Skip to main content
Log in

Agent-based simulation of innovation diffusion: a review

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

Mathematical modeling of innovation diffusion has attracted strong academic interest since the early 1960s. Traditional diffusion models have aimed at empirical generalizations and hence describe the spread of new products parsimoniously at the market level. More recently, agent-based modeling and simulation has increasingly been adopted since it operates on the individual level and, thus, can capture complex emergent phenomena highly relevant in diffusion research. Agent-based methods have been applied in this context both as intuition aids that facilitate theory-building and as tools to analyze real-world scenarios, support management decisions and obtain policy recommendations. This review addresses both streams of research. We critically examine the strengths and limitations of agent-based modeling in the context of innovation diffusion, discuss new insights agent-based models have provided, and outline promising opportunities for future research. The target audience of the paper includes both researchers in marketing interested in new findings from the agent-based modeling literature and researchers who intend to implement agent-based models for their own research endeavors. Accordingly, we also cover pivotal modeling aspects in depth (concerning, e.g., consumer adoption behavior and social influence) and outline existing models in sufficient detail to provide a proper entry point for researchers new to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson E, Rosenkopf L (1997) Social network effects on the extent of innovation diffusion: a computer simulation. Org Sci 8(3): 289–309

    Article  Google Scholar 

  • Ajzen I (1991) The theory of planned behavior. Org Behav Hum Decis Process 50(2): 179–211

    Article  Google Scholar 

  • Alkemade F, Castaldi C (2005) Strategies for the diffusion of innovations on social networks. Comput Econ 25(1–2): 3–23

    Article  Google Scholar 

  • Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97(21): 11,149–11,152

    Article  Google Scholar 

  • Arndt J (1967) Role of product-related conversations in the diffusion of a new product. J Mark Res 4(3): 291–295

    Article  Google Scholar 

  • Axelrod R (2007) Simulation in the social sciences. In: Reynard JP (eds) Handbook of research on nature inspired computing for economy and management. Idea Group, Hershey, pp 90–100

    Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439): 509–512

    Article  Google Scholar 

  • Barabási AL, Bonabeau E (2003) Scale-free networks. Sci Am 288(5): 60–69

    Article  Google Scholar 

  • Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5): 215–227

    Article  Google Scholar 

  • Bass FM (1980) The relationship between diffusion rates, experience curves, and demand elasticities for consumer durable technological innovations. J Bus 53(3): S51–S67

    Article  Google Scholar 

  • Bass FM, Krishnan TV, Jain DC (1994) Why the Bass model fits without decision variables. Mark Sci 13(3): 203–223

    Article  Google Scholar 

  • Bass FM, Jain D, Krishnan T (2000) Modeling the marketing-mix influence in new-product diffusion. In: Mahajan V, Muller E, Wind Y (eds) New-product diffusion models. Springer, Berlin, pp 99–122

    Google Scholar 

  • Bemmaor AC (1994) Modeling the diffusion of new durable goods: word-of-mouth effect versus consumer heterogeneity. In: Laurent G, Lilien GL, Pras B (eds) Research traditions in marketing. Kluwer, Dordrecht, pp 201–229

    Google Scholar 

  • Bemmaor AC, Lee J (2002) The impact of heterogeneity and ill-conditioning on diffusion model parameter estimates. Mark Sci 21(2): 209–220

    Article  Google Scholar 

  • Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agric Econ 25(2–3): 245–260

    Article  Google Scholar 

  • Bernhardt I, Mackenzie KD (1972) Some problems in using diffusion models for new products. Manag Sci 19(2): 187–200

    Article  Google Scholar 

  • Bohlmann JD, Calantone RJ, Zhao M (2010) The effects of market network heterogeneity on innovation diffusion: an agent-based modeling approach. J Product Innov Manag 27(5): 741–760

    Article  Google Scholar 

  • Bottomley PA, Fildes R (1998) The role of prices in models of innovation diffusion. J Forecast 17(7): 539–555

    Article  Google Scholar 

  • Broekhuizen TLJ, Delre SA, Torres A (2011) Simulating the cinema market: how cross-cultural differences in social influence explain box office distributions. J Product Innov Manag 28(2): 204–217

    Article  Google Scholar 

  • Brown JJ, Reingen PH (1987) Social ties and word-of-mouth referral behavior. J Consumer Res 14(3): 350–362

    Article  Google Scholar 

  • Buchta C, Meyer D, Pfister A, Mild A, Taudes A (2003) Technological efficiency and organizational inertia: a model of the emergence of disruption. Comput Math Organ Theory 9(2): 127–146

    Article  Google Scholar 

  • Buttle FA (1998) Word of mouth: understanding and managing referral marketing. J Strateg Mark 6(3): 241–254

    Article  Google Scholar 

  • Cantono S, Silverberg G (2009) A percolation model of eco-innovation diffusion: the relationship between diffusion, learning economies and subsidies. Technol Forecast Soc Change 76(4): 487–496

    Article  Google Scholar 

  • Chatterjee R, Eliashberg J (1990) The innovation diffusion process in a heterogeneous population: a micromodeling approach. Manag Sci 36(9): 1057–1079

    Article  Google Scholar 

  • Chattoe E (2002) Building empirically plausible multi-agent systems: a case study of innovation diffusion. In: Dautenhahn K, Bond A, Edmonds B (eds) Socially intelligent agents: creating relationships with computers and robots. Springer, Berlin, pp 109–116

    Google Scholar 

  • Chen SH, Yang YH (2010) Agent-based social simulation: a bibliometric review. In: Proceedings of the 3rd world congress on social simulation (WCSS 2010)

  • Choi H, Kim S, Lee J (2010) Role of network structure and network effects in diffusion of innovations. Ind Mark Manag 39(1): 170–177

    Article  Google Scholar 

  • David PA (1985) Clio and the economics of QWERTY. Am Econ Rev 75(2): 332–337

    Google Scholar 

  • Dawid H (2006) Agent-based models of innovation and technological change. In: Tesfatsion L, Judd K (eds) Handbook of computational economics. North-Holland, pp 1235–1272

  • DeCanio SJ, Dibble C, Amir-Atefi K (2000) The importance of organizational structure for the adoption of innovations. Manag Sci 46(10): 1285–1299

    Article  Google Scholar 

  • Deffuant G, Huet S, Bousset JP, Henriot J, Amon G, Weisbuch G (2002) Agent based simulation of organic farming conversion in Allier departement. In: Janssen MA (eds) Complexity and ecosystem management: the theory and practice of multi-agent systems. Edward Elgard Publishing, Arnold, pp 158–189

    Google Scholar 

  • Deffuant G, Huet S, Amblard F (2005) An individual-based model of innovation diffusion mixing social value and individual benefit. Am J Sociol 110(4): 1041–1069

    Article  Google Scholar 

  • Delre SA (2007) Effects of social networks on innovation diffusion and market dynamics. PhD Dissertation, University Groningen

  • Delre SA, Jager W, Bijmolt THA, Janssen MA (2007) Targeting and timing promotional activities: an agent-based model for the takeoff of new products. J Bus Res 60(8): 826–835

    Article  Google Scholar 

  • Delre SA, Jager W, Janssen MA (2007) Diffusion dynamics in small-world networks with heterogeneous consumers. Comput Math Organ Theory 13(2): 185–202

    Article  Google Scholar 

  • Delre SA, Jager W, Bijmolt THA, Janssen MA (2010) Will it spread or not? The effects of social influences and network topology on innovation diffusion. J Product Innov Manag 27(2): 267–282

    Article  Google Scholar 

  • Deroïan F (2002) Formation of social networks and diffusion of innovations. Res Policy 31(5): 835–846

    Article  Google Scholar 

  • Dockner E, Jorgensen S (1988) Optimal advertising policies for diffusion models of new product innovation in monopolist situations. Manag Sci 34(1): 119–130

    Article  Google Scholar 

  • Dodson JA, Muller E (1978) Models of new product diffusion through advertising and word-of-mouth. Manag Sci 24(15): 1568–1578

    Article  Google Scholar 

  • Dugundji ER, Gulyás L (2008) Sociodynamic discrete choice on networks in space: impacts of agent heterogeneity on emergent outcomes. Environ Plan B Plan Des 35(6): 1028–1054

    Article  Google Scholar 

  • Edmonds B, Moss S (2006) From KISS to KIDS: an ‘anti-simplistic’ modelling approach. In: Davidsson P, Logan B, Takadama K (eds) Multi agent based simulation (LNAI 3415). Springer, Berlin, pp 130–144

    Google Scholar 

  • Eliashberg J, Chatterjee R, Mahajan V, Wind Y (1986) Stochastic issues in innovation diffusion models. In: Innovation diffusion models of new product acceptance. Ballinger Publishing, pp 151–199

  • Emmanouilides CJ, Davies RB (2007) Modelling and estimation of social interaction effects in new product diffusion. Eur J Oper Res 177(2): 1253–1274

    Article  Google Scholar 

  • Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(17): 17–61

    Google Scholar 

  • Evered RD (1976) A typology of explicative models. Technol Forecast Soc Change 9(3): 259–277

    Article  Google Scholar 

  • Faber A, Valente M, Janssen P (2010) Exploring domestic micro-cogeneration in the Netherlands: an agent-based demand model for technology diffusion. Energy Policy 38(6): 2763–2775

    Article  Google Scholar 

  • Feichtinger G (1982) Optimal pricing in a diffusion model with concave price-dependent market potential. Oper Res Lett 1(6): 236–240

    Article  Google Scholar 

  • Fourt LA, Woodlock JW (1960) Early prediction of market success for grocery products. J Mark 25(4): 31–38

    Article  Google Scholar 

  • Gallego B, Dunn AG (2010) Diffusion of competing innovations: the effects of network structure on the provision of healthcare. J Artif Soc Soc Simul 13(4): 8

    Google Scholar 

  • Garber T, Goldenberg J, Libai B, Muller E (2004) From density to destiny: using spatial dimension of sales data for early prediction of new product success. Mark Sci 23(3): 419–428

    Article  Google Scholar 

  • Garcia R (2005) Uses of agent-based modeling in innovation/new product development research. J Product Innov Manag 22(5): 380–398

    Article  Google Scholar 

  • Garcia R, Rummel P, Hauser J (2007) Validating agent-based marketing models through conjoint analysis. J Bus Res 60(8): 848–857

    Article  Google Scholar 

  • Gatignon H (2010) Commentary on Jacob Goldenberg, Barak Libai and Eitan Muller’s “The chilling effects of network externalities”. Int J Res Mark 27(1): 16–17

    Article  Google Scholar 

  • Gilbert EN (1959) Random graphs. Ann Math Stat 30(4): 1141–1144

    Article  Google Scholar 

  • Gilbert N (1997) A simulation of the structure of academic science. Sociol Res Online 2(2): 3

    Google Scholar 

  • Goldenberg J, Efroni S (2001) Using cellular automata modeling of the emergence of innovations. Technol Forecast Soc Change 68(3): 293–308

    Article  Google Scholar 

  • Goldenberg J, Libai B, Solomon S, Jan N, Stauffer D (2000) Marketing percolation. Phys A Stat Mech Appl 284(1–4): 335–347

    Article  Google Scholar 

  • Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark Lett 12(3): 211–223

    Article  Google Scholar 

  • Goldenberg J, Libai B, Moldovan S, Muller E (2007) The NPV of bad news. Int J Res Mark 24(3): 186–200

    Article  Google Scholar 

  • Goldenberg J, Lowengart O, Shapira D (2009) Zooming in: self-emergence of movements in new product growth. Mark Sci 28(2): 274–292

    Article  Google Scholar 

  • Goldenberg J, Libai B, Muller E (2010) The chilling effects of network externalities. Int J Res Mark 27(1): 4–15

    Article  Google Scholar 

  • Goldenberg J, Libai B, Muller E (2010) The chilling effects of network externalities: perspectives and conclusions. Int J Res Mark 27(1): 22–24

    Article  Google Scholar 

  • Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6): 1360–1380

    Article  Google Scholar 

  • Griliches Z (1957) Hybrid corn: an exploration in the economics of technological change. Econometrica 25(4): 501–522

    Article  Google Scholar 

  • Günther M, Stummer C, Wakolbinger LM, Wildpaner M (2011) An agent-based simulation approach for the new product diffusion of a novel biomass fuel. J Oper Res Soc 62(1): 12–20

    Article  Google Scholar 

  • Hägerstrand T (1967) Innovation diffusion as a spatial process. University of Chicago Press, Chicago

    Google Scholar 

  • Hauser JR, Tellis GJ, Griffin A (2006) Research on innovation: a review and agenda for marketing science. Mark Sci 25(6): 678–717

    Article  Google Scholar 

  • Heeler RM, Hustad TP (1980) Problems in predicting new product growth for consumer durables. Manag Sci 26(10): 1007–1020

    Article  Google Scholar 

  • Hegselmann R, Krause U (2002) Opinion dynamics and bounded confidence models, analysis, and simulation. J Artif Soc Soc Simul 5(3): 2

    Google Scholar 

  • Herr PM, Kardes FR, Kim J (1991) Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnosticity perspective. J Consumer Res 17(4): 454–462

    Article  Google Scholar 

  • Hohnisch M, Pittnauer S, Stauffer D (2008) A percolation-based model explaining delayed takeoff in new-product diffusion. Ind Corp Change 17(5): 1001–1017

    Article  Google Scholar 

  • Hopp WJ (2004) Ten most influential papers of management science’s first fifty years. Manag Sci 50(Suppl 12): 1763

    Article  Google Scholar 

  • Horsky D, Simon LS (1983) Advertising and the diffusion of new products. Mark Sci 2(1): 1–17

    Article  Google Scholar 

  • Jager W, Janssen MA, Vries HJMD, Greef JD, Vlek CAJ (2000) Behaviour in commons dilemmas: Homo economicus and Homo psychologicus in an ecological-economic model. Ecol Econ 35(3): 357–379

    Article  Google Scholar 

  • Jain D, Mahajan V, Muller E (1991) Innovation diffusion in the presence of supply restrictions. Mark Sci 10(1): 83–90

    Article  Google Scholar 

  • Jain DC, Rao RC (1990) Effect of price on the demand for durables: modeling, estimation, and findings. J Bus Econ Stat 8(2): 163–170

    Article  Google Scholar 

  • Janssen MA, Jager W (2001) Fashions, habits and changing preferences: simulation of psychological factors affecting market dynamics. J Econ Psychol 22(6): 745–772

    Article  Google Scholar 

  • Janssen MA, Jager W (2002) Stimulating diffusion of green products. J Evolut Econ 12(3): 283–306

    Article  Google Scholar 

  • Janssen MA, Jager W (2003) Simulating market dynamics: interactions between consumer psychology and social networks. Artif Life 9(4): 343–356

    Article  Google Scholar 

  • Jones JM, Ritz CJ (1991) Incorporating distribution into new product diffusion models. Int J Res Mark 8(2): 91–112

    Article  Google Scholar 

  • Katz E (1961) The social itinerary of technical change: two studies on the diffusion of innovation. Hum Organ 20(2): 70–82

    Google Scholar 

  • Katz ML, Shapiro C (1986) Technology adoption in the presence of network externalities. J Polit Econ 94(4): 822–841

    Article  Google Scholar 

  • Katz ML, Shapiro C (1992) Product introduction with network externalities. J Ind Econ 40(1): 55–83

    Article  Google Scholar 

  • Kaufmann P, Stagl S, Franks DW (2009) Simulating the diffusion of organic farming practices in two new EU member states. Ecol Econ 68(10): 2580–2593

    Article  Google Scholar 

  • Keeney RL, Raiffa H (1993) Decisions with multiple objectives: preferences and value tradeoffs. Cambridge University Press, Cambridge

    Google Scholar 

  • Kim S, Lee K, Cho JK, Kim CO (2011) Agent-based diffusion model for an automobile market with fuzzy TOPSIS-based product adoption process. Expert Syst Appl 38(6): 7270–7276

    Article  Google Scholar 

  • Kocsis G, Kun F (2008) The effect of network topologies on the spreading of technological developments. J Stat Mech Theory Exp 2008(10):P10,014

  • Kohli R, Lehmann DR, Pae J (1999) Extent and impact of incubation time in new product diffusion. J Product Innov Manag 16(2): 134–144

    Article  Google Scholar 

  • Kuandykov L, Sokolov M (2010) Impact of social neighborhood on diffusion of innovation S-curve. Decis Support Syst 48(4): 531–535

    Article  Google Scholar 

  • Little JDC (1970) Models and managers: the concept of a decision calculus. Manag Sci 16(8): 466–485

    Article  Google Scholar 

  • Macy MW, Willer R (2002) From factors to actors: computational sociology and agent- based modeling. Annu Rev Sociol 28(1): 143–166

    Article  Google Scholar 

  • Mahajan V, Muller E (1979) Innovation diffusion and new product growth models in marketing. J Mark 43(4): 55–68

    Article  Google Scholar 

  • Mahajan V, Muller E, Bass FM (1990) New product diffusion models in marketing: a review and directions for further research. J Mark 54(1): 1–26

    Article  Google Scholar 

  • Mahajan V, Muller E, Bass FM (1995) Diffusion of new products: empirical generalizations and managerial uses. Mark Sci 14(3): 79–88

    Article  Google Scholar 

  • Mahajan V, Muller E, Wind Y (2000) New-product diffusion models. Springer, Berlin

    Google Scholar 

  • Maienhofer D, Finholt T (2002) Finding optimal targets for change agents: a computer simulation of innovation diffusion. Comput Math Organ Theory 8(4): 259–280

    Article  Google Scholar 

  • Maier FH (1998) New product diffusion models in innovation management: a system dynamics perspective. Syst Dyn Rev 14(4): 285–308

    Article  Google Scholar 

  • Mansfield E (1961) Technical change and the rate of imitation. Econometrica 29(4): 741–766

    Article  Google Scholar 

  • Martins ACR, Pereira CdB, Vicente R (2009) An opinion dynamics model for the diffusion of innovations. Phys A Stat Mech Appl 388(15–16): 3225–3232

    Article  Google Scholar 

  • Meade N, Islam T (2006) Modelling and forecasting the diffusion of innovation: a 25-year review. Int J Forecast 22(3): 519–545

    Article  Google Scholar 

  • Midgley D, Marks R, Kunchamwar D (2007) Building and assurance of agent-based models: an example and challenge to the field. J Bus Res 60(8): 884–893

    Article  Google Scholar 

  • Milling PM (1996) Modeling innovation processes for decision support and management simulation. Syst Dyn Rev 12(3): 211–234

    Article  Google Scholar 

  • Milling PM (2002) Understanding and managing innovation processes. Syst Dyn Rev 18(1): 73–86

    Article  Google Scholar 

  • Moldovan S, Goldenberg J (2004) Cellular automata modeling of resistance to innovations: effects and solutions. Technol Forecast Soc Change 71(5): 425–442

    Article  Google Scholar 

  • Ormerod P, Rosewell B (2009) Validation and verification of agent-based models in the social sciences. In: Squazzoni F (eds) Epistomological aspects of computer simulation in the social sciences (LNAI 5466). Springer, Berlin, pp 130–140

    Chapter  Google Scholar 

  • Parker PM (1994) Aggregate diffusion forecasting models in marketing: a critical review. Int J Forecast 10(2): 353–380

    Article  Google Scholar 

  • Peres R, Muller E, Mahajan V (2010) Innovation diffusion and new product growth models: a critical review and research directions. Int J Res Mark 27(2): 91–106

    Article  Google Scholar 

  • Radax W, Rengs B (2010) Timing matters: lessons from the CA literature on updating. In: Proceedings of the 3rd world congress on social simulation (WCSS 2010)

  • Rahmandad H, Sterman J (2008) Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models. Manag Sci 54(5): 998–1014

    Article  Google Scholar 

  • Reingen PH, Kernan JB (1986) Analysis of referral networks in marketing: methods and illustration. J Mark Res 23(4): 370–378

    Article  Google Scholar 

  • Richins ML (1983) Negative word-of-mouth by dissatisfied consumers: a pilot study. J Mark 47(1): 68–78

    Article  Google Scholar 

  • Robinson B, Lakhani C (1975) Dynamic price models for new-product planning. Manag Sci 21(10): 1113–1122

    Article  Google Scholar 

  • Rogers EM (1962) Diffusion of innovations. Free Press, New York

    Google Scholar 

  • Rogers EM (1976) New product adoption and diffusion. J Consumer Res 2(4): 290–301

    Article  Google Scholar 

  • Rogers EM (2003) Diffusion of innovations. 5. Free Press, New York

    Google Scholar 

  • Ruiz-Conde E, Leeflang PS, Wieringa JE (2006) Marketing variables in macro-level diffusion models. J für Betriebswirtschaft 56(3): 155–183

    Article  Google Scholar 

  • Rust RT (2010) Network externalities—not cool? A comment on “The chilling effects of network externalities”. Int J Res Mark 27(1): 18–19

    Article  Google Scholar 

  • Ryan B, Gross N (1943) The diffusion of hybrid seed corn in two Iowa communities. Rural Sociol 8(1): 15–24

    Google Scholar 

  • Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(1): 143–186

    Article  Google Scholar 

  • Schmittlein DC, Mahajan V (1982) Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Mark Sci 1(1): 57–78

    Article  Google Scholar 

  • Schramm ME, Trainor KJ, Shanker M, Hu MY (2010) An agent-based diffusion model with consumer and brand agents. Decis Support Syst 50(1): 234–242

    Article  Google Scholar 

  • Schumpeter J (1928) The instability of capitalism. Econ J 38(151): 361–386

    Article  Google Scholar 

  • Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovations: an empirical approach. Technol Forecast Soc Change 76(4): 497–511

    Article  Google Scholar 

  • Schwoon M (2006) Simulating the adoption of fuel cell vehicles. J Evol Econ 16(4): 435–472

    Article  Google Scholar 

  • Shaikh NI, Rangaswamy A, Balakrishnan A (2006) Modeling the diffusion of innovations using small-world networks. Technical report, Penn State University

  • Simon H, Sebastian K (1987) Diffusion and advertising: the German telephone campaign. Manag Sci 33(4): 451–466

    Article  Google Scholar 

  • Squazzoni F (2010) The impact of agent-based models in the social sciences after 15 years of incursions. Hist Econ Ideas 18(2): 197–233

    Google Scholar 

  • Srinivasan V, Mason CH (1986) Nonlinear least squares estimation of new product diffusion models. Mark Sci 5(2): 169–178

    Article  Google Scholar 

  • Strang D, Macy MW (2001) In search of excellence: fads, success stories, and adaptive emulation. Am J Sociol 107(1): 147–182

    Article  Google Scholar 

  • Strang D, Soule SA (1998) Diffusion in organizations and social movements: from hybrid corn to poison pills. Annu Rev Sociol 24(1): 265–290

    Article  Google Scholar 

  • Stremersch S, Tellis GJ, Franses PH, Binken JL (2007) Indirect network effects in new product growth. J Mark 71(3): 52–74

    Article  Google Scholar 

  • Stremersch S, Lehmann DR, Dekimpe M (2010) Preface to “The chilling effects of network externalities”. Int J Res Mark 27: 1–3

    Article  Google Scholar 

  • Sultan F, Farley JU, Lehmann DR (1990) A meta-analysis of applications of diffusion models. J Mark Res 27(1): 70–77

    Article  Google Scholar 

  • Tanny SM, Derzko NA (1988) Innovators and imitators in innovation diffusion modelling. J Forecast 7(4): 225–234

    Article  Google Scholar 

  • Tarde G (1903) The laws of imitation. Henry, Holt and Co., New York

    Google Scholar 

  • Tellis GJ (2007) A critical review of marketing research on diffusion of new products. In: Malhotra NK (eds) Review of marketing research. Emerald, Bradford, pp 39–80

    Chapter  Google Scholar 

  • Thiriot S, Kant JD (2008) Using associative networks to represent adopters’ beliefs in a multiagent model of innovation diffusion. Adv Complex Syst 11(2): 261–272

    Article  Google Scholar 

  • Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32(4): 425–443

    Article  Google Scholar 

  • Urban GL, Hauser JR, Roberts JH (1990) Prelaunch forecasting of new automobiles. Manag Sci 36(4): 401–421

    Article  Google Scholar 

  • Vag A (2007) Simulating changing consumer preferences: a dynamic conjoint model. J Bus Res 60(4): 904–911

    Article  Google Scholar 

  • Valente TW, Davis RL (1999) Accelerating the diffusion of innovations using opinion leaders. Ann Am Acad Polit Soc Sci 566(1): 55–67

    Article  Google Scholar 

  • Valente TW, Rogers EM (1995) The origins and development of the diffusion of innovations paradigm as an example of scientific growth. Sci Commun 16(3): 242–273

    Article  Google Scholar 

  • Van den Bulte C, Lilien GL (1997) Bias and systematic change in the parameter estimates of macro-level diffusion models. Mark Sci 16(4): 338–353

    Article  Google Scholar 

  • Van den Bulte C, Stremersch S (2004) Social contagion and income heterogeneity in new product diffusion: a meta-analytic test. Mark Sci 23(4): 530–544

    Article  Google Scholar 

  • van Eck PS, Jager W, Leeflang PSH (2011) Opinion leaders’ role in innovation diffusion: a simulation study. J Product Innov Manag 28(2): 187–203

    Article  Google Scholar 

  • van Vliet O, de Vries B, Faaij A, Turkenburg W, Jager W (2010) Multi-agent simulation of adoption of alternative fuels. Transp Res Part D Transp Environ 15(6): 326–342

    Article  Google Scholar 

  • Veblen T (1899) The theory of the leisure class. Macmillan, New York

    Google Scholar 

  • Venkatesan R, Krishnan TV, Kumar V (2004) Evolutionary estimation of macro-level diffusion models using genetic algorithms: an alternative to nonlinear least squares. Mark Sci 23(3): 451–464

    Article  Google Scholar 

  • Walker JL (1969) The diffusion of innovations among the American states. Am Polit Sci Rev 63(3): 880–899

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684): 440–442

    Article  Google Scholar 

  • Windrum P, Fagiolo G, Moneta A (2007) Empirical validation of agent-based models: alternatives and prospects. J Artif Soc Soc Simul 10(2): 8

    Google Scholar 

  • Wissler C (1915) The diffusion of horse culture among the North American indians. Proc Natl Acad Sci USA 1(4): 254–256

    Article  Google Scholar 

  • Zhang T, Nuttall WJ (2011) Evaluating government’s policies on promoting smart metering diffusion in retail electricity markets via agent-based simulation. J Product Innov Manag 28(2): 169–186

    Article  Google Scholar 

  • Zhang T, Gensler S, Garcia R (2011) A study of the diffusion of alternative fuel vehicles: an agent-based modeling approach. J Product Innov Manag 28(2): 152–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiesling, E., Günther, M., Stummer, C. et al. Agent-based simulation of innovation diffusion: a review. Cent Eur J Oper Res 20, 183–230 (2012). https://doi.org/10.1007/s10100-011-0210-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-011-0210-y

Keywords

Navigation