
Calcolo (2011) 48: 189–209
DOI 10.1007/s10092-010-0036-3

Bubble stabilized discontinuous Galerkin methods
on conforming and non-conforming meshes

Erik Burman · Benjamin Stamm

Received: 4 January 2010 / Accepted: 7 December 2010 / Published online: 13 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The aim of this paper is to discuss the properties of the bubble stabilized
discontinuous Galerkin method with respect to mesh geometry. First we show that on
certain non-conforming meshes the bubble stabilized discontinuous Galerkin method
allows for hanging nodes/edges. Then we consider the case of conforming meshes
and present a post-processing algorithm based on the Crouzeix-Raviart method to
obtain the Bubble Stabilized Discontinuous Galerkin (BSDG) method. Although fi-
nally the post-processed solution does not coincide with the BSDG-solution in gen-
eral, they satisfy the same (approximation) properties and are close to each other.
Moreover, the post-processed solution has continuous flux over the edges.

Keywords Discontinuous Galerkin · Elliptic equation · Crouzeix-Raviart
approximation
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1 Introduction

Consider the following diffusion equation: find u : � → R such that{
−�u = f in �,

u = 0 on ∂�,
(1.1)
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where f ∈ L2(�). Assuming a homogeneous boundary condition and a diffusion co-
efficient of one is not an essential restriction but allows us to simplify the presentation
and focus on the key features of the analysis.

Discontinuous Galerkin method were first introduced for hyperbolic problems by
Reed and Hill in [20] for neutron transport problems. It was further analyzed by
Lesaint and Raviart [16] and Johnson and Pitkäranta [14]. It became popular for
transport problems due to its good stability properties and is nowadays a established
tool for hyperbolic problems.

For elliptic problems on the other hand the first papers include the work of Nitsche
[18], Baker [3], Douglas and Dupont [13], Wheeler [22] and Arnold [2]. These con-
tributions led to the Symmetric Interior Penalty (discontinuous) Galerkin (SIPG)
method. Only in the nineties discontinuous methods became more popular and many
variants such as the Non-symmetric Interior Penalty (discontinuous) Galerkin (NIPG)
method [4, 15, 19, 21] or the Local Discontinuous Galerkin (LDG) method [5, 11]
were introduced. One advantage of the DG-method compared to continuous FEM
is the enhanced local conservation. However the local conservation depends on the
numerical flux and thus on the stabilization parameter which may vary in space and
depend on material properties for more complex problems. On the other hand it was
also proven [15, 21] that the NIPG method does not need to be stabilized for polyno-
mial degrees larger or equal than two. This variant is referred to as the Baumann-Oden
method. This led to a further improved local mass conservation property, but due to
the non-symmetry of the method, optimal L2-convergence does not hold in general.

In 2006, Brezzi and Marini [6] then proved that the smallest discontinuous finite
element space for which the NIPG method is stable without stabilization is a finite
element space consisting of polynomials of degree one enriched locally by one bubble
of degree two. Independently, Burman and Stamm [8, 9] introduced the symmetric
version of the Bubble Stabilized Discontinuous Galerkin (BSDG) method and proved
its stability and convergence. The numerical scheme uses the same bubble enriched
finite element space as the one introduce by Brezzi and Marini, but its bilinear form
is symmetric. More precisely, it uses the same bilinear form as the SIPG method
but without penalty term. Thus stability is achieved through particular properties of
the finite element space and not through penalty. This method combines the optimal
L2-convergence of a symmetric scheme and the improved local mass conservation
property due to the absence of a penalty term.

In this paper we address two questions left open in [8, 9]: the question of hanging
nodes/edges and the question of hierarchic construction of the DG solution.

Indeed an important advantage of a DG-method is the possibility to use hanging
nodes. Since the BSDG-method uses the structure of the finite element space to ob-
tain stability the introduction of hanging nodes/edges is no longer straightforward. In
this paper we give sufficient conditions for stability of the BSDG-method on meshes
with hanging nodes/edges. We only consider a very simple setting where a conform-
ing base mesh can be refined in a way giving rise to hanging nodes. The extension to
more general cases is non-trivial, in the framework of the symmetric BSDG-method
and here the non-symmetric approach of [1] that is valid on general polygonal de-
compositions seems more promising thanks to the positivity of the involved bilinear
form.
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In [8] we showed that the solution of the SIPG method using piecewise affine
elements naturally decomposes into two components. One is the classical Crouzeix-
Raviart solution and the other is a perturbation that ensures local mass-conservation.
It is indeed the constraint of local mass conservation that can leads to loss of stability.
Similar results have recently been used for the design of optimal preconditioners for
DG-methods [12]. In this paper we show a similar result for the BSDG-method.

Herein we propose an efficient hierarchic implementation of the BSDG-method
that does not need more globally coupled degrees of freedom than the non-
conforming Crouzeix-Raviart method. This approach consists of computing the
Crouzeix-Raviart solution in a first step (global solve) and then to post-process it
locally in the bubble enriched finite element space (local solves). The post-processed
solution coincides with the BSDG solution only in the case of elementwise constant
source term, but is always an approximation that is sufficiently close to satisfy the
same convergence properties as the BSDG solution. The normal gradient of the post-
processed approximation is continuous over interelement faces. As a consequence,
we present a numerical algorithm that satisfies the local mass conservation prop-
erty exactly (since the flux is continuous across faces), does not need more globally
coupled degrees of freedom than the Crouzeix-Raviart method and converges opti-
mally in the L2-norm. The method can be seen as an efficient solution algorithm for
the BSDG-method, but also as a prototype parallel domain-decomposition precondi-
tioner for discontinuous Galerkin methods.

This paper is structured as follows. In Sect. 2 we introduce and develop prelimi-
nary results needed for the later analysis. The different kind of numerical approxima-
tions are introduced in Sect. 3, where also an overview over the basic properties of
the BSDG-method is given. Then in Sect. 4 we introduce sufficient conditions under
which hanging nodes/edges are allowed and prove stability and optimal convergence
results on such meshes.

As a “warm up exercise” and preparation for the following Section we propose a
post-processing of the Crouzeix-Raviart solution to get the Raviart-Thomas approx-
imation based on some earlier work of Marini [17] in Sect. 5. The main result is
presented in Sect. 6 where the post-processing in the bubble enriched finite element
space is introduced and analyzed. As a summary, the relation of all different approx-
imations for piecewise constant data are investigated in Sect. 7.

2 Preliminary results

Let � be a polygonal domain (polyhedron in three space dimensions) in R
d , d = 2,3,

with outer normal n. Let K be a subdivision of � ⊂ R
d into non-overlapping d-

simplices κ and denote by NK the number of simplices of the mesh. Suppose that
each κ ∈ K is an affine image of the reference element κ̂ , i.e. for each element κ

there exists an affine transformation Tκ : κ̂ → κ .
Let Fi denote the set of interior faces ((d − 1)-manifolds) of the mesh, i.e. the set

of faces that are not included in the boundary ∂�. The set Fe denotes the faces that
are included in ∂� and define F = Fi ∪ Fe. Further F (κ) denotes the set of faces
of the element κ . Define by NF = card(F ) and NFi

= card(Fi ) the number of faces
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resp. interior faces of the mesh. Denote by � the skeleton of the mesh, i.e. the set of
points belonging to faces, � = {

x ∈ � | ∃F ∈ F s.t. x ∈ F
}
.

Assume that K is shape-regular, does not contain any hanging node and covers
� exactly. For an element κ ∈ K, hκ denotes its diameter and for a face F ∈ F , hF

denotes the diameter of F . Set h = maxκ∈K hκ and let h be the function such that
h|◦

κ
= hκ and h| ◦

F
= hF for all κ ∈ K and F ∈ F .

For a subset R ⊂ � or R ⊂ F , (·, ·)R denotes the L2(R)-scalar product, ‖ · ‖R =
(·, ·)1/2

R the corresponding norm, and ‖ · ‖s,R the Hs(R)-norm. The element-wise
counterparts will be distinguished using the discrete partition as subscript, for exam-
ple (·, ·)K = ∑

κ∈K(·, ·)K . For s ≥ 1, let Hs(K) be the space of piecewise Sobolev
Hs–functions and denote its norm by ‖ · ‖s,K .

In this paper c > 0 denotes a generic constant and can change at each occurrence,
while an indexed constant stays fix. Any constant is independent of the mesh size h.

Further let us define the jump and average operators. Fix F ∈ Fi and thus F = κ1 ∩
κ2 with κ1, κ2 ∈ K. Let v ∈ H 1(K), w ∈ [H 1(K)]d and denote by vi , wi , i = 1,2, the
restriction of v resp. w to the element κi , i.e. vi = v|κi

resp. wi = w|κi
and denote by

ni the exterior normal of κi . Then we define the standard average and jump operators
by

{v} = 1

2
(v1 + v2), [v] = v1n1 + v2n2,

{w} = 1

2
(w1 + w2), [w] = w1 · n1 + w2 · n2.

On outer faces F ∈ Fe we define them by

{v} = v, [v] = vn, {w} = w, [w] = w · n
where n is the outer normal of the domain �. Observe that [v](x), {w}(x) ∈ R

d and
thus we introduce also scalar quantities of the jump and average, that we index by s:

[v]s = [v] · nF , {w}s = {w} · nF , (2.1)

where nF ∈ {n1, n2} is arbitrarily chosen but fixed. Observe that also [v] = [v]snF

and thus that ‖[v]‖F = ‖[v]s‖F and ‖[v]‖Fi
= ‖[v]s‖Fi

. Moreover note that

[v] · {w} = [v]s{w}s . (2.2)

The following integration by parts formula holds (see for instance [2]).

Lemma 2.1 (Integration by parts formula) Let v,w ∈ H 2(K), then

(∇v,∇w)K = −(�v,w)K + ({∇v}, [w])F + ([∇v], {w})Fi
. (2.3)

2.1 Bubble stabilized finite element space

Let us denote by V
p
h the standard discontinuous finite element space of degree p ≥ 0

defined by

V
p
h = {

vh ∈ L2(�) |vh|κ ∈ V
p
h (κ), ∀κ ∈ K

}
,
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where V
p
h (κ) denotes the set of polynomials of maximum degree p on κ . Consider

the locally defined enriched finite element space

Vbs(κ) = V 1
h (κ) ⊕ {

vh ∈ L2(κ) |vh(x) = α x · x, α ∈ R
}

and its global counterpart

Vbs = V 1
h ⊕ {

vh ∈ L2(�) |vh(x) = α x · x, α ∈ V 0
h

}
,

where x = (x1, . . . , xd) denotes the physical variable. Let us additionally define some
functional space that consists of functions only defined on the skeleton of the mesh:

W 0
h = {

vh ∈ L2(�) |vh|F ∈ R, ∀F ∈ F
}
.

Again, we define a local counterpart by

W 0
h (κ) = {

vh ∈ L2(∂κ) |vh|F ∈ R, for all facesF of ∂κ
}
.

Let v ∈ H 1(K) and define by {v}, [v]s the L2-projection of {v} resp. [v]s onto W 0
h ,

i.e. ({v},wh

)
F = ({v},wh

)
F , ∀wh ∈ W 0

h ,([v]s ,wh

)
F = ([v]s ,wh

)
F , ∀wh ∈ W 0

h .

Further define [v] = [v]snF .
We denote by RT0(κ) the local Raviart-Thomas space of order 0 defined by

RT0(κ) = [
P0(κ)

]d + x P0(κ).

The global Raviart-Thomas space and the Crouzeix-Raviart space are defined in a
standard fashion by

Vrt = {
v ∈ [

L1(�)
]d |v|κ ∈ RT0(κ) ∀κ ∈ K, [v]|F = 0, ∀F ∈ Fi

}
,

Vcr = {
v ∈ L1(�) |v|κ ∈ P1(κ)∀κ ∈ K, [v]|F = 0, ∀F ∈ F

}
.

Note that a particular property of the space Vbs is that for any vh ∈ Vbs we have that
∇vh|κ ∈ RT0(κ), c.f. [8]. Thus it follows that [∇vh] = [∇vh] and {∇vh} = {∇vh} for
all vh ∈ Vbs on all faces. Finally let us introduce the following local norm

|]v[|2κ := ‖∇v‖2
κ + ∥∥h− 1

2 v
∥∥2

∂κ

for all v ∈ H 1(κ) and κ ∈ K. On a global level we define

|‖v‖|2 := ‖∇v‖2
K + ∥∥h− 1

2 [v]∥∥2
F

for all v ∈ H 1(K).
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2.2 Technical lemmas

In this Section we recall some well known results. For the proofs we refer to [10].

Lemma 2.2 (Inverse inequality) Let vh ∈ Vbs , then there holds

c−1
I

∥∥h2�vh

∥∥
K ≤ ‖h∇vh‖K ≤ cI‖vh‖K,

where the constant cI > 0 is independent of h.

Lemma 2.3 (Trace inequality) Let v ∈ [H 1(K)]m and vh ∈ [Vbs]m with m ≥ {1, d},
then there holds ∥∥{v}∥∥F + ∥∥[v]∥∥F ≤ cT

(∥∥h− 1
2 v

∥∥
K + ∥∥h 1

2 ∇v
∥∥

K
)
,∥∥{vh}

∥∥
F + ∥∥[vh]

∥∥
F ≤ cT

∥∥h− 1
2 vh

∥∥
K,

where the constant cT > 0 is independent of h.

2.3 Special functions

We denote by πp : L2(�) → V
p
h the L2-projection onto V

p
h defined by∫

�

πpv wh dx =
∫

�

v wh dx ∀wh ∈ V
p
h .

The projection πp satisfies the following approximation result: Let v ∈ Hp+1(K),
then

‖v − πpv‖K + h
∥∥∇(v − πpv)

∥∥
K ≤ chp+1|v|p+1,K. (2.4)

Finally, we present two functions, playing a role similar to that of a Fortin interpolant,
which will be used in the following.

Lemma 2.4 Let ah ∈ V 0
h and bh, ch ∈ W 0

h be fixed. Then, there exists a unique func-
tion φh ∈ Vbs such that ⎧⎪⎨

⎪⎩
π0φh = ah,

{∇φh}s |F = bh|F ∀F ∈ F ,

[∇φh]|F = ch|F ∀F ∈ Fi .

(2.5)

Moreover φh satisfies the following stability result

∥∥h−1φh

∥∥2
K + |‖φh‖|2 ≤ c

(∥∥h−1ah

∥∥2
K + ∥∥h 1

2 bh

∥∥2
F + ∥∥h 1

2 ch

∥∥2
Fi

)
. (2.6)

Proof Let us first establish the a priori estimate. Observe that∥∥h−1φh

∥∥
K ≤ ‖h−1π0φh‖K + ∥∥h−1(φh − π0φh)

∥∥
K ≤ ∥∥h−1ah

∥∥
K + c
‖∇φh‖K.

(2.7)
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Then, invoking the trace inequality implies

|‖φh‖|2 = ∥∥h− 1
2 [φh]

∥∥2
F + ‖∇φh‖2

K ≤ c
(∥∥h−1ah

∥∥2
K + ∥∥∇φh

∥∥2
K

)
.

Thus it remains to estimate ‖∇φh‖K . Since �φh|κ ∈ R for all κ ∈ K and by integra-
tion by parts and (2.2) it follows that

‖∇φh‖2
K = −(�φh,π0φh)K + ({∇φh}s , [φh]s

)
F + ([∇φh], {φh}

)
Fi

= −(�φh, ah)K︸ ︷︷ ︸
I

+ (
bh, [φh]s

)
F︸ ︷︷ ︸

II

+ (
ch, {φh}

)
Fi︸ ︷︷ ︸

III

.

Applying the Cauchy-Schwarz, the inverse (I ) or the trace (II, III ) for each term
yields respectively

I ≤ cI‖∇φh‖K
∥∥h−1ah

∥∥
K

II ≤ cT

∥∥h−1φh

∥∥
K

∥∥h 1
2 bh

∥∥
F

III ≤ cT

∥∥h−1φh

∥∥
K

∥∥h 1
2 ch

∥∥
Fi

and thus, applying Young’s inequality and combining with (2.7), yields

‖∇φh‖2
K

≤ cI‖∇φh‖K
∥∥h−1ah

∥∥
K + cT

∥∥h−1φh

∥∥
K

(∥∥h 1
2 bh

∥∥
F + ∥∥h 1

2 ch

∥∥
Fi

)
≤ ρ1‖∇φh‖2

K + c1
∥∥h−1ah

∥∥2
K + ρ2

∥∥h−1φh

∥∥2
K + c2

(∥∥h 1
2 bh

∥∥2
F + ∥∥h 1

2 ch

∥∥2
Fi

)
≤ (ρ1 + 2ρ2c
)‖∇φh‖2

K + (c1 + 2ρ2)‖h−1ah‖2
K + c2

(∥∥h 1
2 bh

∥∥2
F + ∥∥h 1

2 ch

∥∥2
Fi

)
for arbitrarily small ρ1, ρ2 > 0. Choosing ρ1 and ρ2 small enough leads then to the
a priori estimate (2.6). To conclude the proof, it now suffices to observe that (2.5) is
nothing more than a square linear system of size NK + NF + NFi

. Hence, existence
and uniqueness of a solution of the linear system are equivalent. The a priori estimate
(2.6) implies the uniqueness of the solution and hence the matrix is regular. �

Observe that if the mesh is reduced to one single element κ ∈ K, then the previous
result simplifies to the following corollary.

Corollary 2.5 Fix κ ∈ K and let ah ∈ V 0
h (κ) and bh ∈ W 0

h (κ) be given. Then, there
exists a unique function φh ∈ Vbs(κ) such that{

π0φh|κ = ah,

∇φh|F · nκ = bh|F ∀F ∈ F (κ).
(2.8)

Moreover φh satisfies the following stability result∥∥h−1φh

∥∥2
κ

+ |]φh[|2κ ≤ c
(∥∥h−1ah

∥∥2
κ

+ ∥∥h 1
2 bh

∥∥2
∂κ

)
. (2.9)
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3 Finite element methods for model problem

In this section, we define all the methods that we will need in the further sections. We
will then analyze how these methods are related to each other.

Crouzeix-Raviart method:
Find ucr ∈ Vcr such that

(∇ucr ,∇vcr )K = (f, vcr )K ∀vcr ∈ Vcr . (3.1)

We also will need the Crouzeix-Raviart solution using piecewise constant data: Find
ucr,0 ∈ Vcr such that

(∇ucr,0,∇vcr )K = (π0f, vcr )K ∀vcr ∈ Vcr . (3.2)

Raviart-Thomas method:
Find (wrt , u

0
rt ) ∈ Vrt × V 0

h such that

(wrt , qrt )K + (
u0

rt ,∇ · qrt

)
K = 0 ∀qrt ∈ Vrt ,

−(∇ · wrt , v
0
rt

)
K = (

f, v0
rt

)
K ∀v0

rt ∈ V 0
h .

(3.3)

BSDG-method:
Find ubs ∈ Vbs such that

a(ubs, vbs) = (f, vbs)K ∀vbs ∈ Vbs, (3.4)

with

a(v,w) = (∇v,∇w)K − ({∇v}, [w])F − ([v], {∇w})F , (3.5)

for all v,w ∈ H 2(K).
In the following we shall point out some interesting properties of the BSDG-

method.

Remark 3.1 The discrete solution uh of (3.4) satisfies the following local mass con-
servation property

−
∫

∂κ

{∇uh} · nκ ds =
∫

κ

f dx ∀κ ∈ K,

where nκ denotes the outer normal of element κ .

We now recall some results on the BSDG-approximation proved in [7].

Proposition 3.2 ([7, Proposition 2]) Let uh be the solution of (3.4). Then, the follow-
ing estimate holds

h‖f + �uh‖K + ∥∥h 1
2 [∇uh]

∥∥
Fi

+ ∥∥h− 1
2 [uh]

∥∥
F ≤ ch‖f − π0f ‖K, (3.6)
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and if f ∈ H 1(K) there holds

h‖f + �uh‖K + ∥∥h 1
2 [∇uh]

∥∥
Fi

+ ∥∥h− 1
2 [uh]

∥∥
F ≤ ch2‖∇f ‖K. (3.7)

Corollary 3.3 If f is piecewise constant, i.e. f ∈ V 0
h , then∥∥[uh]

∥∥
F = 0,

∥∥[∇uh]
∥∥

Fi
= 0 and ‖�u − �uh‖K = 0.

In the case of f ∈ V 0
h , we can further characterize the BSDG-approximation. To

this aim, let us introduce the function satisfying the following conditions.

Lemma 3.4 ([7, Lemma 14]) Let ah ∈ V 0
h be fixed. Then, there exists a unique func-

tion φh ∈ Vbs such that ⎧⎪⎪⎨
⎪⎪⎩

�φh = ah,

[φh]s |F = 0 ∀F ∈ F ,

[∇φh]|F = 0 ∀F ∈ Fi .

(3.8)

Moreover φh satisfies the following stability result

|‖φh‖|2 ≤ c ‖ah‖2
K. (3.9)

Corollary 3.5 If f is piecewise constant, i.e. f ∈ V 0
h , then the solution uh of (3.4)

is equal to the unique solution of the projection defined by Lemma 3.4 with ah = f .

4 Bubble stabilized DG with hanging nodes and edges

In this section we will discuss stability of the BSDG-method on non-conforming
meshes. We will therefore modify the definitions of the mesh quantities to allow for
hanging nodes. These modifications are valid in this Section only. To analyse the
BSDG-method on non-conforming meshes we must prove an inf-sup condition that
holds uniformly independently of the mesh-geometry. This amounts to constructing
a function in the finite element space that gives control of the jumps of the discrete
solution. The existence of this function depends on the conformity of the mesh, in
particular it is non-trivial to show that hanging-nodes are allowed. Here we will give
sufficient conditions on the mesh for a bubble stabilized DG-method to be stable.
Essentially we assume that the hanging nodes/edges appear due to the refinement of
an underlying conforming mesh. Hence there is always one “refined” side and one
“unrefined” side when there are hanging nodes/edges.

We redefine the set of interior faces by the set of all faces of all elements that are
not included in the boundary ∂�, i.e.

Fi = {F ⊂ ∂κ\∂� |F is a face of κ for some κ ∈ K} ,

and in 3D we define the set of interior edges by

Ei = {E ⊂ ∂κ\∂� |E is an edge of κ for some κ ∈ K} .
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In 2D we define a hanging node as any vertex of the mesh that is contained in the
interior of a face of Fi . Analogously, in 3D a hanging edge is defined by an edge
of Ei that is contained in the interior of a face of Fi . If the spatial dimension is not
specified we refer to a hanging (d − 2)-subsimplex.

Our assumption on the mesh is then:

Assumption A1 Any face F ∈ Fi satisfies one of the following exclusive condi-
tions:

(i) F does not contain any faces in Fi other than F , and does not lie entirely in
another face of Fi .

(ii) F lies entirely in another face F̃ of Fi , and any other face that is not contained
in F̃ sharing a hanging (d − 2)-subsimplex with F is of type (i).

(iii) F contains nF > 1 faces of Fi other than F .

We denote the set of faces of type (i) by Fc, those of type (ii) by Fhe and those
of type (iii) by Fnc . By definition Fi = Fc ∪ Fnc ∪ Fhe . For a given F ∈ Fnc the set
Fhe(F ) is defined as the set of associated faces contained in F (with F not included).
Observe that any face of Fhe has at least one hanging (d − 2)-subsimplex. An exam-
ple of allowed hanging nodes in two dimensions is given in Fig. 1 and an example of
disallowed hanging nodes is given in Fig. 2.

Now we introduce a modification of the average operator on faces with hanging
(d − 2)-subsimplices. For faces F ∈ Fnc we redefine the average operator by the
one-sided value

{∇uh}|F = ∇uh|κ1 (4.1)

Fig. 1 Allowed
non-conforming mesh in 2D

Fig. 2 Mesh violating
(Assumption A1) in 2D
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where κ1 is the unrefined triangle, i.e. the one associated with the face of F ∈ Fnc.
We also define the operator giving the one-sided value from the other side compared
to {·}, for all F ∈ Fnc and for all F̃ ∈ Fhe(F ) we define

〈uh〉 |
F̃

= uh|κ2

where κ2 is the smaller simplex, i.e. on the refined side. On all faces in Fc the def-
inition of the averages remain unchanged with equal weights 1/2,1/2. It is easy to
show that on a face with hanging (d − 2)-subsimplices

[∇uhvh] = [∇uh] 〈vh〉 + {∇uh}[vh].
Note that due to the hanging (d −2)-subsimplices the space W 0

h is no longer uniquely
defined. We therefore introduce

W
0
h = {

vh ∈ L2(�) |vh|F ∈ R, ∀F ∈ Fc ∪ Fnc

}
,

W 0
h = {

vh ∈ L2(�) |vh|F ∈ R, ∀F ∈ Fc ∪ Fhe

}
,

and observe that W
0
h ⊂ W 0

h. The L2-projection onto W
0
h and W 0

h is denoted by v

resp. v for any v ∈ L2(�). We then propose to show that if Th is a mesh with hanging
(d − 2)-subsimplices, respecting Assumption A1, and Vbs is the associated enriched
DG-space there exists a function that allows to prove the inf-sup condition.

Lemma 4.1 Let ah ∈ V 0
h and bh ∈ W

0
h and ch ∈ W 0

h be fixed. Then, there exists a
unique function φh ∈ Vbs such that⎧⎪⎪⎨

⎪⎪⎩
π0φh = ah,

{∇φh}s |F = bh|F ∀F ∈ Fc ∪ Fnc ∪ Fe,

〈φh〉|F = ch|F ∀F ∈ Fc ∪ Fhe

(4.2)

where {·}s is defined by the modified average operator of (4.1). Moreover φh satisfies
the following stability result∥∥h−1φh

∥∥2
K + |‖φh‖|2 ≤ c

(∥∥h−1ah

∥∥2
K + ∥∥h 1

2 bh

∥∥2
F + ∥∥h− 1

2 ch

∥∥2
Fi

)
. (4.3)

Proof As in the proof of Lemma 2.4 we only need to show the bound for ‖∇φh‖K .
In a similar fashion as for Lemma 2.4 we have

‖∇φh‖2
K = −(�φh,π0φh)K + ({∇φh}s , [φh]s

)
F + ([∇φh], 〈φh〉

)
Fi

= −(�φh, ah)K︸ ︷︷ ︸
I

+ (
bh, [φh]s

)
F︸ ︷︷ ︸

II

+ ([∇φh], ch

)
Fi︸ ︷︷ ︸

III

.

The terms I and II are treated in a similar fashion as above and for the term III we
have by a trace inequality:

III ≤ cT ‖∇φh‖K
∥∥h− 1

2 ch

∥∥
Fi

.
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It remains to establish that the number of unknowns matches the number of equations.
Recall that by the construction of the finite element space on each element we have
d + 2 degrees of freedom. This means one degree of freedom for each face of the
simplex and one on the volume. First we observe that nothing has changed on faces
without hanging (d − 2)-subsimplices, i.e. two conditions per face. We note that the
number of conditions on a given unrefined face F ∈ Fnc should equal the cardinality
of Fhe(F ) plus one since we have for each face on both side one degree of freedom to
assign. On faces F with (d − 2)-subsimplices, there is one equation on the unrefined
side and one condition for each face on the refined side, resulting in the cardinality
of Fhe(F ) plus one as expected. This means that every simplex has one condition per
face and one on the volume, resulting in the expected (d + 2) × NK equations. We
conclude that the system is square. �

The BSDG formulation on non-conforming meshes satisfying Assumption A1 is
given by (3.4), but with the modified average on faces with (d − 2)-subsimplices,
given by (4.1). It is straightforward to show the following inf-sup condition using the
technique developed in [8, 9].

|‖uh‖|aux ≤ c sup
wh∈Vbs

a(uh,wh)

|‖wh‖|aux

(4.4)

where the auxiliary norm is given by

|‖uh‖|2aux = ∥∥h− 1
2 [uh]

∥∥2
Fc∪Fnc

+ ‖∇uh‖2
K.

Now it only remains to show that |‖ ·‖|aux is a norm on Vbs . To this end, we would like
to show a Poincaré inequality. This is similar to Lemma 4.1 in [8] for the case without
hanging (d −2)-subsimplices. Note that on faces with hanging (d −2)-subsimplices,
we only control the average of the jump over the whole face, as given on the unrefined
side. This implies that we need to show that indeed the full jumps over each face in
Fhe can be controlled. This is a consequence of the Assumption A1, indeed it follows
that ∥∥h− 1

2 [uh]
∥∥2

Fnc
= ∥∥h− 1

2 [uh]
∥∥2

Fnc
+ ∥∥h− 1

2
([uh] − [uh]

)∥∥2
Fnc

. (4.5)

For the second term of the right hand side we consider any face F̃ ∈ Fnc . Again, let
κ1 denote the simplex on the unrefined side. On the other side of the face we define
by {κ2i} the set of simplices consisting of all elements having at least one hanging
(d − 2)-subsimplex contained in F̃ as node/edge. Moreover we let F2 denote the set
of faces such that F = ∂κ2i ∩ ∂κ2j for some i, j with i �= j . Note that all faces in
F2 must be type (i) by Assumption A1. A scaling argument from a macro reference
element including κ1 ∪ (∪κ2i ) we may deduce the upper bound

∥∥h− 1
2
([uh] − [uh]

)∥∥2
F̃

≤ c

(
‖∇uh‖2

κ1
+

∑
i

‖∇uh‖2
κ2i

+ ∥∥h− 1
2 [uh]

∥∥2
F2

)
. (4.6)

To prove (4.6) we have decomposed the difference between the jump and its average
in the contributions to the two sides. On the element κ1 we use approximation and a
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trace inequality. On the refined side one may readily show that if the gradients in the
elements κ2i are all zero and the jumps in F2 are zero then the function is constant
in

⋃
κ2i and hence the trace minus its average on F̃ is zero. Hence (4.6) follows by

scaling. Note that here we use the second part of Assumption A1(ii) to ensure that
faces with hanging (d −2)-subsimplices can not be nested (see Fig. 2). Since all faces
in F2 are type (i) may then conclude in a standard fashion, since

∥∥h− 1
2 [uh]

∥∥2
F2

≤ c

(∑
i

‖∇uh‖2
κ2i

+ ∥∥h− 1
2 [uh]

∥∥2
F2

)

this yields the Poincaré inequality and thus norm equivalence

c |‖uh‖| ≤ |‖uh‖|aux ≤ |‖uh‖|.
Optimal a priori error estimates in the norm |‖ · ‖| and in the L2-norm, now follows

in the standard fashion.

Remark 4.2 The conditions of Assumption A1 are sufficient and can be relaxed. In
particular, the second part of (ii) is unnecessarily strict. If it is relaxed, the above re-
sults may be proven using repeated use of (4.6). The constants in the above estimates
will depend on the local quasi uniformity of the mesh in a non-trivial way and may
degenerate as the number of levels increase (see the lower left element of Fig. 2.)

5 Raviart-Thomas approximation as post-processed Crouzeix-Raviart solution

In 1985, Marini [17] proposed an inexpensive method for the computation of the
Raviart-Thomas approximation based on the Crouzeix-Raviart method in the partic-
ular case of d = 2 and a elementwise constant f ∈ V 0

h . Let ucr ∈ Vcr be the Crouzeix-
Raviart solution defined by (3.1). Then, Marini proved that the Raviart-Thomas solu-
tion (wrt , u

0
rt ) ∈ Vrt × W 0

h of (3.3) is given by

w̃rt,κ = ∇ucr − f

2
(x − π0x),

ũ0
rt,κ = π0ucr − f

4

(|π0x|2 − π0|x|2). (5.1)

In the following, we propose a generalization to that formula for d = 2,3 and for
general right hand sides. Denote by ucr,0 ∈ Vcr the solution of (3.2). On each element
κ ∈ K, find (wrt,κ , u0

rt,κ ) ∈ RT0(κ) × V 0
h (κ) such that

(wrt,κ , qrt,κ )κ + (
u0

rt,κ ,∇ · qrt,κ

)
κ

= (ucr,0, qrt,κ · nκ)∂κ ∀qrt,κ ∈ RT0(κ),

−(∇ · wrt,κ , v0
rt,κ )κ = (f, v0

rt,κ )κ ∀v0
rt,κ ∈ V 0

h (κ).
(5.2)

Lemma 5.1 The solution of (5.2) exists and is unique.
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Proof Since the left hand side of (5.2) is the Raviart-Thomas operator on a mesh
consisting of one element, the solution of (5.2) exists and is unique. �

Lemma 5.2 The global solution of (5.2) for all elements κ ∈ K is the Raviart-
Thomas solution of (3.3).

Proof Denote by (wrt , u
0
rt ) ∈ Vrt × V 0

h the Raviart-Thomas solution of (3.3).

(i) Firstly, let us show that the solution wrt,κ lies in the global Raviart-Thomas
space, i.e. wrt,κ has continuous normal flux over edges. To do so, define wp and
u0

p ∈ V 0
h by

wp|κ = wrt,κ resp. u0
p|κ = u0

rt,κ ∀κ ∈ K.

We will see later that wp ∈ Vrt , but so far only wp|κ ∈ Vrt (κ) for all κ ∈ K
holds. Then, summing (5.2) over all elements, yields

(wp, qrt )K + (
u0

p,∇ · qrt

)
K = (

ucr,0, [qrt ]
)

Fi
∀qrt s.t. qrt |κ ∈ RT0(κ),

−(∇ · wp,v0
rt )K = (

f, v0
rt

)
K ∀v0

rt ∈ V 0
h .

(5.3)
Now, test in (5.3) with qrt = ∇vc and v0

rt = π0vc, for any vc ∈ Vcr , which yields

(wp,∇vc)K = (ucr,0, [∇vc])Fi
,

−(∇ · wp,vc)K = (f,π0vc)K,

since ∇ ·wp ∈ V 0
h . Further, since ucr is the Crouzeix-Raviart solution (first equa-

tion) and by integration by parts (second equation) there holds equivalently

(wp,∇vc)K = (π0f, vc)K,

(wp,∇vc)K − ([wp], vc

)
Fi

= (f,π0vc)K.
(5.4)

Subtracting now the first equation of (5.4) from the second one yields([wp], vc

)
Fi

= 0.

Now, choosing vc ∈ Vcr such that vc|F = [wp]|F for all F ∈ Fi yields that the
normal jumps of wp are zero and thus wp ∈ Vrt .

(ii) Let us now show that ∇ · wrt = ∇ · wp . Combining the second equation of (5.3)
and (3.3) yields (∇ · (wrt − wp), v0

rt

)
K = 0, ∀v0

rt ∈ V 0
h .

Now choosing v0
rt = ∇ · (wrt − wp) shows the desired result.

(iii) Further, we will show that wrt = wp . Observe that

‖wrt − wp‖2
K = (wrt ,wrt − wp)K − (wp,wrt − wp)K
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and by testing in the first equations of (5.3) and (3.3) with by testing in the
wrt − wp ∈ Vrt implies

(wrt ,wrt − wp)K = (wp,wrt − wp)K = 0

since ∇ ·(wrt −wp) = 0 and [wrt −wp]|F = 0 for all F ∈ Fi . Thus we conclude
that wrt = wp .

(iv) Finally we can conclude that u0
rt = u0

p . Indeed, by subtracting the first equation
of (5.3) from the first one of (3.3) yields(

u0
rt − u0

p,∇ · qrt

)
K = 0, ∀qrt ∈ Vrt

since wrt = wp . Invoking another integration by parts and (2.2) implies that([
u0

rt − u0
p

]
, {qrt }

)
F = ([

u0
rt − u0

p

]
s
, {qrt }s

)
F = 0

and choosing qrt ∈ Vrt such that {qrt }s |F = [u0
rt − u0

p]s |F ∈ R for all F ∈ F
results in ∥∥[

u0
rt − u0

p

]∥∥
F = ∥∥[

u0
rt − u0

p

]
s

∥∥
F = 0.

Since ‖[·]‖F is a norm on V 0
h we conclude that u0

rt = u0
p . �

One may now show that the result of [17] enters as a special case of Lemma 5.2.
We omit the proof.

Lemma 5.3 In the particular case of d = 2 and f ∈ V 0
h , the solution (5.1) coincides

with the solution of (5.2).

6 Bubble stabilized discontinuous Galerkin approximation as post-processed
Crouzeix-Raviart solution

In the previous Section we have seen a way to post-process the Crouzeix-Raviart so-
lution in order to get the Raviart-Thomas solution. In a similar way we will derive a
post-processing for the Crouzeix-Raviart solution to get a solution with superior local
conservation properties in the space Vbs . It is not exactly the BSDG solution, but suf-
ficiently close, with continuous normal flux over edges and preserving all other prop-
erties of the BSDG-method. This post-processing procedure will allow us to define
a scheme for a DG-method that needs no more globally coupled degrees of freedom
than the non-conforming Crouzeix-Raviart method.

Based on the Crouzeix-Raviart approximation ucr of (3.1) we post-process locally:
for all κ ∈ K, find up ∈ Vbs(κ) such that

aκ(up, vh) = (f, vh)κ − (ucr ,∇vh · nκ)∂κ ∀vh ∈ Vbs(κ), (6.1)

with

aκ(v,w) = (∇v,∇w)κ − (∇v · nκ,w)∂κ − (v,∇w · nκ)∂κ .
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Thus the approximation will satisfy the following local mass conservation property:

Remark 6.1 The discrete solution up of (6.1) satisfies

−
∫

∂κ

∇up · nκ ds =
∫

κ

f dx ∀κ ∈ K.

Lemma 6.2 (Local inf-sup condition) For all uh ∈ Vbs(κ), there holds

|]uh[|κ ≤ c sup
vh∈Vbs(κ)

aκ(uh, vh)

|]vh[|κ .

Proof Since the bilinear form aκ(·, ·) is nothing else than the bilinear form a(·, ·)
from the BSDG-method (3.4) for a mesh consisting of one single element, the proof
is similar to the stability proof of the BSDG-method [9] with some simplifications. �

Lemma 6.3 (Stability of post-processing) The post-processing is well-posed, more-
over the following stability estimate holds

|]up[|κ ≤ c
(‖f ‖κ + ∥∥h− 1

2 ucr

∥∥
∂K

)
where ucr denotes the Crouzeix-Raviart solution of (3.1).

Proof This is a direct consequence of the previous inf-sup condition and the Poincaré
inequality. �

Proposition 6.4 Let up be the post-processed Crouzeix-Raviart solution of (6.1).
Then the normal flux of up is continuous across interior faces, i.e.

‖[∇up]‖Fi
= 0.

Proof Observe, using (3.1) and integration by parts, that

0 = (f, vcr )K − (∇ucr ,∇vcr )K = (f, vcr )K − (
ucr , [∇vcr ]

)
Fi

for all vcr ∈ Vcr . Thus testing in (6.1) with vcr ∈ Vcr and summing over all elements
yields

−(∇up,∇vcr )K + ([up], {∇vcr}
)

F + ([∇up], vcr

)
Fi

+ ({up}, [∇vcr ]
)

Fi
= 0.

Finally, another integration by parts yields([∇up], vcr

)
Fi

= 0.

Now, choosing vcr ∈ Vcr such that

vcr |F = [∇up]|F ∀F ∈ Fi
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implies that ∥∥[∇up]∥∥Fi
= 0.

�

Similar as in Proposition 3.2 for the BSDG-solution of (3.4), the post-processed
solution of (6.1) satisfies the following properties.

Proposition 6.5 Let up be the solution of (6.1). Then, the following estimation holds

h‖f + �up‖K + ∥∥h− 1
2
({up} − ucr

)∥∥
F + ∥∥h− 1

2 [up]∥∥F ≤ ch‖f − π0f ‖K, (6.2)

and if f ∈ H 1(K) there holds

h‖f + �up‖K + ∥∥h− 1
2
({up} − ucr

)∥∥
F + ∥∥h− 1

2 [up]∥∥F ≤ ch2‖∇f ‖K. (6.3)

Proof By definition of up we locally have

0 = (f, vh)κ − (∇up,∇vh)κ + (∇up · nκ, vh)∂κ + (up − ucr ,∇vh · nκ)∂κ .

Summing over all elements leads to

0 = (f, vh)K − (∇up,∇vh)K + ({∇up}, [vh]
)

F + ([up], {∇vh}
)

F

+ ([∇up], {vh}
)

Fi
+ ({up} − ucr , [∇vh]

)
Fi

. (6.4)

Now, using integration by parts we get that

0 = (f + �up,vh)K + ({up} − ucr , [∇vh]
)

Fi
+ ([up], {∇vh}

)
F .

Choosing vh = φh as the projection defined by Lemma 2.4 with ah = h2(π0f +
�up), bh = h−1({up} − ucr) and ch = h−1[up] yields that

∥∥h(π0f + �up)
∥∥2

K + ∥∥h− 1
2 ({up} − ucr )

∥∥2
Fi

+ ∥∥h− 1
2 [up]∥∥2

F

= (π0f − f,φh)K ≤ h‖π0f − f ‖K
∥∥h−1φh

∥∥
K

≤ ch‖π0f − f ‖K
(∥∥h(π0f + �up)

∥∥2
K + ∥∥h− 1

2
({up} − ucr

)∥∥2
Fi

+ ∥∥h− 1
2 [up]∥∥2

F
) 1

2

using the stability estimate (2.6). Therefore∥∥h(π0f + �up)
∥∥

K + ∥∥h− 1
2
({up} − ucr

)∥∥
Fi

+ ∥∥h− 1
2 [up]∥∥F ≤ ch‖π0f − f ‖K.

Finally observe that∥∥h(f + �up)
∥∥

K ≤ ∥∥h(π0f + �up)
∥∥

K + h‖f − π0f ‖K,

which completes the result. �
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Next, let us prove a lemma that will be helpful in the following proposition.

Lemma 6.6 Let up be the post-processed Crouzeix-Raviart solution of (6.1) and uh

be the BSDG solution of (3.4). Then there holds∥∥π0(uh − up)
∥∥

K = 0.

Proof Let vh ∈ Vbs be the special function defined by Lemma 3.4 with ah = π0(uh −
up). Then, using equation (6.4) and integrating by parts yields

−(up,�vh)K = (f, vh)K

since [∇up] = 0 by Proposition 6.4. In a similar way, integrating the right hand side
of (3.5) by parts we obtain

−(uh,�vh)K = (f, vh)K

and thus ‖π0(uh − up)‖K = 0. �

Proposition 6.7 Let up be the post-processed Crouzeix-Raviart solution of (6.1)
and uh be the BSDG solution of (3.4). Then there holds

‖uh − up‖K + h|‖uh − up‖| ≤ Ch2‖f − π0f ‖K (6.5)

and∥∥h�(uh − up)
∥∥

K + ∥∥h 1
2 [∇(uh − up)]∥∥Fi

+ ∥∥h− 1
2 [uh − up]∥∥F ≤ Ch‖f − π0f ‖K.

(6.6)

Proof Let vh ∈ Vbs and introduce the following auxiliary norm

|‖vh‖|2r := ‖h�vh‖2
K + ∥∥h 1

2 [∇vh]
∥∥2

Fi
+ ∥∥h− 1

2 [vh]
∥∥2

F .

Then, using the triangle inequality, we immediately conclude by Propositions 3.2
and 6.5 that

|‖uh − up‖|r ≤ |‖uh − u‖|r + |‖u − up‖|r ≤ ch‖f − π0f ‖K, (6.7)

where u denotes the exact solution of (1.1). Therefore (6.6) holds. To prove (6.5),
observe that by the zero average property of uh − up (Lemma 6.6) and (2.4) we have

‖uh − up‖K ≤ ch
∥∥∇(uh − up)

∥∥
K. (6.8)

On the other hand using the notation δh = uh − up and proceeding similarly as in
Lemma 2.4 we get

‖∇δh‖2
K = −(�δh, δh)K + ([∇δh], {δh}

)
Fi

+ ({δh}, [δh]
)

F

≤ ρ1‖∇δh‖K + ρ2
∥∥h−1δh

∥∥2
K + c|‖δh‖|r
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Fig. 3 Commutative diagram of
different numerical algorithms
for the model problem (1.1) with
piecewise constant source term
f

for any arbitrary small ρ1, ρ2 > 0. Invoking (6.8) and choosing ρ1, ρ2 sufficiently
small yields ∥∥∇(uh − up)

∥∥
K ≤ c|‖uh − up‖|r .

Now, respecting the trace and inverse inequalities combined with (6.8) then finally
provides

‖uh − up‖K + h|‖uh − up‖| ≤ ch|‖uh − up‖|r .
�

As consequence we can deduce the following theorem using the optimality of uh.

Theorem 6.8 Let u ∈ H 2(�) be the exact solution of (1.1) and up the post-processed
Crouzeix-Raviart solution of (6.1). Then there holds

‖u − up‖K + h|‖u − up‖| ≤ ch2(‖u‖2,K + ‖f − π0f ‖K
)
.

Proof Given the optimality of uh, see [8, Theorems 7.4 and 7.5], i.e.

‖u − uh‖K + h|‖u − uh‖| ≤ ch2‖u‖2,K

we deduce the result by applying a triangle inequality and Proposition 6.7. �

Thus, we finish this section by concluding that the post-processed solution up

of (6.1) shares all the properties of the BSDG solution. In addition to that up has
continuous normal fluxes over edges.

7 Relation of finite element methods for piecewise constant data

For piecewise constant data f , we will investigate the relation of the presented
schemes and post-processing algorithms.
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To do that let us first introduce the following operator. Denote by Rbs : Vrt ×V 0
h →

Vbs the reconstruction operator defined such that

∇Rbs

(
qrt , v

0
rt

) = qrt and π0Rbs

(
qrt , v

0
rt

) = v0
rt

for all (qrt , v
0
rt ) such that v0

rt ∈ V 0
h and qrt |κ ∈ RT0(κ) for all κ ∈ K. The bijectivity

of this operator is shown in Sect. 4.4.3 of [7]. Its inverse is given by (∇·,π0·).
Then, denote by uc the Crouzeix-Raviart solution of (3.1) resp. (3.2), uh ∈ Vbs

the BSDG solution (3.4), up ∈ Vbs the post-processing defined by (6.1), (wrt , u
0
rt ) ∈

Vrt × V 0
h the Raviart-Thomas solution (3.3) and (wp,u0

p) ∈ Vrt × V 0
h the post-

processing defined by (5.2).
Then we also introduce the two post-processing operators

PPbs : Vcr → Vbs and Mrt : Vcr → Vrt × V 0
h

such that PPbs(uc) = up and Mrt(uc) = (wp,u0
p). Then assuming that the data f is

piecewise constant, i.e. f ∈ V 0
h , we conclude that

• uh = up by Proposition 6.7,
• (wrt , u

0
rt ) = (wp,u0

p) by Lemma 5.2,

• Rbs(wrt , u
0
rt ) = uh and R−1

bs uh = (wrt , u
0
rt ) by Lemma 20 of [7].

As consequence there holds

PPbs(uc) = Rbs

(
Mrt (uc)

)
and Mrt(uc) = R−1

bs

(
PPbs(uc)

)
.

In other words, the diagram of Fig. 3 commutes.
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