Skip to main content
Log in

Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Treatment of large (diameter 12–25 mm) or giant (diameter >25 mm) cerebral aneurysms with a broad neck in the cranio-cervical area is difficult and carries relatively high risks, even with surgical and/or endovascular methods. To this end, we have been developing a high-performance, self-expanding stent graft which consists of a commercially available NiTi stent (diameter 5 mm, length 20 mm) initially covered with a thin microporous segmented polyurethane membrane fabricated by the dip-coating method. Micropores are then created by the excimer laser ablation technique, and the outer surface is coated with argatroban. There are 2 types of micropore patterns: circular-shaped pore type (pore: diameter 100 μm, opening ratio 12.6%) and the bale-shaped pore type (pore: size 100 × 268 μm, opening ratio 23.6%). This self-expanding stent graft was tested on side-wall aneurysms of both canine carotid arteries that were experimentally induced using the venous pouches from the external jugular veins, with the self-expanding stent graft on one side and a bare self-expanding stent on the other side. All carotid arteries were patent and free of marked stenosis after 1 month. All aneurysms were occluded by stent grafts, while patent in those treated with bare stents. Histologically, the stent grafts with bale-shaped micropores and a high opening ratio were associated with less intimal hyperplasia (187 ± 98 μm) than the bare stents (341 ± 146 μm) or the stent grafts with circular micropores and a low opening ratio (441 ± 129 μm). A pore ratio of 23.6% was found to control intimal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cragg AH, Dake MD. Treatment of peripheral vascular disease with stent-grafts. Radiology. 1997;205:307–14.

    PubMed  CAS  Google Scholar 

  2. Palmaz JC. Review of polymeric graft materials for endovascular applications. J Vasc Interv Radiol. 1998;9:7–13.

    Article  PubMed  CAS  Google Scholar 

  3. Nishi S, Nakayama Y, Ishibashi-Ueda H, Matsuda T. Occlusion of experimental aneurysms with heparin-loaded, microporous stent grafts. Neurosurgery. 2003;53:1397–405.

    Article  PubMed  Google Scholar 

  4. Nishi S, Nakayama Y, Ishibashi-Ueda H, Okamoto Y, Kinoshita Y. High performance self-expanding stent graft; development and application to experimental aneurysms. J Artif Organs. 2009;12:35–9.

    Article  PubMed  CAS  Google Scholar 

  5. Li MH, Li YD, Fang C, Gu BX, Wang W, Cheng YS, Wang YL, Gao BL, Zao JG, Wang J, Li M. Endovascular treatment of giant or very large intracranial aneurysms with different modalities: analysis of 20 cases. Neuroradiology. 2007;49:819–28.

    Article  PubMed  Google Scholar 

  6. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg. 2003;37:472–80.

    Article  PubMed  Google Scholar 

  7. Farrar DJ, Litwak P, Lawson JH, Ward RS, White KA, Robinson AJ, Rodvien R, Hill JD. In vivo evaluations of a new thromboresistant polyurethane for artificial heart blood pumps. J Thorac Cardiovasc Surg. 1988;95:191–200.

    PubMed  CAS  Google Scholar 

  8. Giancario M, Mirko DO, Lacono C, Rozzanigo U, Serio G, Procacci C. Gastrointestinal artery stamp haemorrhage following pylorus-sparing whipple procedure: treatment with covered stents. Dig Surg. 2002;19:237–40.

    Article  Google Scholar 

  9. Kikumoto R, Tamao Y, Tezuka T, Tonomura S, Hara H, Ninomiya K, Hijikata A, Okamoto S. Selective inhibition of thrombin by (2R, 4R)-4-methyl-1-[N2-[(3-methyl-1, 2, 3, 4-tetrahydro-8-quinolinyl) sulfonyl]-l-arginyl]]-2-piperidinecarboxylic acid. Biochemistry. 1984;23:85–90.

    Article  PubMed  CAS  Google Scholar 

  10. Kumada T, Abiko Y. Comparative study on heparin and a synthetic thrombin inhibitor no. 805 (MD-805*) in experimental antithrombin III-deficient animals. Thromb Res. 1981;24:285–98.

    Article  PubMed  CAS  Google Scholar 

  11. Imanishi T, Arita M, Hamada M, Tomobuchi Y, Hano T, Nishio I. Effects of locally administration of argatroban using a hydrogel-coated balloon catheter on intimal thickening induced by balloon injury. Jpn Circ J. 1997;61:256–62.

    Article  PubMed  CAS  Google Scholar 

  12. Richey T, Iwata H, Oowaki H, Uchida E, Matsuda S, Ikada Y. Surface modification of polyethylene balloon catheters for local drug delivery. Biomaterials. 2000;21:1057–65.

    Article  PubMed  CAS  Google Scholar 

  13. Vinuela F, Duckwiler G, Mawad M. Guglielmi detachable coil embolization of acute intracranial aneurysms: perioperative anatomical and clinical outcome in 403 patients. J Neurosurg. 1997;86:475–82.

    Article  PubMed  CAS  Google Scholar 

  14. Ross IB, Weil A, Piotin M, Moret J. Endovascular treatment of distally located giant aneurysms. Neurosurgery. 2002;47:1147–52.

    Article  Google Scholar 

  15. Mordasini P, Schroth G, Guzman R, Barth A, Seiler RW, Remonda L. Endovascular treatment of posterior circulation cerebral aneurysms by using Guglielmi detachable coils: a 10-year single center experience with special regard do technical development. AJNR Am J Neuroradiol. 2005;26:1732–8.

    PubMed  Google Scholar 

  16. Fiorella D, Albuquerque FC, McDougall CG. Durability of aneurysm embolization with matrix detachable coils. Neurosurgery. 2006;58:51–9.

    Article  PubMed  Google Scholar 

  17. Magoufis GL, Vrachliotis TG, Stringaris KA. Covered stents to treat partial recanalization of Onyx-occluded giant carotid aneurysm. J Endovasc Ther. 2004;11:742–6.

    Article  PubMed  Google Scholar 

  18. Ahn JY, Han IB, Kim TG, Yoon PH, Lee YJ, Lee BH, Seo SH, Kim DI, Hong CK, Joo JY. Endovascular treatment of intracranial vertebral artery dissection with stent placement or stent-assisted coiling. AJNR Am J Neuroradiol. 2006;27:1514–20.

    PubMed  CAS  Google Scholar 

  19. Gallas S, Pasco A, Cottier JP, Gabrillargues J, Drouineau J, Cognard C, Herbreteau D. A multicenter study of 705 ruptured intracranial aneurysms treated with Gugliemi detachable coils. AJNR Am J Neuroradiol. 2005;26:1723–31.

    PubMed  Google Scholar 

  20. Malisch TW, Guglielmi G, Vinuela F, Duckwiller G, Goin YP, Martin N, Frazee J. Intracranial aneurysms treated with Guglielmi detachable coils: midterm clinical results in a consecutive series of 100 patients. J Neurosurgery. 1997;28:219–39.

    Google Scholar 

  21. Geremia G, Brack T, Brennecke L, Haklin M, Falter R. Occlusion of experimentally created fusiform aneurysms with porous metallic stents. AJNR Am J Neuroradiol. 2000;21:739–45.

    PubMed  CAS  Google Scholar 

  22. Krings T, Busch B, Sellhaus B, Drexler AY, Bovi M, Hermanns-Sachweh B, Scherer K, Gilsbach JM, Thron A, Hans FJ. Long-term histological and scanning electron microscopy results of endovascular and operative treatments of experimentally induced aneurysms in the rabbit. Neurosurgery. 2006;59:911–24.

    Article  PubMed  Google Scholar 

  23. Asahara T, Bauters C, Pastore CJ, Keamey M, Rossow S, Bunting S, Ferrara N, Symes JF, Isner JM. Local delivery of vascular endothelial growth factor accelerates re-endothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation. 1995;91:2793–801.

    PubMed  CAS  Google Scholar 

  24. Van Belle E, Maillard L, Tio FO, Isner JM. Accelerated endothelialization by local delivery of recombinant human endothelial growth factor reduces in-stent intimal formation. Biochem Biophys Res Commun. 1997;235:311–6.

    Article  PubMed  Google Scholar 

  25. Nishi S, Nakayama Y, Ueda H, Ishikawa M, Matsuda T. A new stent graft with thin walled controlled micropored polymer covering. Intervent Neuroradiol. 2000;6[Suppl 1]:175–80.

    Google Scholar 

  26. Chuapetcharasopon C, Wright KC, Wallace S, Dobben RL, Gianturco C. Treatment of experimentally induced atherosclerosis in swine iliac arteries; a comparison of self-expanding and balloon-expanded stents. Cardiovasc Intervent Radiol. 1992;15:143–50.

    Article  PubMed  CAS  Google Scholar 

  27. Waller BF, Orr CM, Pinkerton CA, Van Tassel JW, Pinto RP. Morphologic observation late after coronary balloon angioplasty: mechanisms of acute injury and relationship to restenosis. Radiology. 1990;174:961–7.

    PubMed  CAS  Google Scholar 

  28. Li MH, Zhu YO, Fang C, Wang W, Zhang PL, Cheng YS, Tan HO, Wang JB. The feasibility and efficacy of treatment with a Willis covered stent in recurrent intracranial aneurysms after coiling. AJNR Am J Neuroradiol. 2008;29:1395–400.

    Article  PubMed  CAS  Google Scholar 

  29. Serruys PW, Strauss BH, Beatt KJ, Bertrand ME, Puel J, Rickards AF, Meier B, Goy JJ, Vogt P, Kappenberger L. Angiographic follow-up after placement of a self-expanding coronary artery stent. N Engl J Med. 1991;324:13–7.

    Article  PubMed  CAS  Google Scholar 

  30. Flugelman MY, Virmani R, Leon MB, Bowman RL, Dichek DA. Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. Circ Res. 1992;70:348–54.

    PubMed  CAS  Google Scholar 

  31. Kusaba A, Fischer CR, Matulewskin TJ, Matsumoto T. Experimental study of the influence of porosity on development of neointima in Goa Tex grafts: a method to increase long-term patency rate. Am Surg. 1981;47:347–54.

    PubMed  CAS  Google Scholar 

  32. Schürmann K, Haage P, Meyer J, Vorwerk D, Klosterhalfen B, Großkortenhaus S, Hartmann J, Kulisch A, Günther RW. Comparison of two stent-grafts with different porosity: in vivo studies in a sheep model. J Vasc Interv Radiol. 2000;11:493–502.

    Article  PubMed  Google Scholar 

  33. Golden MA, Hanson SR, Kirkman TR, Schneider PA, Clowes AW. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J Vasc Surg. 1990;11:838–45.

    PubMed  CAS  Google Scholar 

  34. Clowes AW, Zacharias RK, Kirkman TR. Early endothelial coverage of synthetic arterial grafts: porosity revisited. Am J Surg. 1987;1553:501–4.

    Article  Google Scholar 

  35. Boretos JW, Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science. 1967;158:1481–2.

    Article  PubMed  CAS  Google Scholar 

  36. Grasel TG, Cooper SL. Surface properties and blood compatibility of polyurethaneureas. Biomaterials. 1986;7:315–28.

    Article  PubMed  CAS  Google Scholar 

  37. Szycher M, Siciliano AA, Reed AM. Polyurethanes in medical devices. Med Des Mater. 1991;1:18–25.

    PubMed  CAS  Google Scholar 

  38. Horita N, Tomita H, Takamuro M, Fuse S, Tsutsumi H. Development of a reexpandable covered stent for children. Catheter Cardiovasc Interv. 2006;68:727–34. (discussion p. 735)

    Article  PubMed  Google Scholar 

  39. Müller-Hülsbeck S, Walluscheck KP, Priebe M, Grimm J, Cremer J, Heller M. Experience on endothelial cell adhesion on vascular stents and stent-grafts: first in vitro results. Invest Radiol. 2002;37:314–20.

    Article  PubMed  Google Scholar 

  40. Matsuda T, Nakayama Y. Surface microarchitectural design in biomedical applications; in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser. J Biomed Mater Res. 1996;31:235–42.

    Article  PubMed  CAS  Google Scholar 

  41. Li MH, Gao BL, Wang YL, Fang C, Li YD. Management of pseudoaneurysms in the intracranial segment of the internal carotid artery with covered stents specially designed for use in the intracranial vasculature: technical notes. Neuroradiology. 2006;48:841–6.

    Article  PubMed  Google Scholar 

  42. Krings T, Hans FJ, Möller-Hartmann W, Brunn A, Thiex R, Schmitz-Rode T, Verken P, Scherer K, Dreeskamp H, Stein KP, Gilsbach JM, Thron A. Treatment of experimentally induced aneurysms with stents. Neurosurgery. 2005;56:1347–60.

    Article  PubMed  Google Scholar 

  43. Zhong H, Matsui O, Xu K, Ogi T, Okuda M, Liu Y, Sanada J, Sun C. Partially covered stent-graft implantation in rabbit aorta: a new model to investigate bioactive stent-grafts in small animals. J Endovasc Ther. 2009;16:154–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shogo Nishi or Yasuhide Nakayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishi, S., Nakayama, Y., Ishibashi-Ueda, H. et al. Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia. J Artif Organs 14, 348–356 (2011). https://doi.org/10.1007/s10047-011-0581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-011-0581-9

Keywords

Navigation