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Abstract
Wind energy is an essential source of renewable energy. However, to compete with conventional energy sources, energy
needs to be produced at low costs. An ideal situation would be to have no costly, unscheduled maintenance, preferably.
Currently, O&M are half of the yearly expenses. The O&M costs are kept low by scheduled and reactive maintenance. An
alternative is predictive maintenance. This method aims to act before any critical and costly repair is required. Additionally,
the component is used to its full potential. However, such a strategy requires a damage indication, similar to one provided
by a condition monitoring system (CMS). This paper investigates if Supervisory Control and Data Acquisition (SCADA)
can be used as a damage indicator and CMS. Since 2006, every wind turbine is obliged to use such a SCADA-system.
SCADA records a 10-minute average, maximum, minimum, and standard deviation of multiple technical information
channels. Analytics can use those data to determine the normal behavior and a prediction model of the wind turbine. The
authors investigated statistical and data mining methods to predict main bearing faults. The methods indicated a defect of
up to 6 months before its maintenance.

Nutzbarkeit von SCADA als vorausschauendeWartung fürWindenergieanlagen

Zusammenfassung
Windenergie ist eine wesentliche Quelle für erneuerbare Energie. Um jedoch mit konventionellen Energiequellen kon-
kurrieren zu können, muss die Energie zu geringen Kosten produziert werden. Ideal wäre es, wenn es möglichst keine
kostspielige, außerplanmäßige Wartung gäbe. Derzeit machen die O&M-Kosten die Hälfte der jährlichen Ausgaben aus.
Die O&M-Kosten werden durch geplante und reaktive Wartung niedrig gehalten. Eine Alternative ist die vorausschau-
ende Wartung. Diese Methode zielt darauf ab, zu handeln, bevor eine kritische und kostspielige Reparatur erforderlich
ist. Außerdem wird das volle Potenzial der Komponente ausgenutzt. Eine solche Strategie erfordert jedoch eine Scha-
densindikation, ähnlich wie sie ein Condition Monitoring System (CMS) liefert. In diesem Beitrag wird untersucht, ob
Supervisory Control and Data Acquisition (SCADA) als Schadensindikator und CMS eingesetzt werden kann. Seit 2006 ist
jede Windkraftanlage verpflichtet, ein solches SCADA-System zu verwenden. SCADA zeichnet einen 10-Minuten-Durch-
schnitt, ein Maximum, ein Minimum und eine Standardabweichung von mehreren technischen Informationskanälen auf.
Analytiker können diese Daten nutzen, um das Normalverhalten und ein Vorhersagemodell der Windturbine zu bestimmen.
Die Autoren untersuchten statistische und Data-Mining-Methoden zur Vorhersage von Hauptlagerfehlern. Die Methoden
zeigten einen Defekt von bis zu 6 Monaten vor dessen Wartung an.
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1 Introduction

Wind energy is one of the most important sources of renew-
able energy. Over the past years, the wind energy contribu-
tion raised to 24.6% in Germany [1] and increasing further.
Wind energy must be competitive to keep rising while main-
taining a reasonable price range. Some predictions assume
that the Levelized Cost of Energy (LCOE) will be between
3.8 and 7 Cct/kWh by 2035 [2]. The LCOE is an accumu-
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lated sum of the investment costs and the annual expenses
normalized by the annual energy product (AEP). Therefore,
an operator should consider every factor. For wind turbines
in operation, the modifiable cost factor is operation and
maintenance (O&M). Proper monitoring of the turbine al-
lows reducing the duration of (un-)scheduled maintenance
and their resulting downtime.

Condition monitoring of technical assets aims to detect
changes and trends representing deviations from normal op-
erational behavior, thus indicating a developing Condition
Monitoring Systems (CMS) inspects rotating systems such
as the drivetrain and main bearing. Commonly, an operator
can financially recover from one main bearing fault dur-
ing the lifetime of a wind turbine. Therefore, the operator
should thoroughly monitor the main bearing to reduce and
prevent the consequences of a single fault.

Conventional CMS requires a certain number of sensors
leading to high investment costs. Since 2006, each wind
turbine is mandatorily equipped with a Supervisory Con-
trol and Data Acquisition-System (SCADA) [3]. SCADA
monitors the wind turbine’s various information such as
produced power, wind speed, oil pressure, temperature ...
Commonly, SCADA tracks that information with a~1Hz
sampling rate and subsequently condensed to 10min sam-
pling. The time signal of 600 samples is reduced to mean,
max, min, and standard deviation. This reduction hides dy-
namics like oscillation.

Nonetheless, the 10-min dataset allowed the authors to
determine the individual history of each wind turbine. A 10-
min averaged SCADA-based Condition Monitoring Sys-
tem’s primary benefit is to have an additional CMS at low
cost while using installed equipment without any added
hardware costs. Based on data observations, it is possible to
determine an overview of each turbine’s experienced loads.
Thus, indicating the remaining useful lifetime.

Multiple publications investigated the possibility of us-
ing Data Mining in wind energy and SCADA analysis as
an alternative CMS. An overview of some of those publica-
tions is pointed out in the following. Kusiak and Zhang used
several machine learning techniques to show that a wind tur-
bine’s vibrations have a negative impact on performance [4].
In their study, the neural networks outperformed the other
methods like a conventional CMS. Kusiak and Verma used
a different approach to identify and predict status patterns
from SCADA data. They derived association rules from
historical data to identify common status patterns. Conse-
quently, Kusiak and Verma trained random forests to predict
these status patterns in SCADA data of wind turbines [5].
Zhang and Kusiak also developed methods for detecting
anomalies in SCADA data to identify wind turbines’ crit-
ical vibrations [6]. They grouped the data using k-means
clustering to divide the data into abnormal or normal. For
predicting abnormal drivetrain and tower vibrations, SVM,

neural networks, and random forest were used [6]. Astolfi
et al. analyzed SCADA data from four WTGs in com-
plex terrain in Italy to identify the terrain’s role influencing
the wake of WTGs, which was confirmed by experimental
evidence [7]. Godwin determined possible pitch faults by
a RIPPER algorithm, a modification of decision trees. He
identified a variety of rules to indicate failures in advance.
[8]. Zhang used SCADA data from a wind farm in Nor-
way with 17 WTGs and an artificial neural network (ANN)
to identify deviations from the main bearing’s normal be-
havior and generate early warnings [9]. But he experienced
false prediction due to long downtimes. Butler developed
a method to determine the main bearing’s remaining useful
life using radial basis function and degradation index [10].

Many methods have been investigated and explored. The
most common ones showed to be decision trees and ANN.
Methods with promising results if all requirements are
given, e.g., computational power, database, expert knowl-
edge. However, previous publications did not address the
usability for operators so far. Small operators do not have
access to some of those methods. Therefore, the paper
examines the most used methods as a possible SCADA-
based main bearing CMS and ranks them on various key
performance indicators.

2 Methodology

The paper aims to detect the main bearing fault before the
damage becomes critical. The required workflow consisted
of three significant steps:

2.1 Collection of SCADA time series

This paper’s underlying data consists of ~400 wind tur-
bines with more than 17× 106h of operating hours. Some
of those wind turbines experienced the main bearing fault.
The database’s average wind turbine has a rated power of
3.5MW with a 120m rotor diameter and a hub height of
90m. To not violate any non-disclosure agreements, all pre-
sented data are normalized.

2.2 Preparation of time series

The data had to be processed as it contained faulty in-
puts and non-plausible values. The authors had introduced
two approaches before any analysis took place. The first
approach was to determine all missing timesteps in the
SCADA time series. Every missing time step was assumed
to be downtime of a wind turbine and marked as such. The
second approach was to filter data by their plausibility. If
the signal were outside a plausible range, the signal was set
to NaN at that point. Those data points were not introduced
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Table 1 Boundaries of a plausibility check

Channel Lower
Bound

Upper Bound

Wind speed [m/s] 0 50

Power [kW] 0 125% of rated Power

Pitch angle [deg] –10 100

Wind directions [deg] 0 360

Bearing Temperature [°C] –40 150

in any data mining process. Table 1 displays the range of
reasonable boundaries.

2.3 Data mining process

The underlying data mining is divided into three ap-
proaches, varying in their complexity. Depending on the
prior knowledge of a wind turbine operator, they can select
the most suitable method.

The first method was a statistical comparison within the
wind farm. The authors assumed that all wind turbines in
a wind farm experience similar loading conditions during
a given time. At each given point in time, the main bearing
temperature of all wind turbines has been compared. They
showed a normal distribution, which means that median and
mean are equal. At every time step, the mean temperature
and the standard deviation were determined. Every main
bearing temperature that differed more than ±3 σ from the
reference means the main bearing temperature was labeled.
The ±3 σ boundary showed to be the best fitting threshold
in ~70% of all wind farms. For each wind turbine, the out-
of-bounds labels were accumulated over a given time frame
(i.e., four weeks). The accumulated values were normalized
by the number of data points inside the time frame to com-
pare the wind turbines. Wind turbines with a higher occur-
rence of out-of-bounds behavior showed to be more likely
to fail. The analytic of this method was further improved
by excluding downtimes longer than one hour. During those
downtimes, the main bearing temperature cools down. This
cool-down distorts the mean and standard deviation.

The second method was to use a classification learner.
The underlying learner was a random forest (RF). The ran-
dom forest is a classifier that operates with multiple deci-
sion trees. A single decision tree is a simple classifier that
differs between two classes (e.g., smaller or bigger than
4m/s). During the training of such decision trees, the ques-
tions and their threshold are determined. The questions are
defined such that, when answered, they clearly distinguish
them into separate classes.

Those decision trees can be easily trained and used. In
the case of random forest, multiple decision trees are de-
fined with different questions. The mean of all decision
trees is used as the output and as the predicted value. The

input into the random forest is listed below. Multiple inputs
have been tried and those performed.

� Nacelle temperature
� Ambient temperature
� Transmission Bearing Temperature
� Generator Bearing Temperature
� Oil temperature
� Reactive Power
� Power
� Wind speed

The training period was defined to be the first two years
of operation. This period showed to be an acceptable range
as most events already occurred at least once during this
period. Pagitsch determined a similar period [11]. In this
contribution, the training period worked for 86% of tested
wind turbines. The trained random forest achieved on aver-
age an accuracy of 90.1%. The features shown here should
be treated according to their plausibility and be modified in
agreement with their system.

The last approach was a modified ANN. Properly trained,
the ANN can predict the main bearing temperature. How-
ever, the hyperparameter and structure of the ANN are di-
rectly linked to the performance. Several setups (number of
hidden planes, number of nodes, activation functions) have
been tested and compared. The best performing ANN had:

� 2 hidden layers
� 15 neural nodes
� Sigmoid activation function
� Past 6-time steps of the SCADA time series

The autoregressive neural network has a similar setup
as a normal ANN with delayed timestamps extracted from
SCADA data. Additionally, the prediction of one previous
main bearing temperature is fed back the input into the
loop. The autoregressive time-delayed input was assumed
to influence the predictions heavily [12].

The autoregressive ANN does not consider the dimen-
sion of time. The available data is interpreted as a sequence-
independent of its capture time. Outputs such as the tem-
perature, which exhibit lags and a strong dependency on
their previous states, it is highly beneficial to consider their
past states correctly. Therefore, the feedback input has an
influence and importance on the NN prediction. The setup
was improved by introducing missing data to model a dis-
continuity in the data. These discontinuities ranged from
a couple of hours to weeks. Usually, those missing data
lead to large errors once the availability is reestablished.
The introduction of the missing data parameter was able to
reduce drastically. The trained system is based on the first
two years of operation and achieved an accuracy of 95.1%.

All those methods have been used to analyze a failing
main bearing in the database. The paper displays some of
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Table 2 Key performance indicator and their according weight

KPI Weight (%)

Accuracy 40

False prediction 20

Computational effort 15

Required knowledge 5

Required database 20

those results, determined in a wind farm with five wind
turbines. The available dataset spans from 2013 till late
2019. In mid-2019, wind turbine number four (WT04) had
a main bearing fault.

3 Results and discussion

All three methods have been used to identify the faulty wind
turbine number four. Each method was capable of detecting
the default before its repair. Therefore, the methods must be
compared and evaluated. The methods are assessed using
a weighted average of multiple key performance indicators
(KPI), given in Table 2. An internal survey of the project
committee determined the weighting. At every KPI, each
method is ranked, allowing one to choose the best suitable
method.

3.1 Statistical comparison

Fig. 1 displays an output of the statistical method. The
x-axis shows the timeline and the y-axis various wind tur-
bine of one wind farm. Each rectangle represents how often

Fig. 1 The output of the statistical method between 2013 and 2019

a wind turbine was outside the ±3 σ boundary during the
one-month observation period. A value of 25% means that
the wind turbine had a too high or too low main bear-
ing temperature concerning the other wind turbines for one
week. A zero-entry (black rectangle) represents no outside
behavior and no entries during this period. The authors as-
sumed that during downtime, the main bearing temperature
does not behave untypically.

In an ideal scenario without any issues, the out-of-bounds
behavior was distributed equally. Exemplarily, a wind farm
with five wind turbines, each wind turbine has a relative
occurrence of approximately 20% of the out-of-bounds be-
havior. Slight differences might occur due to power curtail-
ments, short downtimes, or the violation of the assumption
that all wind turbines experience the same wind speed.

At the end of Q2 in 2019, WEA 04 has increased behav-
ior. This identification aligns with the maintenance reports.
During that time, the lubrication system was repaired. The
statistical approach showed to be promising as it identified
a change in the system. However, it can also be noticed
that in Q2 and Q3 of 2016, WT 01 and WT03 also had an
increased occurrence. Thus, showing a likelihood of false
prediction. A direct fault indication can only be concluded
if the relative occurrence remains high over a certain pe-
riod. In this publication, the period was six months, which
varies with site and wind farm.

The statistical method had the benefit of user-intuitive
setup and fast computation. It did not require any prior
knowledge with respect to data mining. Another advantage
of this method was that the effects of ambient temperature
could be neglected as the wind turbines are located inside
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Fig. 2 Prediction error of main
bearing temperature according
to RF

the same wind farm. Logically, operators can not use that
method for multiple wind farms at different locations.

A drawback of this method is the size of the wind farm.
The smaller the wind farm, the more likely the distribu-
tion can be distorted. This distortion can increase the false
positive rate. Another drawback of the method is if multi-
ple wind turbines fail simultaneously, leading to a distribu-
tion shift. Consequently, the method does not behave stable
and is not recommended as an alternative to a conventional
CMS. The procedure should be used as an indicator for
further inspections.

3.2 Random forest

The second method was based on RF to predict the upcom-
ing main bearing temperature. The RF was trained over
two years of operation. By varying the inputs listed earlier,
the authors determined the importance of the input. Wind
speed, produced power, and external temperature received
the highest importance to predict the main bearing temper-
ature. The accuracy dropped by a minimum of 10% when
missing those inputs.

Fig. 2 displays an output of the RF with respect to WT 03
and WT 04. The time is given along the x-axis, and the pre-
diction error is displayed on the y-axis. The prediction error
is the difference between the predicted temperature and the
actual measured temperature. A positive value represents
an overprediction, and a negative value an underprediction.
In 2015, both wind turbines had a high peak, which is due
to cold ambient temperatures. The training set did not con-
tain those ambient temperatures and the RF over-predicted
the actual bearing temperature. In mid-2018, the prediction
error of WEA04 started to drop.

To clearly state a possible error, two thresholds were de-
fined: a warning and an error threshold. In this publication,
±1.5 σ is set as the warning value and ±3 σ as the error
threshold. Consequently, the system highlighted the peak
in 2015, a drawback that led to false indications. An issue
that can be solved by detailed inspection of the time series

or examination would lead to additional costs. Therefore,
a warning signal on all wind turbines simultaneously should
be treated with suspicion. In 2018, the warning indication
of WT 04 would occur with a higher frequency, thereby
indicating the impending failure. Meanwhile, WT 03 pre-
dictions error oscillates around zero.

The RF is very dependent on its training database. The
classifier can only predict a variety of temperatures that
the database has known. The random forest cannot handle
unseen events. The consequences are high offset in the pre-
diction. Additionally, if the database is biased, the classifier
tends to predict the one represented mostly.

To enable an RF, the training requires a database and
knowledge on how to define hyperparameters. Addition-
ally, the training phase requires some computational effort.
However, after the initialization and training, an RF can be
used with low computational costs and satisfying accuracy.

3.3 Autoregressive neural network

The last method investigated was an autoregressive NN.
The constructed autoregressive NN uses the time SCADA
input of at least six previous time steps, which means that
the previous hour is considered as input. Thus, integration
of cool down due to downtime. Additionally, the prediction
itself is used as the autoregressive input with a time delay
of 1-time step. Fig. 3 shows the prediction error of the au-
toregressive NN. The time is given along the x-axis and the
prediction error along the y-axis. Like the previous figure,
the prediction error is defined as the difference between the
prediction and the actual value. It can be noted that off-
sets are less than the results of the RF. Small spikes occur
around 2015. However, they are smaller than 0.5 σ of the
training results. In 2019, the autoregressive NN indicated
a deviation between prediction and actual value. Next to
that spike, the autoregressive NN returned NaN values as
output that can not be displayed. But the frequency of NaN
values was increased after the spikes. Therefore, indicating
an unknown situation and possible fault. The offset occurs
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Fig. 3 Prediction error of main
bearing temperature according
to autoregressive NN

Fig. 4 ROC curve of used meth-
ods based on database [12]

one month after the RF. However, there is less noise during
the forecast, meaning that the warning and error threshold
can be set at lower values.

This model’s advantage is that the output is isolated from
the influence of anomalies in the monitored component.
Usually, the case during downtimes, while the main bearing
cools down. The previous prediction was the most critical
input feature in an autoregressive model due to the immense
dependency of temperatures on their last state [13].

3.4 Comparison

All methods showed promising results. Even though the re-
sults appeared to be promising, it needs to be stated that
shown results are based on the given database and the de-
veloped model. The authors did not fully achieve a direct
transfer to other wind turbines and other sites. Therefore,
the setup had been reevaluated and trained for all wind
farms within the database. The methodology remained un-
changed. This last section shows the overall best-perform-
ing results of the database.

Concerning the KPI computational effort, database, and
required knowledge, the statistical approach is the preferred
solution. It returns the fasted results and does not require
a high amount of initialization effort.

However, concerning the accuracy and false prediction,
the statistical method did not satisfy. To compare the meth-
ods, the receiver operating characteristic (ROC) was used.
The ROC presents a performance measurement applied in
the field of classification tasks for different thresholds. ROC
curves are typically used to assess the effectiveness of out-
lier detection algorithms [14]. The ROC plots the true pos-
itives over the false positives rated for various threshold
values between 0 and 1. An ideal performance curve is
a rectangular curve into the upper left corner. The true pos-
itives take on the value of 1 (all alarms are identified cor-
rectly), and the false positives take on the value 0 (no data
is falsely classified as an alarm). If the line goes directly
from the origin to the upper right corner, the model can be
interpreted as a random guess.

Fig. 4. displays the ROC of the tested methods. The
statistical approach performs better than a random guess
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Table 3 KPI of investigated methods

KPI Weight
(%)

Statistical Method Random Forest Autoregressive NN

Accuracy 40 3 (69.8%) 2 (90.1%) 1 (95.1%)

False prediction 20 3 (28.4%) 2 (8.3%) 1 (6.5%)

Computational effort 15 1 (low CPU/RAM-use) 2 (training period with medium
CPU/RAM-use)

3 (training period and high
CPU/RAM-use)

Required knowledge 5 1 (direct usable) 2 (Feature selection and proper training) 2 (Feature selection and proper
training)

Required database 20 1 (no database required) 2 (database needed) 2 (database needed)

Result 100 2.2 2 1.5

with room for improvement. Meanwhile, the RF achieves
relatively early a true positive rate of 0.9 with the mentioned
threshold. The best performing method showed to be the
autoregressive NN. Its ROC is almost like the ideal scenario.

Based on the shown ROC curve and the experience
throughout this paper’s development, the KPI rating can
be found in Table 3. The autoregressive NN outperforms
the RF and the statistical method. Even though the RF also
showed satisfying results. It needs to be mentioned that RF
also had some false indication, as shown in Fig. 2. Conse-
quently, the autoregressive NN results in the best method as
a SCADA-based CMS. However, the other methods showed
to be of fair competition and should be considered de-
pending on the SCADA-based CMS’s focus. All in all,
the methodology had a similar and partially earlier fault-
indication with respect to the conventional CMS.

Even though the results appeared to be promising, it
needs to be stated that results are based on the given
database and the developed model. The authors did not
fully achieve a direct transfer to other wind turbines and
other sites. Therefore, the setup must be reevaluated and
trained for any given configuration. However, the method-
ology remains unchanged.

4 Conclusion

Throughout this publication, it was shown that SCADA
data could be used as an additional CMS. The publication
focused on the perspective of the operator. The required ef-
fort largely depends on the focus of the operator. The used
models ranked from a statistical method up to data mining
methods. Even with a simple comparison, it was possible
to detect faults in advance while keeping initial efforts low.
The autoregressive method outperformed all. The predic-
tion error was relatively low, and no false predictions were
made. Nonetheless, this method requires expert knowledge
and an extensive database. Integrating such an approach
to wind turbines’ operation could decrease the severity of
faults and maintenance costs.
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