Skip to main content
Log in

A simplified solution of the regenerator periodic problem: the case for air conditioning

Ein vereinfachter Lösungsansatz für die Regenerator-Auslegung im Bereich der Raumklimatisierung

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

This work presents an analytical solution for the periodic heat transfer problem of regenerators used in air conditioning, which are operating at low regeneration temperatures and mass flow rates. These types of regenerators are characterized by NTU/Cr <1. The partial differential equations for hot and cold airflows as well as the regenerator matrix were solved using a successive transformation of variables. They were reduced to the ordinary Bessel differential equation of the type xf″+f′−xf=0. The conventional initial and reversal boundary conditions were used in this work. The solution gives a correlation for the prediction of the regenerator effectiveness. Besides the effectiveness, the solution facilitates the calculation of the matrix temperature distribution and exit airflow temperatures. The result is compared with the available numerical and analytical solutions from literature. The result of this analysis reveals that the consideration of a non-linear matrix temperature distribution as in some previous work for low temperature regenerators just complicates the solution procedure with no significant improvement in the accuracy within the parameter space typical for air conditioning applications.

Zusammenfassung

In diesem Beitrag wird eine analytische Lösung zur Beschreibung des periodisch instationären Wärmeübergangs in Regeneratoren vorgeschlagen. Diese Lösung gilt in einem eingeschränkten Parameterbereich, der durch NTU/Cr <1 gekennzeichnet ist und niedrige Temperaturniveaus und niedrige Massenströme charakterisiert. Die zugrunde liegenden partiellen Differentialgleichungen werden durch sukzessive Transformation auf eine Bessel-Funktion zurückgeführt. Die Lösung dieser Gleichungen führt auf eine Beziehung zur Vorhersage des Regenerator-Wirkungsgrades. Zudem ermöglicht das Verfahren die Berechnung der Temperaturverteilung in der rotierenden Matrix und im Austritts-Luftstrom. Das vorgestellte Verfahren wird mit literaturbekannten numerischen und analytischen Lösungen verglichen, wobei der Vorteil des vereinfachten Ansatzes für den in der Raumklimatisierung typischen Anwendungsbereich deutlich wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Constant

A :

Heat transfer area, Constant

b :

Constant

B :

Constant

C :

Constant

c p :

Specific heat capacity

C:

Heat capacity

I :

Modified Bessel function of first kind

L :

Length

J :

Integral function

K :

Modified Bessel function of second kind

M :

Mass flow rate

N :

Rotational speed

t :

Time

T :

Temperature

u :

Velocity

V :

Matrix volume

x :

Axial coordinate

α :

Heat transfer coefficient

λ :

Thermal conductivity, arbitrary variable

ε :

Effectiveness

ρ :

Density

φ :

Correction factor

θ :

Normalized temperature

C :

Gases heat capacity ratio

Cr :

Matrix to the gas heat capacity ratio

NTU :

Number of transfer units

ζ:

Dimensionless length

η :

Dimensionless time

c :

Cold

i :

Inlet

h :

Hot

o :

Outlet, initial condition

°:

Degree

References

  1. Nusselt W (1927) The theory of the regenerator. J Ger Eng Assoc 72:1052–1054 (in German)

    Google Scholar 

  2. Lambertson TJ (1958) Performance of a periodic flow heat exchanger. Trans ASME 80:586–592

    Google Scholar 

  3. Kays WM, London AL (1984) Compact heat exchanger. McGraw-Hill, New York

    Google Scholar 

  4. Nahavandi AN, Weinstein AS (1969) A solution to the periodic-flow regenerative heat exchanger problem. Appl Sci Res 10:335–348

    Article  Google Scholar 

  5. Bàclic BS (1985) The application of the Galerkin method to the solution of symmetric and balanced counter flow regenerator problem. ASME J Heat Transf 107:214–221

    Article  Google Scholar 

  6. Klein HG (2001) Eigenberger, approximate solution for metallic regenerative heat exchangers. Int J Heat Mass Transf 44:3553–3563

    Article  MATH  Google Scholar 

  7. Rafidi N, Blasiak W (2005) Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners. Appl Therm Eng 25:2966–2982

    Article  Google Scholar 

  8. Shah RK (1981) Thermal design theory for regenerators. In: Kaka’c S, Bergles AE, Mayinger F (eds) Heat exchangers: thermal hydraulic fundamentals and design. Hemisphere Publishing, Washington

    Google Scholar 

  9. Willmott AJ, Thomas RJ (1974) Analysis of the long contra-flow regenerative heat exchanger. J Inst Math Appl 14:267–280

    Article  Google Scholar 

  10. Shang W, Besant RW (2004) Measurement of the pore size variation and its effect in energy wheel performance. ASHRAE Trans 110(1):410–421

    Article  Google Scholar 

  11. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Convolution and deconvolution using the FFT. In: Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, pp 531–537

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kabelac.

Additional information

The authors acknowledge the Alexander von Humboldt Stiftung research fellowship to A.A. Rabah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabah, A.A., Kabelac, S. A simplified solution of the regenerator periodic problem: the case for air conditioning. Forsch Ingenieurwes 74, 207–214 (2010). https://doi.org/10.1007/s10010-010-0126-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-010-0126-z

Keywords

Navigation