Skip to main content

Advertisement

Log in

Groundwater cooling of a supercomputer in Perth, Western Australia: hydrogeological simulations and thermal sustainability

Refroidissement par eaux souterraines d’un superordinateur à Perth, Australie Occidentale: simulations hydrogéologiques et durabilité thermique

Enfriamiento por agua subterránea de una supercomputadora en Perth, Australia Occidental: simulaciones hidrogeológicas y sustentabilidad térmica

西澳大利亚珀斯超级计算机地下水冷却: 水文地质模拟和热量可持续性

Resfriamento por águas subterrâneas em Perth, Austrália Ocidental: simulações hidrogeológicas e sustentabilidade termal

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater cooling (GWC) is a sustainable alternative to conventional cooling technologies for supercomputers. A GWC system has been implemented for the Pawsey Supercomputing Centre in Perth, Western Australia. Groundwater is extracted from the Mullaloo Aquifer at 20.8 °C and passes through a heat exchanger before returning to the same aquifer. Hydrogeological simulations of the GWC system were used to assess its performance and sustainability. Simulations were run with cooling capacities of 0.5 or 2.5 Mega Watts thermal (MWth), with scenarios representing various combinations of pumping rate, injection temperature and hydrogeological parameter values. The simulated system generates a thermal plume in the Mullaloo Aquifer and overlying Superficial Aquifer. Thermal breakthrough (transfer of heat from injection to production wells) occurred in 2.7–4.3 years for a 2.5 MWth system. Shielding (reinjection of cool groundwater between the injection and production wells) resulted in earlier thermal breakthrough but reduced the rate of temperature increase after breakthrough, such that shielding was beneficial after approximately 5 years pumping. Increasing injection temperature was preferable to increasing flow rate for maintaining cooling capacity after thermal breakthrough. Thermal impacts on existing wells were small, with up to 10 wells experiencing a temperature increase ≥ 0.1 °C (largest increase 6 °C).

Résumé

Le refroidissement par eaux souterraines (RES) est une alternative durable aux technologies conventionnelles de refroidissement pour les superordinateurs. Un système RES a été mis en œuvre pour le Centre de Supercalcul de Pawsey à Perth en Australie occidentale. L’eau souterraine est extraite de l’aquifère Mullaloo à une température de 20.8 °C et circule à travers un échangeur à chaleur avant d’être réinjectée dans le même aquifère. Des simulations hydrogéologiques du système RES ont été utilisées pour évaluer sa performance et durabilité. Les simulations ont été effectuées en considérant des capacités de refroidissement de 0.5 ou 2.5 Mega Watts thermique (MWth), avec des scénarios représentant différentes combinaisons de débit de pompage, de température d’injection et de valeurs de paramètres hydrogéologiques. Le système simulé génère un panache thermique dans l’aquifère de Mullaloo et dans l’aquifère superficiel sus jacent. La percée thermique (transfert de chaleur à partir de l’injection vers les puits de production) s’est produite après 2.7–4.3 ans pour le système 2.5 MWth. Un blindage (réinjection d’eau souterraine froide entre les puits d’injection et de production) a entraîné une percée thermique plus tôt, mais a réduit le taux d’augmentation de la température après la percée, de telle sorte que ce blindage a été bénéfique après environ 5 ans de pompage. L’augmentation de la température d’injection était préférable à l’augmentation du débit pour maintenir la capacité de refroidissement après la percée thermique. Les impacts thermiques sur les puits existants étaient faibles, avec un maximum de 10 puits connaissant une augmentation de température ≥ 0.1 °C (la plus grande augmentation est de 6 °C).

Resumen

El enfriamiento por agua subterránea (GWC) es una alternativa sustentable para las tecnologías convencionales de enfriamiento de supercomputadoras. Se implementó un sistema GWC para el Pawsey Supercomputing Centre en Perth, Australia occidental. El agua subterránea se extrae del acuífero Mullaloo a 20.8 °C y pasa a través de un intercambiador de calor antes de retornar al mismo acuífero. Las simulaciones hidrogeológicas del sistema GWC se usaron para evaluar su rendimiento y sustentabilidad. Las simulaciones se corrieron con capacidades de enfriamiento de 0.5 o 2.5 Mega Watts térmicos (MWth), con escenarios que representan varias combinaciones de caudales de bombeo, temperaturas de inyección y valores de parámetros hidrogeológicos. El sistema simulado genera una pluma térmica en el acuífero Mullaloo y en el acuífero superficial suprayacente. La ruptura térmica (transferencia de calor a partir de la inyección a los pozos de producción) ocurrió en 2.7–4.3 años para una sistema de 2.5 MWth. El blindaje (reinyección de agua subterránea fría entre los pozos de inyección y los pozos de producción) dio lugar a una ruptura térmica más temprana, pero redujo la tasa de aumento de la temperatura después de la ruptura, de tal manera que el blindaje fue beneficioso después de aproximadamente 5 años de bombeo. El aumento de temperatura de inyección fue preferible al aumento de la tasa de flujo para mantener la capacidad de enfriamiento después de la ruptura térmica. Los impactos térmicos en los pozos existentes fueron pequeños, con hasta 10 pozos experimentando un aumento de la temperatura ≥ 0.1 ° C (el incremento mayor fue de 6 ° C).

摘要

对于超级计算机常规冷却技术来说,地下水冷却一个可持续的可替代选择。西澳大利亚珀斯Pawsey超级计算中心应用了地下水冷却系统。20.8 °C的地下水从Mullaloo含水层抽取,在返回含水层前经过热交换器。利用地下水冷却系统的水文地质模拟评价其性能和可持续性。模拟时冷却能力为0.5或2.5 百万瓦热量,展现抽水量、注入温度和水文地质参数值各种组合方案。模拟系统在Mullaloo含水层及上覆的表层含水层产生了热卷流。一个2.5 百万瓦热量系统2.7–4.3 年后出现了热突围 (从注入井到生产井的热传递)。屏蔽 (注入井和生产井之间的冷却地下水再注入) 导致较早的热突围,但降低了突围后温度增加的速度,这样,大约抽水5年后,屏蔽是非常有益的。对突围后保持冷却能力来说,增加注入温度比增加流速更好。对现有井的热影响非常小, 有10口井温度升高了 ≥ 0.1 °C (升高最多的为6 °C)。

Resumo

O resfriamento por águas subterrâneas (RPAS) é uma alternativa sustentável às tecnologias de resfriamento convencional para supercomputadores. Um sistema de RPAS foi implementado para o Centro de Supercomputação de Pawsey em Perth, Austrália Ocidental. A água subterrânea é extraída a partir do Aquífero Mullaloo à 20.8 °C e passa através de um trocador de calor antes de retornar ao mesmo aquífero. Simulações hidrogeológicas do sistema de RPAS foram usadas para avaliar seu desempenho e sustentabilidade. Simulações foram executadas com capacidades de resfriamento de 0.5 ou 2.5 Mega Watts termais (MWt), com cenários representando várias combinações de taxas de bombeamento, temperatura de injeção e valores de parâmetros hidrogeológicos. O sistema simulado gera uma pluma termal no Aquífero Mullaloo e no Aquífero Superficial sobrejacente. Colapso termal (transferência de calor da injeção ao poço de produção) ocorreu de 2.7–4.3 anos para um sistema de 2.5 MWt. A proteção (reinjeção da água fria entre os poços de injeção e produção) resultou em um colapso termal anterior mas reduziu a taxa de aumento da temperatura despois do colapso, tal que a proteção foi benéfica depois de aproximadamente 5 anos de bombeamento. O aumento da temperatura de injeção foi preferido à aumentar a taxa de fluxo na manutenção da capacidade de resfriamento após o colapso termal. Impactos termais nos poços existentes foram pequenos, com um total de 10 poços apresentando um aumento de temperatura ≥ 0.1 °C (maior aumento 6 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968. doi:10.1111/j.1745-6584.2005.00052.x

    Article  Google Scholar 

  • Banks D (2009) Thermogeological assessment of open-loop well-doublet schemes: a review and synthesis of analytical approaches. Hydrogeol J 17:1149–1155. doi:10.1007/s10040-008-0427-6

    Article  Google Scholar 

  • Banks D (2012) An introduction to thermogeology: ground source heating and cooling, 2nd edn. Wiley, Chichester, UK

  • Bonte M (2015) Impacts of shallow geothermal energy on groundwater quality. IWA, London

  • Bureau of Meteorology (2013) Climate statistics for Australian locations: Perth metro. http://www.bom.gov.au/climate/averages/tables/cw_009225_All.shtml. Accessed 31 January 2013

  • Clyde CG, Madabhushi GV (1983) Spacing of wells for heat-pumps. J Water Resour Plan Manag 109:203–212

    Article  Google Scholar 

  • Davidson WA (1995) Hydrogeology and groundwater resources of the Perth region, Western Australia. Geol Surv Western Australia Bull 142

  • Davidson WA, Yu X (2007) Perth regional aquifer modelling system (PRAMS) model development: hydrogeology and groundwater modelling. Hydrogeology Record Series HG20, Dept. of Water, Gov. of Western Australia, Perth, Australia

  • de Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers. Academic, San Diego, CA

  • Department of Water (2004) Perth groundwater atlas: groundwater contours, May 2003. http://www.water.wa.gov.au/idelve/gwa/metadata_statements/gwcont_min.html. Accessed 29 July 2011

  • Diersch HJG (2014) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Heidelberg, Germany

  • Domenico PA, Mifflin MD (1965) Water from low-permeability sediments and land subsidence. Water Resour Res 1:563–576. doi:10.1029/WR001i004p00563

    Article  Google Scholar 

  • Douglas GB, Trefry MG, Wylie JT, Wilkes PG, Puzon GJ, Kaksonen AH (2015) Shallow aquifer heat rejection: rapid assessment of potential biogeochemical impacts in the Mullaloo Aquifer, Western Australia. Geothermics 53:429–445. doi:10.1016/j.geothermics.2014.08.004

    Article  Google Scholar 

  • Ebrahimi K, Jones GF, Fleischer AS (2014) A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew Sust Energ Rev 31:622–638. doi:10.1016/j.rser.2013.12.007

    Article  Google Scholar 

  • Geoscience Australia (2010) 1 second SRTM derived digital elevation model version 1.0. http://nedf.ga.gov.au/geoportal/catalog/main/home.page. Accessed 1 December 2012

  • Gringarten AC (1978) Reservoir lifetime and heat recovery factor in geothermal aquifers used for urban heating. Pure Appl Geophys 117:297–308

    Article  Google Scholar 

  • Gringarten AC, Sauty JP (1975) A theoretical study of heat extraction from aquifers with uniform regional flow. J Geophys Res 80:4956–4962. doi:10.1029/JB080i035p04956

    Article  Google Scholar 

  • Horowitz FG, Regenauer-Lieb K (2009) Mean annual surface temperature (MAST) and other thermal estimates for Australia and New Zealand from 6 years of remote sensing observations. New Zealand Geothermal Workshop, Rotorua, NZ, November 2009

  • Hot Dry Rocks Pty Ltd (2008) Geothermal energy potential in selected areas of Western Australia (Perth Basin). Hot Dry Rocks, Victoria, UK

  • Kasenow M (2001) Applied groundwater hydrology and well hydraulics. Water Resources, Highlands Ranch, CO

  • Krom T, Lane R (2012) A novel approach to groundwater model development In: Maloszewski P, Witczak S, Malina G (eds) Groundwater quality sustainability. IAH Selected Papers on Hydrogeology 17, IAH, Wallingford, UK, pp 321–330

  • Liu Y, Qin XS, Chiew YM (2013) Investigation on potential applicability of subsurface cooling in Singapore. Appl Energy 103:197–206. doi:10.1016/j.apenergy.2012.09.024

    Article  Google Scholar 

  • McDonnell MT (2013) Supercomputer design: an initial effort to capture the environmental, economic, and societal impacts. Chemical and Biomolecular Engineering, TRACE, Univ. of Tenn., Knoxville, TN

  • Meijer GI (2010) Cooling energy-hungry data centers. Science 328:318–319. doi:10.1126/science.1182769

    Article  Google Scholar 

  • Meyer N, Ries M, Solbrig S, Wettig T (2013) iDataCool: HPC with hot-water cooling and energy reuse. In: Kunkel J, Ludwig T, Meuer H (eds) Lecture Notes in Computer Science, vol 84882014. Supercomputing, Proc. ISC 20114 Leipzig, Germany, June 2014, pp 383–394

  • Middlemis H (2000) Murray-Darling Basin Commission: groundwater flow modelling guideline. Aquaterra Consulting Pty Ltd., South Perth

  • Molina-Giraldo N, Bayer P, Blum P (2011) Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions. Int J Therm Sci 50:1223–1231. doi:10.1016/j.ijthermalsci.2011.02.004

    Article  Google Scholar 

  • Molson JW, Frind EO, Palmer CD (1992) Thermal-energy storage in an unconfined aquifer: 2, model development, validation, and application. Water Resour Res 28:2857–2867. doi:10.1029/92wr01472

    Article  Google Scholar 

  • Papadopulos SS, Larson SP (1978) Aquifer storage of heated water: part II, numerical simulation of field results. Ground Water 16:242–248

    Article  Google Scholar 

  • Playford PE, Cockbain AE, Low GH (1976) Geology of the Perth Basin Western Australia. Geol Soc Western Australia Bull 124

  • Rockwater Pty Ltd (2011) Aquifer heat rejection for cooling the proposed Pawsey Centre. H2 level hydrogeological assessment. Rockwater, Jolimont, Australia

  • Rockwater Pty Ltd (2012) H3 level hydrogeological assessment for groundwater supply and injection for the proposed Pawsey supercomputer. Rockwater, Jolimont, Australia

  • Rockwater Pty Ltd (2013a) Bore completion and test pumping report. Pawsey Centre groundwater cooling borefield. Rockwater, Jolimont, Australia

  • Rockwater Pty Ltd (2013b) Groundwater licence operating strategy for the Pawsey Centre groundwater cooling borefield. Rockwater, Jolimont, Australia

  • Romero M, Hasselqvist H, Svensson G (2014) Supercomputers keeping people warm in the winter. 2nd International Conference on ICT for Sustainability, Stockholm, September 2014

  • Sarbu I, Sebarchievici C (2014) General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build 70:441–454. doi:10.1016/j.enbuild.2013.11.068

    Article  Google Scholar 

  • Sauty JP, Gringarten AC, Fabris H, Thiery D, Menjoz A, Landel PA (1982) Sensible energy-storage in aquifers: 2, field experiments and comparison with theoretical results. Water Resour Res 18:253–265. doi:10.1029/WR018i002p00253

    Article  Google Scholar 

  • Sharma R, Shih R, McReynolds A, Bash C, Patel C, Christian T (2010) Water utilization in data center infrastructure. ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, November 2014

  • Sheldon HA, Reid LB, Schaubs PM, Trefry MG, Regenauer-Lieb K (2014) SESKA groundwater cooling: hydrothermal simulations for the ARRC/Pawsey site. CSIRO Report EP143769, CISRO, Bentley, Australia

  • Smith AJ (1999) Application of a tidal method for estimating aquifer diffusivity: Swan River, western Australia. CSIRO Land and Water Technical Report 13/99, CISRO, Bentley, Australia

  • Trefry MG, Lester DR, Metcalfe GP, Sheldon HA, Regenauer-Lieb K, Poulet T, Ricard LP (2014) SESKA groundwater cooling: borefield design theory and concepts. CSIRO Report EP142027, CISRO, Bentley, Australia

  • Tsang CF, Lippmann MJ, Witherspoon PA (1977) Production and reinjection in geothermal reservoirs. In: Geothermal: state of the art. Geothermal Resources Council Trans 1:301–303

  • Vandenbohede A, Louwyck A, Lebbe L (2009) Conservative solute versus heat transport in porous media during push-pull tests. Transp Porous Media 76:265–287. doi:10.1007/s11242-008-9246-4

    Article  Google Scholar 

  • Vandenbohede A, Hermans T, Nguyen F, Lebbe L (2011) Shallow heat injection and storage experiment: heat transport simulation and sensitivity analysis. J Hydrol 409:262–272. doi:10.1016/j.jhydrol.2011.08.024

    Article  Google Scholar 

  • Wagner W, Cooper JR, Dittmann A, Kijima J, Kretzschmar HJ, Kruse A, Mares R, Oguchi K, Sato H, Stocker I, Sifner O, Takaishi Y, Tanishita I, Trubenbach J, Willkommen T (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power Trans ASME 122:150–182

    Article  Google Scholar 

  • Waples DW, Waples JS (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids, part 1: minerals and nonporous rocks. Nat Resour Res 13:97–122

    Article  Google Scholar 

  • Wu-chun F, Cameron KW (2007) The Green500 list: encouraging sustainable supercomputing. Computer 40:50–55. doi:10.1109/MC.2007.445

    Google Scholar 

  • Xu C, Canci M, Martin M, Donnelly M, Stokes R (2008) Perth regional aquifer modelling system (PRAMS) model development: application of the vertical flux model. Hydrogeological Record Series HG27, Dept. of Water, Gov. of Western Australia, Perth, Australia

  • Zimmermann S, Meijer I, Tiwari MK, Paredes S, Michel B, Poulikakos D (2012) Aquasar: a hot water cooled data center with direct energy reuse. Energy 43:237–245. doi:10.1016/j.energy.2012.04.037

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken by the CSIRO (Australia) as technical support to capital infrastructure activities funded by a Commonwealth Government Grant under the Education Investment Fund awarded to CSIRO in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Sheldon.

Appendix

Appendix

To assess mesh sensitivity, scenario 4 was repeated on a refined mesh comprising 5,344,008 elements with a mesh resolution of 0.75 m around the GWC wells. A comparison of results obtained using the original and refined meshes is presented in Table 8. The results are very similar; hence, it was concluded that the original mesh resolution is sufficient to resolve the behaviour of the GWC system.

Table 8 Mesh sensitivity—comparison of results on normal and refined mesh, 10 years pumping, scenario 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheldon, H.A., Schaubs, P.M., Rachakonda, P.K. et al. Groundwater cooling of a supercomputer in Perth, Western Australia: hydrogeological simulations and thermal sustainability. Hydrogeol J 23, 1831–1849 (2015). https://doi.org/10.1007/s10040-015-1280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1280-z

Keywords

Navigation