Skip to main content
Log in

Greenhouse gases mitigation by CO2 reforming of methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This study focuses on the potential of hydrogen-rich syngas production by CO2 reforming of methane over Co/Pr2O3 catalyst. The Co/Pr2O3 catalyst was synthesized via wet-impregnation method and characterized for physicochemical properties by TGA, XRD, BET, H2-TPR, FESEM, EDX, and FTIR. The CO2 reforming of methane over the as-synthesized catalyst was studied in a tubular stainless steel fixed-bed reactor at feed ratio ranged 0.1–1.0, temperature ranged 923–1023 K, and gas hourly space velocity (GHSV) of 30,000 h−1 under atmospheric pressure condition. The catalyst activity studies showed that the increase in the reaction temperature from 923 to 1023 K and feed ratio from 0.1 to 1.0 resulted in a corresponding increase in the reactant’s conversion and the product’s yields. At 1023 K and feed ratio of 1.0, the activity of the Co/Pr2O3 catalyst climaxed with CH4 and CO2 conversions of 41.49 and 42.36 %. Moreover, the catalyst activity at 1023 K and feed ratio of 1.0 resulted in the production of H2 and CO yields of 40.7 and 40.90 %, respectively. The syngas produced was estimated to have H2:CO ratio of 0.995, making it suitable as chemical building blocks for the production of oxygenated fuel and other value-added chemicals. The used Co/Pr2O3 catalyst which was characterized by TPO, XRD, and SEM-EDX show some evidence of carbon formation and deposition on its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abasaeed AE, Al-fatesh AS, Naeem MA, Ibrahim AA, Fakeeha AH (2015) Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. Int Hydrog Energy 40:6818–6826. doi:10.1016/j.ijhydene.2015.03.152

    Article  CAS  Google Scholar 

  • Alifanti M, Bueno G, Parvulescu V, Parvulescu VI, Cortés Corberán V (2009) Oxidation of ethane on high specific surface SmCoO3 and PrCoO3 perovskites. Catal Today 143:309–314. doi:10.1016/j.cattod.2009.02.026

    Article  CAS  Google Scholar 

  • Ayodele BV, Cheng CK (2015) Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box-Behnken design. J Ind Eng Chem. doi:10.1016/j.jiec.2015.08.021

    Google Scholar 

  • Ayodele BV, Khan MR, Cheng CK (2015a) Syngas production from CO2 reforming of methane over ceria supported cobalt catalyst: effects of reactants partial pressure. J Nat Gas Sci Eng. doi:10.1016/j.jngse.2015.09.049

    Google Scholar 

  • Ayodele BV, Khan MR, Cheng CK (2015b) Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. Int J Hydrog Energy 41:198–207. doi:10.1016/j.ijhydene.2015.10.049

    Article  Google Scholar 

  • Ayodele BV, Hossain MA, Chong SL, Soh JC, Abdullah S, Khan MR, Cheng CK (2016a) Non-isothermal kinetics and mechanistic study of thermal decomposition of light rare earth metal nitrate hydrates using thermogravimetric analysis. J Therm Anal Calorim. doi:10.1007/s10973-016-5450-6

    Google Scholar 

  • Ayodele BV, Khan MR, Lam SS, Cheng CK (2016b) Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: kinetic and mechanistic studies. J Hydrog Energy, Int. doi:10.1016/j.ijhydene.2016.01.091

    Google Scholar 

  • Balboul BAA (2010) Synthesis course and surface properties of praseodymium oxide obtained via thermal decomposition of praseodymium acetate: impacts of the decomposition atmosphere. J Anal Appl Pyrolysis 88:192–198. doi:10.1016/j.jaap.2010.04.006

    Article  CAS  Google Scholar 

  • Baliban RC, Elia JA, Weekman V, Floudas CA (2012) Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer–Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies. Comput Chem Eng 47:29–56. doi:10.1016/j.compchemeng.2012.06.032

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi:10.1021/ja01145a126

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90. doi:10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  • Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 23:443–462. doi:10.1016/j.rser.2013.02.019

    Article  CAS  Google Scholar 

  • Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Ricco Galluzzo G (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494. doi:10.1016/j.ijhydene.2014.03.174

    Article  CAS  Google Scholar 

  • Donohue M, Aranovich G (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interface Sci 76–77:137–152. doi:10.1016/S0001-8686(98)00044-X

    Article  Google Scholar 

  • Ehrhardt C, Gjikaj M, Brockner W (2005) Thermal decomposition of cobalt nitrato compounds: preparation of anhydrous cobalt(II)nitrate and its characterisation by infrared and Raman spectra. Thermochim Acta 432:36–40. doi:10.1016/j.tca.2005.04.010

    Article  CAS  Google Scholar 

  • Ferencz Zs, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdőhelyi A (2014) Dry reforming of CH4 on Rh doped Co/Al2O3 catalysts. Catal Today 228:123–130. doi:10.1016/j.cattod.2013.11.014

    Article  CAS  Google Scholar 

  • Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38:2039–2061. doi:10.1016/j.ijhydene.2012.12.010

    Article  CAS  Google Scholar 

  • Garavaglia R, Mari CM, Trasatti S (1984) Physicochemical characterization of Co3O4 prepared by thermal decomposition II: response to solution pH. Surf Technol 23:41–47. doi:10.1016/0376-4583(84)90074-8

    Article  CAS  Google Scholar 

  • Haag S, Burgard M, Ernst B (2007) Beneficial effects of the use of a nickel membrane reactor for the dry reforming of methane: comparison with thermodynamic predictions. J Catal 252:190–204. doi:10.1016/j.jcat.2007.09.022

    Article  CAS  Google Scholar 

  • Hafizi A, Rahimpour MR, Hassanajili S (2016) Hydrogen production by chemical looping steam reforming of methane over Mg promoted iron oxygen carrier: optimization using design of experiments. J Taiwan Inst Chem Eng. doi:10.1016/j.jtice.2016.01.023

    Google Scholar 

  • Han C, Wu J, Pu C, Qiao S, Wu B, Zhu J, Xiao D (2012) High piezoelectric coefficient of Pr2O3-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics. Ceram Int 38:6359–6363. doi:10.1016/j.ceramint.2012.05.008

    Article  CAS  Google Scholar 

  • Hussein GA, Balboul BA, A-Warith M, Othman AG (2001) Thermal genesis course and characterization of praseodymium oxide from praseodymium nitrate hydrate. Thermochim Acta 369:59–66. doi:10.1016/S0040-6031(00)00727-9

    Article  CAS  Google Scholar 

  • Itkulova SS, Zhunusova KZ, Zakumbaeva GD (2005) CO2 reforming of methane over Co-Pd/Al2O3 catalysts. Bull Korean Chem Soc 26(12):2017–2020. doi:10.5012/bkcs.2005.26.12.2017

    Article  CAS  Google Scholar 

  • Ji YG, Zhao Z, Duan A, Jiang GY, Liu J (2009) Comparative study on the formation and reduction of bulk and Al2O3-supported cobalt oxides by H-2-TPR technique. J Phys Chem B 113:7186–7199. doi:10.1021/jp8107057

    CAS  Google Scholar 

  • Konnov AA, De Ruyck J (2001) Temperature-dependent rate constant for the reaction NNH + O → NH + NO. Combust Flame 125:1258–1264

    Article  CAS  Google Scholar 

  • Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270. doi:10.1021/nl0725906

    Article  CAS  Google Scholar 

  • Luisetto I, Tuti S, Di Bartolomeo E (2012) Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int J Hydrog Energy 37:15992–15999. doi:10.1016/j.ijhydene.2012.08.006

    Article  CAS  Google Scholar 

  • Muraza O, Galadima A (2015) A review on coke management during dry reforming of methane. Int J Energy Res 39:1196–1216

    Article  Google Scholar 

  • Nagaoka K (2003) Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane. Appl Catal A Gen 255:13–21. doi:10.1016/S0926-860X(03)00631-8

    Article  CAS  Google Scholar 

  • Ruckenstein E, Wang H (2000) Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts. Appl Catal A Gen 204:257–263. doi:10.1016/S0926-860X(00)00674-8

    Article  CAS  Google Scholar 

  • Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111:103–110. doi:10.1016/j.cattod.2005.10.002

    Article  CAS  Google Scholar 

  • Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853. doi:10.1016/j.rser.2014.01.012

    Article  CAS  Google Scholar 

  • Shrestha S, Yeung CMY, Nunnerley C, Tsang SC (2007) Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles. Sens Actuators A Phys 136:191–198. doi:10.1016/j.sna.2006.11.019

    Article  CAS  Google Scholar 

  • Silva JM, Soria MA, Madeira LM (2015) Challenges and strategies for optimization of glycerol steam reforming process. Renew Sustain Energy Rev 42:1187–1213. doi:10.1016/j.rser.2014.10.084

    Article  CAS  Google Scholar 

  • Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473:68–73. doi:10.1016/j.tca.2008.04.015

    Article  CAS  Google Scholar 

  • Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Müller CR (2016) Dry-reforming of methane over bimetallic Ni–M/La2O3 (M=Co, Fe): the effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. J Catal. doi:10.1016/j.jcat.2016.03.018

    Google Scholar 

  • Wang N, Chu W, Huang L, Zhang T (2010) Effects of Ce/Zr ratio on the structure and performances of Co–Ce1−xZrxO2 catalysts for carbon dioxide reforming of methane. J Nat Gas Chem 19:117–122. doi:10.1016/S1003-9953(09)60055-4

    Article  CAS  Google Scholar 

  • Wilhelm D, Simbeck D, Karp A, Dickenson R (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71:139–148. doi:10.1016/S0378-3820(01)00140-0

    Article  CAS  Google Scholar 

  • Xiong H, Moyo M, Motchelaho MA, Tetana ZN, Dube SM, Jewell LL, Coville NJ (2014) Fischer–Tropsch synthesis: iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. J Catal 311:80–87. doi:10.1016/j.jcat.2013.11.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the research fund RDU130501 granted by the Ministry of Science, Technology and Innovation Malaysia (MOSTI). Bamidele Victor Ayodele gratefully appreciates the Universiti Malaysia Pahang for the provision of Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Kui Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayodele, B.V., Khan, M.R. & Cheng, C.K. Greenhouse gases mitigation by CO2 reforming of methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst. Clean Techn Environ Policy 19, 795–807 (2017). https://doi.org/10.1007/s10098-016-1267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1267-z

Keywords

Navigation