination r2 of averaged ex vivo versus in
vivo autofluorescence spectra for non-dysplastic and dysplastic
esophageal tissue

Non-dysplastic
ex vivo vs. in vivo

Dysplastic ex
vivo vs. in vivo

369 nm 0.977 0.976

395 nm 0.961 0.987

405 nm 0.961 0.991

410 nm 0.969 0.991

416 nm 0.968 0.991
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around 500 nm. In contrast, the emission spectra adjacent to
the biopsy specimens showed negligible autofluorescence and
a clear PpIX fluorescence profile. The main difference be-
tween the biopsy specimens and the adjacent fluorescence
was that the CAM did not show porphyrin fluorescence at
the 620- and 680-nm emissions. Fluorescence spectra of the
CAM only revealed slightly less autofluorescence compared
to the biopsy specimen and negligible PpIX fluorescence
compared to the biopsy specimens and the surrounding CAM.

The PpIX intensity ratios I636/I600 did not differ significant-
ly between dysplastic and non-dysplastic tissue. Therefore,
and due to the low amount of biopsy specimens classified as
non-dysplastic, we decided to analyze all biopsy specimens
(Table 2) per time point and excitation wavelength in one
group, to which we refer further as BE tissue.

The intensity ratios I636/I600 of BE tissue showed increased
PpIX fluorescence with increasing excitation wavelength and
time point (Fig. 4a). Bonferroni’s multiple comparison tests of
all pairs of time points showed a significant increase in the
intensity ratios at 0 vs. 6 h, 0 vs. 23 h, 1.5 vs. 23 h, and 4.5
vs. 23 h at all excitation wavelengths. Intensity ratios at 369-nm
excitation were significantly lower compared to 405-, 410-, and
416-nm excitation at all time points. The intensity ratios at 410-
and 416-nm excitation at 4.5 h were significantly higher com-
pared to 0 h. At 4.5 h after 5-ALA administration, the PpIX
intensity ratios at 416-nm excitation were significantly higher
compared to all other excitation wavelengths except 410 nm.
Each measurement at 4.5 h after 5-ALA administration

separately showed that in 96% (23/24) of the cases, the highest
PpIX fluorescence intensity ratios were obtained at 410-nm
(63 %) and 416-nm (33 %) excitations. The lowest intensity
ratios were obtained at 369-nm excitation in 96 % (23/24) of
the cases. The intensity ratios at 410-nm excitation were 2.3
times higher (SD: ±0.8) compared to 369-nm excitation.

The intensity ratios I636/I600 on the CAM adjacent to the BE
tissue (Fig. 4b) tend to increase faster and became higher com-
pared to the BE tissue. There was a significant increase of the
intensity ratios on the CAM adjacent to the BE tissue between
time point 0 vs. 1.5 h, 0 vs. 4.5 h, 0 vs. 6 h, and a significant
decrease at time points 4.5 vs. 23 h and 6 vs. 23 h at all exci-
tation wavelengths except 369 nm. At 23 h after 5-ALA ad-
ministration, the PpIX fluorescence was back at baseline level
(t=0). The PpIX fluorescence on the CAM only (Fig. 4c) in-
creased significantly after 6 h, but those intensity ratios were
negligible (five to seven times lower) compared to the intensity
ratios obtained from the BE tissue or adjacent to it.

Fluorescence imaging was performed to obtain an overview
of the PpIX distribution on the BE tissue and CAM.
Fluorescence images (Fig. 5) taken several hours after 5-ALA
administration showed first a strong red fluorescence surround-
ing the BE tissue and with increasing time increasing fluores-
cence of the BE tissue and decreasing fluorescence of the sur-
rounding CAM.

Discussion

The evaluation of the CAM model showed that biopsy speci-
mens were still vital after 1.7 days on the CAM, on average. The
lower intensities of the ex vivo autofluorescence spectra around
500 nm might be caused by the different measurement proce-
dures; in vivo, the probe was in contact with the tissue site under
investigation, whereas ex-vivo, the probe did not touch the bi-
opsy specimen. Whereas, the higher intensities in the rest of the
ex vivo autofluorescence spectra might be caused by lower
blood absorption compared to the in vivo situation. Despite these
deviations, the overall correlation of the ex vivo with the in vivo
autofluorescence spectra showed good resemblance.

Fig. 3 Typical emission spectra with subtracted dark spectrum at all six excitation wavelengths, 6 h after 5-ALA administration, of a biopsy specimen
(dysplastic) on the CAM (a), the CAM adjacent to the biopsy specimen (b), and the CAM only (c)

Table 2 Number of analyzed human biopsy specimens on the CAM
per time point and their histological classification

Time point Not suspicious
for dysplasia

Suspicious
for dysplasia

Sum

0 h 9 18 27

1.5 h 9 18 27

4.5 h 8 16 24

6 h 6 11 17

23 h 2 7 9
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Previous research using the CAM model in combination
with 5-ALA focused on tumor specimens and cell lines
[21–24]. The observed conversion into PpIX in our study
suggests the existence of a functional metabolism within the
BE tissue. As expected, the lowest PpIX intensities were in-
duced with the shortest wavelength, 369 nm, which is about
30 nm below the Soret band of PpIX. The highest PpIX in-
tensities were induced at 410- and 416-nm excitations without
a significant difference between them.

In our study, BE tissue showed increased PpIX fluores-
cence with increasing time, which is in agreement with known
in vivo observations. The BE tissue showed no significantly
reduced PpIX fluorescence after 23 h, which indicates a
slower PpIX clearance compared to in vivo observations
[25–28]. This increased clearance time might be caused by
the topical bolus administration of ALA. The excessive
ALA is not removed, and therefore, the tissue exposure is
expected to be longer compared to in vivo conditions.
Furthermore, the ALA diffusion into the tissue and redistribu-
tion within the egg might be prolonged in the CAM model.
The in vivo kinetics were already studied [25–28]; therefore,
we focused on studying the CAM model as a preclinical ap-
proach for fluorescence diagnostics with special interest in
photosensitizer. This preclinical model benefits from no pa-
tient hazard, and it is a more physiological approach then
studying cells in vitro. The fluorescence of the CAM adjacent
to the BE tissue showed a faster increase and decrease of

induced PpIX, whereas the PpIX fluorescence and autofluo-
rescence of the CAM only showed negligible intensities.
Fluorescence images showed that the high PpIX fluorescence
adjacent to the biopsy specimens was due to the topical appli-
cation of 5-ALA surrounding the biopsy specimens.

Although the CAM model was applicable for our research
purpose, the spectroscopymeasurements had several limitations.
The spectroscopy set-up used a mounted probe, to ensure stable
measurements. However, due to movements of the embryo and
therefore repositioning of the BE tissue under the probe, equal
distances and angles of the measurements cannot be assured and
sometimes measurements needed to be repeated. The histologi-
cal classification showed that around 40%of the grafted biopsies
did not stay vital on the CAM and therefore needed to be ex-
cluded from the analysis. This necessitates the usage of an in-
creased amount of biopsies or an optimized protocol, for exam-
ple, by leaving the biopsy specimens a maximum of 2 days on
the CAM or daily administration of growth factors and/or medi-
um to the tissue on the CAM which may prolong tissue vitality.

Differentiation between BE tissue and the CAM was pos-
sible, due to the differences in spectral shape, 5-ALA kinetics,
and the wavelength-dependent intensity ratios. The main dif-
ference between BE tissue and the CAM spectra was that the
CAM did not show porphyrin fluorescence at the 620- and
680-nm emissions (Fig. 3). This fluorescence might be caused
by the formation of water-soluble porphyrins [29].

In conclusion, we showed that grafting freshly collected
human BE biopsy specimens on the CAM is feasible. Our
results suggest that the CAM model might be used to study
fluorescence diagnostics such as autofluorescence and in-
duced fluorescence behavior of human biopsy specimens on
the CAM as a preclinical research tool. Further preclinical
research is recommended, with an increased amount of biop-
sies from non-dysplastic and dysplastic BE tissue, to assess
the potential in tissue discrimination. Furthermore, with the
CAM model keeping human tissue vital for a few days, the
responses to new photosensitizer might be evaluated. Besides
that, our current fluorescence spectroscopy system can be
modified by adding a white light source for additional

Fig. 5 Fluorescence images of BE tissue on the CAM at 3, 6, and 23 h
after 5-ALA administration

Fig. 4 Mean PpIX intensity ratios I636/I600 with standard error of the mean at 0, 1.5, 4.5, 6, and 23 h after 5-ALA administration obtained from the BE
tissue on the CAM (a), the CAM adjacent to the BE tissue (b), and the CAM only (c)
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reflectance spectroscopy which had shown its potential in en-
doscopic detection of dysplasia [30–32].

Acknowledgments This research was funded by the 7th Framework
Programme for Research and Technological Development of the Europe-
an Union; grant agreement number 231993 (EDOCAL).

Compliance with ethical standards All procedures performed in stud-
ies involving human participants were in accordance with the ethical
standards of the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or comparable
ethical standards. Informed consent was obtained from all individual
participants included in the study. The authors declare that they have no
conflict of interest.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Ell C, May A, Gossner L, Pech O, Gunter E, Mayer G, Henrich R,
Vieth M, Muller H, Seitz G, Stolte M (2000) Endoscopic mucosal
resection of early cancer and high-grade dysplasia in Barrett’s
esophagus. Gastroenterology 118:670–677

2. Ell C, May A, Pech O, Gossner L, Guenter E, Behrens A, Nachbar
L, Huijsmans J, Vieth M, Stolte M (2007) Curative endoscopic
resection of early esophageal adenocarcinomas (Barrett’s cancer).
Gastrointest Endosc 65:3–10

3. BehrensA, PechO,Graupe F,MayA, LorenzD, Ell C (2011) Barrett’s
adenocarcinoma of the esophagus: better outcomes through new
methods of diagnosis and treatment. Dtsch Arztebl Int 108:313–319

4. Westerterp M, Koppert LB, Buskens CJ, Tilanus HW, ten Kate FJ,
Bergman JJ, Siersema PD, van Dekken H, van Lanschot JJ (2005)
Outcome of surgical treatment for early adenocarcinoma of the esoph-
agus or gastro-esophageal junction. Virchows Arch 446:497–504

5. Borovicka J, Fischer J, Neuweiler J, Netzer P, Gschossmann J,
Ehmann Tet al (2006) Autofluorescence endoscopy in surveillance
of Barrett’s esophagus: a multicenter randomized trial on diagnostic
efficacy. Endoscopy 38:867–872

6. DaCosta RS, Wilson BC, Marcon NE (2007) Fluorescence and
spectral imaging. Sci World J 7:2046–2071

7. Curvers WL, Singh R, Song LM,Wolfsen HC, Ragunath K, Wang K
et al (2008) Endoscopic tri-modal imaging for detection of early neo-
plasia in Barrett’s oesophagus: a multi-centre feasibility study using
high-resolution endoscopy, autofluorescence imaging and narrow
band imaging incorporated in one endoscopy system.Gut 57:167–172

8. Curvers WL, Herrero LA, Wallace MB, Wong Kee Song LM,
Ragunath K,Wolfsen HC et al (2010) Endoscopic tri-modal imaging
is more effective than standard endoscopy in identifying early-stage
neoplasia in Barrett’s esophagus. Gastroenterology 139:1106–1114

9. Curvers WL, van Vilsteren FG, Baak LC, Bohmer C, Mallant-Hent
RC, Naber AH et al (2011) Endoscopic trimodal imaging versus
standard video endoscopy for detection of early Barrett’s neoplasia:
a multicenter, randomized, crossover study in general practice.
Gastrointest Endosc 73:195–203

10. Boerwinkel DF, Holz JA, Aalders MC, Visser M, Meijer SL, van
Berge Henegouwen MI, Weusten BL, Bergman JJ (2013) Third-

generation autofluorescence endoscopy for the detection of early
neoplasia in Barrett’s esophagus: a pilot study. Dis Esophagus
27(3):276–84

11. Boerwinkel DF, Holz JA, KaraMA,Meijer SL,WallaceMB,Wong
Kee Song LM, Ragunath K, Wolfsen HC, Iyer PG, Wang KK,
Weusten BL, Aalders MC, Curvers WL, Bergman JJ (2014)
Effects of autofluorescence imaging on detection and treatment of
early neoplasia in patients with Barrett’s esophagus. Clin
Gastroenterol Hepatol 12:774–781

12. Bigio IJ, Mourant JR (1997) Ultraviolet and visible spectroscopies
for tissue diagnostics: fluorescence spectroscopy and elastic-
scattering spectroscopy. Phys Med Biol 42:803–814

13. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence
spectroscopy and imaging for oncological applications. Photochem
Photobiol 68:603–632

14. Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and
non-neoplastic tissues. Neoplasia 2:89–117

15. Holz JA, Boerwinkel DF, Meijer SL, Visser M, Van Leeuwen TG,
Aalders MC, Bergman JJ (2013) Optimized endoscopic autofluo-
rescence spectroscopy for the identification of premalignant lesions
in Barrett’s oesophagus. Eur J Gastroenterol Hepatol 25(12):1442–
1449

16. Fotinos N, Campo MA, Popowycz F, Gurny R, Lange N (2006) 5-
aminolevulinic acid derivatives in photomedicine: characteristics,
application and perspectives. Photochem Photobiol 82:994–1015

17. Krammer B, Plaetzer K (2008) ALA and its clinical impact, from
bench to bedside. Photochem Photobiol Sci 7:283–289

18. Ausprunk DH, Knighton DR, Folkman J (1975) Vascularization of
normal and neoplastic tissue grafted to the chick choriollantois.
Role of host and preexisting graft vessels. Am J Pathol 79:597–618

19. Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic
membrane model systems to study and visualize human tumor cell
metastasis. Histochem Cell Biol 130(6):1119–1130

20. Xiao X, Zhou X,Ming H, Zhang J, Huang G, Zhang Z, Li P (2015)
Chick chorioallantoic membrane assay: a 3D animal model for
study of human nasopharyngeal carcinoma. PLoS One 10(6):
e0130935

21. Hoppenheit C, Huttenberger D, Foth HJ, Spitzer WJ, Reichert TE,
Muller-Richter UD (2006) Pharmacokinetics of the photosensi-
tizers aminolevulinic acid and aminolevulinic acid hexylester in
oro-facial tumors embedded in the chorioallantois membrane of a
hen’s egg. Cancer Biother Radiopharm 21:569–578

22. Hornung R, Hammer-Wilson MJ, Kimel S, Liaw LH, Tadir Y,
Berns MW (1999) Systemic application of photosensitizers in the
chick chorioallantoic membrane (CAM) model: photodynamic re-
sponse of CAM vessels and 5-aminolevulinic acid uptake kinetics
by transplantable tumors. J Photochem Photobiol B 49:41–49

23. Piffaretti F, Novello AM, Kumar RS, Forte E, Paulou C, Nowak-
Sliwinska P, van den Bergh H, Wagnieres G (2012) Real-time, in
vivo measurement of tissular pO2 through the delayed fluorescence
of endogenous protoporphyrin IX during photodynamic therapy. J
Biomed Opt 17:115007

24. Zenzen V, Zankl H (2003) Protoporphyrin IX-accumulation in hu-
man tumor cells following topical ALA- and h-ALA-application in
vivo. Cancer Lett 202:35–42

25. Hinnen P, de Rooij FW, Hop WC, Edixhoven A, van Dekken H,
Wilson JH, Siersema PD (2002) Timing of 5-aminolaevulinic acid-
induced photodynamic therapy for the treatment of patients with
Barrett’s oesophagus. J Photochem Photobiol B 68:8–14

26. Loh CS, MacRobert AJ, Bedwell J, Regula J, Krasner N, Bown SG
(1993) Oral versus intravenous administration of 5-aminolaevulinic
acid for photodynamic therapy. Br J Cancer 68:41–51

27. Loh CS, Vernon D, MacRobert AJ, Bedwell J, Bown SG, Brown
SB (1993) Endogenous porphyrin distribution induced by 5-
aminolaevulinic acid in the tissue layers of the gastrointestinal tract.
J Photochem Photobiol B 20:47–54

Lasers Med Sci (2016) 31:137–144 143



28. Bedwell J, MacRobert AJ, Phillips D, Bown SG (1992) Fluorescence
distribution and photodynamic effect of ALA-induced PP IX in the
DMH rat colonic tumour model. Br J Cancer 65:818–824

29. Dietel W, Pottier R, Pfister W, Schleier P, Zinner K (2007)
5-aminolaevulinic acid (ALA) induced formation of different
fluorescent porphyrins: a study of the biosynthesis of por-
phyrins by bacteria of the human digestive tract. J
Photochem Photobiol B 86:77–86

30. Wallace MB, Wax A, Roberts DN, Graf RN (2009) Reflectance
spectroscopy. Gastrointest Endosc Clin N Am 19(2):233–242

31. Zhu Y, Fearn T, Mackenzie G, Clark B, Dunn JM, Bigio IJ, Bown
SG, Lovat LB (2009) Elastic scattering spectroscopy for detection
of cancer risk in Barrett’s esophagus: experimental and clinical
validation of error removal by orthogonal subtraction for increasing
accuracy. J Biomed Opt 14(4):044022

32. Wallace MB, Perelman LT, Backman V, Crawford JM, Fitzmaurice
M, Seiler M, Badizadegan K, Shields SJ, Itzkan I, Dasari RR, Van
Dam L, Feld MS (2000) Endoscopic detection of dysplasia in pa-
tients with Barrett’s esophagus using light-scattering spectroscopy.
Gastroenterology 119(3):677–682

144 Lasers Med Sci (2016) 31:137–144


	Fluorescence characteristics of human Barrett tissue specimens grafted on chick chorioallantoic membrane
	Abstract
	Introduction
	Materials and methods
	Spectroscopy system
	CAM model
	Patient selection and biopsy grafting onto the CAM
	Spectroscopy procedure
	Data analysis
	Imaging

	Results
	Biopsy assessment and autofluorescence spectra evaluation
	5-ALA-induced fluorescence spectra evaluation

	Discussion
	References


