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Abstract
White Etching Cracks (WEC) in gearbox bearings is a major concern in the wind turbine industry, which can lead to
a premature failure of the gearbox. Though many hypotheses regarding the generation of WEC have been proposed over
the decades, the answer is still disputable. To trace back the failures to earlier stages before they occur, an innovative
sensor-set has been utilized on a test rig to monitor the influencing factors that lead to WEC. This paperwork seeks to
recognize abnormal patterns from recorded sensor data and derive statements of sensible sensor combinations in WEC
early detection. A Long Short Term Memory (LSTM) network-based autoencoder is proposed for the anomaly detection
(AD) task. Employing an auto-associative sequence-to-sequence predictor, a model is trained to reconstruct the normal
time series data without WEC. The reconstruction error of testing time series data is evaluated for the determination of its
anomaly. The results show that the specified LSTM autoencoder framework can qualitatively distinguish anomalies from
collected multivariate time series data. Moreover, the anomaly score evaluated via reconstruction-error-based metrics can
discriminate normal and abnormal behaviors in the study. This investigation’s results entail a significant step towards early
WEC risk detection and more cost-efficient wind turbine technology if this approach can be further applied on stream data
with plausible thresholds in monitoring system.
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White-Etching-Crack-Früherkennung unter Verwendung künstlicher neuronaler Netzwerke

Zusammenfassung
Das Wälzlagerschadensphänomen White Etching Cracks (WEC) stellt eine Herausforderung für die Windbranche dar. Es
kann zu frühzeitigem Ausfall von Lagern in Getrieben von Windenergieanlagen führen. Obwohl bereits viele Jahre zu
diesem Fehlermechanismus geforscht und viele Hypothesen aufgestellt wurden, ist der Entstehungsprozess immer noch
nicht umfassend verstanden. Um frühe Stadien dieses Schadensphänomens zu detektieren, wurde ein innovatives Sen-
sorsystem zur Überwachung von möglichen Einflussfaktoren entwickelt. Zur Erprobung wurde es auf einem Wälzlager-
prüfstand appliziert. Im Rahmen dieser Veröffentlichung wird eine Methodik entwickelt, mithilfe derer abnormale Muster
in den aufgezeichneten Messdaten identifiziert werden können. Auf dieser Basis ist es im zweiten Schritt möglich, eine
sinnvolle Sensorkombination zur WEC-Früherkennung abzuleiten. Für die Anomaliedetektion wird ein netzwerkbasierter
Autoencoder mit Long Short Term Memory (LSTM) gewählt. Unter Verwendung eines autoassoziativen Sequenz-zu-Se-
quenz-Prädiktors wird das Modell trainiert, um Zeitreihendaten ohne WEC zu rekonstruieren. Zur Identifizierung von
Anomalien in Testdatensätzen wird der Rekonstruktionsfehler herangezogen. Die Ergebnisse zeigen, dass das angegebe-
ne LSTM-Autoencoder-Framework Anomalien qualitativ bei der Analyse von multivariaten Zeitreihendaten identifizieren
kann. Darüber hinaus kann ein entwickelter Anomalie-Score, als eine Metrik basierend auf der Auswertung von Rekon-
struktionsfehlern, normales und abnormales Verhalten unterscheiden. Die Ergebnisse dieser Untersuchung stellen einen
bedeutenden Schritt in Richtung einer frühzeitigen WEC-Risikoerkennung und damit einer kostengünstigeren Windtur-
binentechnologie dar. Hierfür ist der entwickelte Ansatz auf Echtzeitmessungen mit plausiblen Schwellenwerten in das
Getriebe Condition-Monitoring-System eine Windenergieanlage zu integrieren.

1 Introduction

A common challenge in wind turbine drivetrain technol-
ogy is unexpected bearing failures caused by the so-called
White Etching Cracks (WEC) [1]. A lot of research effort
has been put in addressing a universal agreement on the
formation mechanism of WEC over the years. Lubricant
composition, presence of additional electrical exposure and
mechanical loading are potential drivers of WEC formation
summarized in previous literatures [2–4]. Recent research
furthermore suggests, a specific time history of applied con-
tact stresses might be the primary driver of early bearing
failure due to WEC [5]. The shear band, which generated
under compression loading, in interpreting the WEC mech-
anism is also observed [3, 6]. Electric current has been
reported as one of the triggers of early WEC in bearings
[7]. More recent research concludes that electric current
plays an indirect role in the failure mechanism while an
interaction with lubricant accelerate the formation of WEC
[8]. Despite considerable effort in root cause research, the
failure mechanism is due to the complex interaction of pa-
rameters not entirely understood.

This research tackles the bearing reliability problem due
to WEC from another perspective. An elementary aspect of
improving wind turbines’ reliability is to detect these fail-
ures or their preliminary stages as early as possible. There-
fore, an innovative sensor-set has been utilized to moni-
tor the influencing factors that lead to WEC failure. The
sensors-set was implemented in several measurement cam-
paigns at a bearing component test bench [7]. Following
each campaign, the bearing was closely examined to deter-

mine whether WEC failure took place or was initiated. By
analyzing multivariate data collected from the conducted
measurement campaigns, a premature detection of the on-
set of WEC is hypothesized.

Analyzing multivariate data with the aim of detect-
ing anomalies in time series captured by multi-sensors in
a mechanical device is a popular task in literature these
days. Many techniques have been developed within diverse
research areas and application domains [9]. Gaussian-
mixture-model based probabilistic approaches, similarity
measurements such as Euclidean distance or Mahala-Nobis
distance, novelty detection technique using Support Vec-
tor Machine (SVM) are frequently employed techniques
[9–11] Modelling and detecting anomalies in rolling bear-
ing elements of these mechanical devices is a major topic
in practice. In the following the most important sources
are presented. First sources having a bearing application
are introduced. A novel method applying transition proba-
bilities between system states on rolling bearing vibration
data has been proposed to detect vibrational anomalies in
rolling bearings, where those probabilities are provided by
a markov chain [12]. In another recent research, an AD
method employed a classification technique to discriminate
between defect examples of rolling bearings using kurto-
sis and non-gaussianity score, and the proposed method
increased the general sensibility in bearing fault diagno-
sis[13]. Other sources referred to failures’ detection in
industrial units within components like engines or turbines
are also investigated. Multivariate time series assembled in
these scenarios are mostly temporal dependent and highly
correlated to generated structure damage; thus, normal
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data are more robust over time, and reconstruction-based
anomaly detection techniques benefit in dealing with rel-
evant situations. Jinwon and Sungzoon [14] recommend
using a variational autoencoder and utilize its generative
characteristics to address anomalies, which outperforms
the conventional principal components method. Instead
of reconstruction error, reconstruction probability is used.
Similarly, an autoencoder-model based method for condi-
tion monitoring of components such as bearings, rotors in
a rotating machine is proposed to detect anomalies. Char-
acteristics of machines are learned via normal vibration
signals [15]. According to Sakurada [16], autoencoders
detect anomalies in the spacecraft’s telemetry data via
learning normal state and manifest differently when input
is anomalous. Autoencoder still suggests a superior perfor-
mance without complex kernel computations requirements
as in principle components analysis (PCA). Joao and Mar-
garida’s [17] investigations show the ability of a recurrent
neural network and the Long-Short-Term-Memory (LSTM)
network-based autoencoder detecting anomalous behavior
in time series data collected from a smart sensor system for
solar energy. Malhotra [18] proposed a similar sequence to
sequence (Seq2Seq) method with LSTM encoder-decoder
framework and computed the anomaly score via distri-
butions of reconstruction errors. Park also concludes in
[19], that an LSTM based variational autoencoder recon-
structs sensory signals in their expected distributions. The
anomalies are detectable using either score or state-based
threshold.

According to the presented literature, various anomaly
detection techniques have been employed on multi-sensor
data to detect the abnormal patterns of industrial structural
units. Nevertheless, self-adaptive models using deep learn-
ing networks for anomaly detection have not yet been ap-
plied in the WEC diagnosis. Although a condition monitor
prototype in WEC early detection has been investigated and
proposed in previous research, the exact sensor concept is
not claimed yet. Thus, a gap exists between the state of
the art and this research’s goal. This research intends to
utilize an LSTM network-based autoencoder appliance to
detect anomalous patterns in a data set sampled with an
innovative sensor set-up for WEC initiation.

In this paper, two models are developed and applied
to the proposed autoencoder anomaly detector. The sensor
data is collected through a component test rig. Temporal
dependencies within input are considered for both encoder
and decoder using serially connected LSTM layers. The
autoencoder model is initially trained to reconstruct nor-
mal behaved time series data. In a next step, anomalies are
identified based on specified metrics on reconstruction er-
rors of testing time series data. Sensitivity analysis (SA) re-
garding the influential sensors in detecting the anomalies is
included in the research. Specified reconstruction error met-

rics are identified to determine thresholds that distinguish
healthy and unhealthy states. This investigation’s results en-
tail a significant step towards early WEC risk detection and
more cost-efficient wind turbine technology.

The remainder of the paper is organized as follows. The
employed multi-sensor data and the reasons for measuring
them are described in Chap. 2. Chap. 3 presents the method-
ology parts, including the LSTM autoencoder scheme and
evaluation metrics. In Chap. 4, a workflow for the anomaly
detection task is introduced. Then, modeling results are dis-
cussed in both qualitative and quantitative perspectives in
Chap. 5. Finally, conclusions are drawn and summarized in
Chap. 6.

2 Data description

The employed data for the proposed anomaly detector is
collected through campaigns on a component test rig de-
scribed in [7]. In the test rig, two rolling element bearings
of type 6203 are tested [7, 20]. The test runs are conducted
under conditions, which are claimed critical for the initia-
tion of WEC. All experiments used in this paper are per-
formed at a speed of 4500rpm. For all tests, an axial pre-
load of 1800N was applied on the bearings. According to
Evans et al. a transient load force condition on bearings is
a potential driver leading to WEC [2]. Examples are load
reversals or high loads. The presence of additional electri-
cal exposure besides mechanical loading is mentioned as
another possible WEC driver in literature [2] and is var-
ied with the help of an external current source in the test
runs. Furthermore, lubricant composition can influence the
occurrence of WEC as oxidative decomposition of lubri-
cants has been claimed to be a hydrogen generation mech-
anism in several studies [2, 3]. As hydrogen embrittlement
was quoted as one big factor in WEC formation. Accord-
ing to authors in [5], the cracks are initiated due to the
local plasticity promoted by hydrogen. Therefore, two lu-
bricants with different compositions are used in the test
runs (A & B). Both lubricant oils are specifically formu-
lated to cause WEC, however due to confidentiality reasons
involving IP rights, it is not possible to describe the ex-
act oil compositions; however, the oil compositions used
in a previous investigation [21] provide insights into the
used lubricants. A high lubricant volume flow rate helps
in increasing the thickness of generated lubrication film.
Low lubrication film thickness leads to mixed friction and
the possible formation of a tribo-chemical reaction layer.
The distribution as well as chemical makeups of the tribo-
film has a significant influence in friction and subsurface
stress distribution. Some researches imply that presence of
such tribo-film drives hydrogen in to high stress zone and
eventually leads to WEC [2, 22]. However, the relationship
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Table 1 Operational conditions of nine employed test runs collected from test rig

Test run Volume flow rate [ml/min] Rotational speed [rpm] Axial load [N] Voltage [V] WEC [y/n]

1A 40! 15 4500 1800 15 n

2A 40! 8 4500 1500 15 n

3A 4 4500 1800 15 n

1B 4 4500 1800 0 n

2B 4 4500 1800 15 n

3B 4 4500 1300 15 n

4B 4! 0! 4 4500! 0! 4500 1800! 0! 1800 15! 0! 15 y

5B 10 4500 1800 15 y

6B 9! 28! 9! 38! 4 4500 1800 15 y

Table 2 Relevant sensory variables for WEC detection analysis

Variables Description

Temp. bearing shaft 1 Measured temperature of outer ring at bearing 1 through entire running time

Temp. bearing shaft 2 Measured temperature of outer ring at bearing 2 through entire running time

Mean Temp. of bearings Calculated mean temperature value of both bearing outer rings through entire running time

Axial load Applied pre-load on bearings through entire running time

Rotational speed Applied rotational speed of the motor power through entire running time

Volume Flow Rate Varied lubricant flow rate in the recirculating system

Bearing Voltage Measured discharges between two bearings by voltmeter value through entire running time

Resistor Voltage Measured regulated resistor voltage by voltmeter value through entire running time

Pressure at storage container Environmental pressure set up around the storage container in bars

Temp. storage container Measured temperature of lubricants in the recirculating system when it’s passing back to the chamber

Temp. chamber input Measured temperature of lubricants in the recirculating system when it’s coming into the chamber

between tribo-film and WEC formation mechanisms is not
yet determined [22, 23]. Therefore, lubricant volume flow is
varied during the test runs. Table 1 gives an overview of the
operational conditions applied during the nine test runs as
well as an indication of whether this test run leads to WEC
in the end. The arrows in the table indicate, that within the
test run the operational conditions have been varied from
the value on the left of each arrow to the value on the right
of the same arrow.

In this work, the following recorded sensor signals
(please compare Table 2) are specified as input data for
the anomaly detection analysis. They are chosen as either
their unusual pattern might potentially give an insight on
the generation of WEC or they describe the operational
conditions of the bearing. Temperatures of two tested
rolling bearings are monitored because a significant rise
of temperature can indicate a bearing failure, in this case,
WEC. The axial load force, rotational speed of the motor
and volume flow rate are typical operational conditions of
a gearbox. The measured discharge in bearings is another
relevant sensory signal which is measured by a voltmeter,
a serial connected resistor of 75 k� is applied to regulate
the simulated current below certain value. Additionally,
the environmental pressure of the test rig chamber and
lubricant’s temperatures before and after flowing into the
chamber are respectively measured and recorded. The sen-

sory dataset contains 11 variables overall, they are relevant
for the WEC detection analysis and showed in Table 2 be-
low. Apart from those, sensory signals recording acous-
tic emissions energy and oil conditions were recorded as
well, however the corresponding analysis results will not
be presented in this paper.

3 Methodolog ment to characterize h y

3.1 LSTM autoencoder scheme

The reconstruction-based approaches have proved to deliver
satisfying results in detecting industrial damaged units ac-
cording to the literature review in Chap. 2. Autoencoder, as
one of the commonly used reconstruction-based methods,
enables a Seq2Seq reconstruction modeling structure. In
this study, healthy test runs map normal pattern while failed
test runs cover biased pattern. Fig. 1 displays the structure
of the proposed model. Both encoder and decoder are com-
posed of a few stacked LSTM> layers as depicted. The
encoder learns a compressed vector representation c with
a fixed length of the input data sequence x. Simultaneously,
the decoder predicts an output data sequence ex with the
compressed representation and parameters updated in the
current hidden state of the decoder LSTM layer. Hence,
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Fig. 1 Reconstruction model
structure with encoder and de-
coder consists of stacked LSTM
layers

this predicted output is a reconstructed version of the orig-
inal input data sequence.

In both encoder and decoder, LSTM deep learning net-
works are applied to memorize long term dependent rela-
tionships in time series and avoid vanishing gradients prob-
lem [24, 25]. It is realized through dedicated gates con-
trol gi for input constraint, gf for forgetting less impor-
tant information and go for output constraint over hidden
unit states h, namely the short-term memory unit. For large
time series data, LSTM cells can capture temporal order-
ing information by keeping important previous states in
short term memory units. The calculation of LSTM units
for input of next timepoint based on current information and
temporal information remembered from previous inputs is
implemented along [26] and summarized in the following
equations (1–6). With xt being the current input and ht−1

being the output of previous hidden unit respectively:

bc = tanh.W
�

ht−1; xt
�

+ b/ (1)

gi = �.Wi

�

ht−1; xt
�

+ bi / (2)

gf = �.Wf

�

ht−1; xt
�

;+bf / (3)

Ct = gf � Ct−1 + gi � bC (4)

go = �.Wo

�

ht−1; xt
�

+ bi / (5)

ht = go � tanh.Ct / (6)

bc represents the new information at the current moment,
W represents single weight matrix for both input vector and
weight vector, and b a biased term. In this study, a healthy
test run sequence X = fx1; x2; x3...xN g of length N where
each xi is the vector with the same number of variables at
time instance ti , as input. On the encoder side, the network
is aimed at memorizing important information from previ-
ous moments. A current input vector xi and previous short-
term hidden state hi−1 can determine the hidden state hi for
time instance ti follow the equations (1) to (6). A sequence
of forward hidden states hE = fh1; h2; h3...; hN g is step-by-
step calculated. The last hidden state hN is assigned to the

compressed vector c shown in Fig. 1 and works as the ini-
tial state of decoder hD . Analog is the output reconstructed
in reverse order fxN ; xN−1; xN−2...x1g. On the last decoder
LSTM layer, the time series is reconstructed through weight
vectors at each hidden unit and the final output gate control:
X 0 = fx10; x20; x30...xN 0g.

The model performance is optimized by minimizing the
reconstruction error between output X 0 and input X . One or
more healthy test runs are merged as a training set. Before
training starts, 10 percentage of training data is taken out
as a validation set, and a hyper-parameter search is carried
out to find each model’s best configuration. Seven hyper-
parameters have been variated for the configuration search:
hidden layer number, hidden unit number, batch size, epoch
number, activation function, dropout rate and kernel regu-
larizer [27, 28]. They influence the model performance in
under-fitting and over-fitting, convergence speed, computa-
tional cost, and stability. The result is evaluated by the root
mean squared reconstruction error of the validation set. The
model is thereafter trained with an optimized configuration
set. Trained models are evaluated by convergency and train-
ing time. Afterward, remained test run sequences data are
predicted by the trained model in the testing phase. Re-
construction error computed after testing is evaluated by
metrics discussed in the following section.

3.2 Evaluationmetrics

In this work, both root mean squared reconstruction error
(7) and mean absolute reconstruction error (8) between the
input and output are computed for a qualitative evaluation.

RMSE =

v

u

u

t

1

N
�

N
X

n=1

.xn −exn/2 (7)

MAE =
1

N
�

N
X

n=1

jxn −exnj (8)
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Moreover, the corresponding error distributions are de-
termined and analyzed on characteristics of skewness Ssk ,
kurtosis Sku and mean values with formulas defined in
Equation (9) and (10).

Ssk .x/ =
1
N

� PN
n_1.xn − xn/

3

s3
(9)

Here, s is the standard deviation of reconstruction error
and N is the number of data instances of one time series
data. The above formula is referred to the Fisher-Pearson
coefficient of skewness [29]. Kurtosis is a measurement to
characterize how heavy-tailed a distribution is compared to
a normal distribution and the applied formula is [30]:

Sku .x/ =
1
N

� PN
n=1 .xn − xn/4

s4
(10)

Fig. 2 The workflow of the anomaly detection task in the research

4 Implementation anomaly detection
workflow

In this work, two models are defined for the anomaly detec-
tion task. The sensory signals are 10 operational conditions
variables described in Chap. 2. One model is trained with
a single healthy run while the other is trained with multiple
healthy and failed test runs.

Fig. 2 shows the anomaly detection task’s workflow: One
starts with historical data acquisition, then a proper prepro-
cessing on it. The split of training and testing set is coming
afterward. The validation set is used for a hyper-parameter
search before training, as discussed in Sect. 3.1. Training
and testing phases come directly after the search process.
The last step is the evaluation of the autoencoder with met-
rics on the reconstruction error. In addition is a sensitivity
analysis on the relative variable importance in the learned
neural network. The results of the two models are discussed
in the following sections.
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Fig. 3 Averaged reconstruction error (ARE) of training set 1A (healthy), testing set 3A (healthy) and 4B (WEC)

5 Results and discussions

5.1 Qualitative analysis

Fig. 3 shows the averaged reconstruction error (ARE) of
the model trained with a single healthy test run 1A. Except
for the ARE of training set 1A, this figure shows the ARE
of two testing sets: one healthy test run 3A and one failed
test run 4B.

With a normalized time-axis, the reconstruction pro-
cesses can be compared employing the error magnitude.
One can demonstrate that the reconstruction error of train-
ing set 1A is low and flatten around zero; this suggests
a well-performed reconstruction model learned normal
pattern.

Fig. 3 demonstrates that ARE of the healthy test run 3A
is higher in the beginning compared with remained time;
it decreases around 17% of its process. This possibly lies
with a switched volume flow rate in training set 1A from 40
to 15ml/min at 24h over 140h described in Table 1. Those
reconstruction error curves yield expected results since 3A
is a healthy test run, thus an overall low error curve implies
a potential normal pattern of the bearing’s behavior. When
comparing ARE curves of the failed test run 4B in light
green and the healthy test run 3A, a significant error rise
around 41% percentage of the processing time is observed
as predicted conditions strongly deviated by then. Firstly, it
suggests that a failed test run is detectable via considerable
higher reconstruction error. It further indicates a potential

start point of such anomalous behavior, which can be sought
confirmation from experts for more rigorous inferences.

As test runs are performedwith two lubricants A and B, it
is of natural interest to study the model’s ability in learning
the difference. Therefore, multiple healthy test runs con-
sist of either oil A or oil B are merged as one training set,
then similarly tests with remained test runs. Fig. 4 shows
though ARE is generally higher than the model trained with
smaller dataset, failed test runs still have higher ARE than
healthy test run. Also, significant increasing trends of ARE
are observed in both failed test runs. From the qualitative
analysis, one can conclude that the specified auto-associa-
tive model can distinguish failed test runs from healthy ones
by interpreting reconstruction error curves.

5.2 Quantitative analysis

Furthermore, ARE distribution and its static characteristics
are computed so that a quantitative analysis of the model
performance is achieved. Fig. 5 first compares the error dis-
tribution histograms of models discussed in the last section.
One can perceive from Subfigure (a): That the healthy test
run 3A shows a prominent peak around 0.15 and narrowed
to a small interval compared to the others. On the con-
trary, the histograms of failed test run 4B, 5B and 6B are
wider spread and suggest multimodal histograms. On Sub-
figure (b), test runs’ ARE are higher while the healthy test
run 3A still delivers the least error. These findings tie with
the previous qualitative analysis. In an anomaly detection
task, the determination of a reasonable anomaly score for
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Fig. 4 ARE of testing
set 3A (healthy) and 4B (WEC),
5B (WEC), trained with dataset
consist of test runs conditioned
with oil A and oil B

a b

Fig. 5 Root Mean Squared Reconstruction Error distribution of model trained with a single healthy test run (a) and model trained with merged test
runs (b)

data instance is the goal. In this study, an investigation on
reconstruction error distribution characteristics is utilized to
achieve this purpose. Mean value, as well as the kurtosis
and skewness values of ARE distribution are computed and
presented in bar graph Fig. 6.

Among all 8 testing sets, 4 healthy test runs yielded
larger positive skewness than 3 failed ones. The recon-
structed healthy data sequences are more right-skewed than
failed ones. This healthy test run 1B is a false-positive case,
as the corresponding skewness is less than other healthy test
runs. Similarly, the kurtosis values, which indicate the tail
heaviness of a distribution, strengthens the interpretation:
healthy test runs except for the false-positive case 1B are

lighter in tails and peakier. Fig. 6 illustrated that healthy
test runs (shown in blue) have demonstrated apparently
higher kurtosis and skewness values than the failed test
runs (shown in orange). One can assume that superior anal-
ysis results could be brought about when more test runs are
available.

5.3 Sensitivity analysis

Considering the computational efficiency, one-factor-at-a-
time (OAT) based SA is performed to determine how sensi-
tive the auto-encoder is to each sensor channel input during
learning. The principle of an OAT method is to study the
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a b

Fig. 6 Kurtosis (a) and skewness (b) in bar charts for all 8 test run sequences

contribution of input variables one by one [31]. A change
in the error function when the specific input variable is
removed from the network measures its predictive impor-
tance directly [32]. In this work, an OAT SA is applied for
generated models.

One sensor variable is first clamped to its mean value,
and then the model will be retrained. The varied RMSE be-
fore and after replacing each sensor variable is computed.
Subsequently, changes in RMSE are ranked for all sensor
variables. The corresponding ranking of the second model
discussed in Sects. 4.1 and 4.2 is depicted in Fig. 7. This
analysis implies the increasing sensitivity of relevant vari-
ables in the LSTM autoencoder. Accordingly, the tempera-

Fig. 7 Increasing RMSE changes regarding sensor variables

ture at bearing shaft 2 is the most influential factor in the re-
construction procedure with an RMSE difference at 0.032.
Rotational drive speed is the least considered variable and
changed in RMSE at 0.0019.

Given that the resulting ranking is based on constrained
considerations of input and merely takes the error function
into account, the complex parameters computations and up-
dates in the network remained a black box; the analysis
results should be treated with the utmost caution.
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6 Conclusions

In this paper, an anomaly detection approach based on
LSTM neural network is proposed to identify abnormally
behaved data indicating an occurrence of WEC in gear-
box bearings. By modeling multivariate time series data
collected from the sensor-set described in Chap. 2, the
proposed anomaly detector distinguishes tests resulting in
WEC from tests without WEC via evaluations over the
model performances. In this work, the autoencoder re-
construction models were first trained on normal patterns
through healthy time series data before being tested on
previously unseen data from both healthy test runs, and
test runs which led to failure. The models along with the
subsequent analyses of their results as outlined in the pro-
posed method allowed the detection of anomalies in test
runs which eventually reached the point of failure.

Additionally, a sensitivity analysis examined the influ-
ence of each input variable on the performance of the de-
veloped methodology. The results of this analysis may re-
duce the number of required sensors which would reduce
the implementation costs of the proposed method to a new
condition monitoring system for WEC detection in opera-
tional wind turbines. The proposed methods require signif-
icantly more time and computational effort in the develop-
ment phase than in the implementation phase. This is due
to the required training of the autoencoder models during
development. Though the proposed method was trained and
tested solely on historical data in this investigation, the al-
gorithms used may also be applied in real-time on streamed
data.

Before field deployment, the authors recommend the im-
plementation of the required sensor setup to operational
wind turbines in the field and using the accumulated data
to further refine the thresholds used in the proposed method.
As additional sources of noise may be present on the field,
performing this step would introduce the autoencoder mod-
els to such noise in the development phase which is likely to
limit the occurrence of false alarms due to noise. Addition-
ally, a potential drawback of the study is that the test runs
do not consider other failure modes, making it problematic
if one intends to address the abnormality detected by model
to WEC solely without considering other failure modes or
even the interaction of them. This limitation remained un-
solved as the test rig was set up for WEC initiation and
the collected data sets are, therefore, primarily WEC-rel-
evant. Despite of this shortcoming, the proposed method
provides a promising tool for early detection of WEC fail-
ures in future wind turbine condition monitoring systems
which address this costly failure type.
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need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.
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