Skip to main content

Advertisement

Log in

Rechargeable batteries: challenges old and new

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The challenges for rechargeable batteries are cost, safety, energy, density, life, and rate. Traditional rechargeable batteries based on aqueous electrolytes have good rate capabilities but limited energy density because the voltage for a long shelf-life is restricted to 1.5 V. The discovery of fast Na ion conductivity in β-alumina in 1967 introduced the novel concept of a solid oxide electrolyte and molten electrodes: the sodium–sulfur battery operates at 350 °C. Interest in rechargeable batteries with aprotic electrolytes was further stimulated by the first energy crisis in the early 1970s. Since protons are not mobile in aprotic electrolytes, the Li+ ion was the logical choice for the working ion, and on-going work on reversible Li intercalation into layered sulfides suggested the TiS2//Li cell, which was shown in 1976 to have a voltage of V ≃ 2.2 V and good rate capability. However, the organic liquid carbonates used as electrolytes are flammable, and dendrites growing across the electrolyte from the lithium anode on repeated charge/discharge cycles short-circuited the cells with disastrous consequences. Safety concerns caused this effort to be dropped. However, substitution of the layered oxides LiMO2 for the layered sulfides MS2 and reversible intercalation of Li into graphitic carbon without dendrite formation at slow charging rates gave a safe rechargeable lithium ion battery (LIB) of large-enough energy density to enable the wireless revolution. Although carbon-buffered alloys now provide anodes that allow a fast charge and have a higher capacity, nevertheless a passivation layer permeable to Li+ forms on the anode surface, and the Li+ in the passivation layer is taken irreversibly from the cathode on the initial charge. Since the specific capacity of a cell with an insertion-compound cathode is limited by the latter, strategies to increase the specific capacity for a LIB powering an electric vehicle or storing electricity from wind or solar farms include a return to consideration of a solid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Winter M, Brodd RT (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  2. Kummer JT, Weber N (1968) US Patent 3:413–150

    Google Scholar 

  3. Lu X, Xia G, Lemmon JP, Yang Z (2010) Advanced materials for sodium-beta alumina batteries: status, challenges, and perspectives. J Power Sources 195:2431–2442

    Article  CAS  Google Scholar 

  4. Coetzer J (1986) A new high energy density battery system. J Power Sources 18:377–380

    Article  CAS  Google Scholar 

  5. Xu N, Li X, Zhao X, Huang K, Goodenough JB (2011) A novel battery for grid energy storage. Energy Environ Sci 4:4942–4946

    Article  CAS  Google Scholar 

  6. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 10:4303–4417

    Article  Google Scholar 

  7. Aurbach D, Gofer Y, Langsam J (1989) The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J Electrochem Soc 136:3198–3205

    Article  CAS  Google Scholar 

  8. Schöllhorn R (1982) Solvated intercalation components of layered chalcogenide and oxide bronzes. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 315–360

    Google Scholar 

  9. J. Rouxel. In: F. Levy (ed) Intercalated layered materials. Reidel, Dordrecht, 1979, pp. 201-250.

  10. Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126–1127

    Article  CAS  Google Scholar 

  11. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Li x CoO2 (0 <×≤ 1): a new cathode material for batteries of high energy density. Mat Res Bull 15:783–789

    Article  CAS  Google Scholar 

  12. Goodenough JB, Mizushima K, Takeda T (1980) Solid-solution oxides for storage-battery electrodes. Japanese J Appl Phys 19(Supplement 19-3):305–313

    Google Scholar 

  13. Thomas MGSR, Bruce PG, Goodenough JB (1985) Lithium mobility in the layered oxide Li1−x CoO2. Solid State Ionics 17:13–19

    Article  CAS  Google Scholar 

  14. Bartlett N, McQuillan BW (1982) Graphite chemistry. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 19–53

    Google Scholar 

  15. Yazami R, Touzain Ph (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9:365–371

    Article  CAS  Google Scholar 

  16. A. Yoshino (1985) US Patent No. 4, 688, 595 and JP No. 1989293

  17. R.V. Chebiam, F. Prado, A. Manthiram. Soft chemistry synthesis and characterization of layered Li1−x Ni1−y Co y O2− (0 ≤ × ≤ 1 and 0 ≤ y ≤ 1, 13, 2951–2957 (2001)

    Google Scholar 

  18. Edström K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403

    Article  Google Scholar 

  19. Yoon S, Manthiram A (2009) Sb–MO x –C (M = Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries. Chem Mater 20:3898–3904

    Article  Google Scholar 

  20. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  21. Goodenough JB (2007) Cathode materials: a personal perspective. J Power Sources 174:196–1000

    Article  Google Scholar 

  22. Thackeray MM, David WIF, Goodenough JB (1982) Structural characterization of the lithiated iron oxides Li x Fe3O4 and Li x Fe2O3 (0 <×< 2). Mat Res Bull 17:785–793

    Article  CAS  Google Scholar 

  23. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mat Res Bull 18:461–472

    Article  CAS  Google Scholar 

  24. Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB (1984) Electrochemical extraction of lithium from LiMn2O4. Mat Res Bull 19:179–187

    Article  CAS  Google Scholar 

  25. Ferg E, Gummow RJ, de Kock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147–L150

    Article  CAS  Google Scholar 

  26. Shin Y, Manthiram A (2003) Influence of lattice parameter difference between the two cubic phases formed in the 4 V region on the capacity fading of spinel manganese oxides. Chem Meter 15:2954–2961

    Article  CAS  Google Scholar 

  27. Makimura Y, Ohzuku T (2003) Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J Power Sources 117:156–160

    Article  Google Scholar 

  28. Liu D, Han J-T, Dontigny M, Zaqhib K, Goodenough JB (2010) Redox behaviors of ni and cr with different counter cations in spinel cathode for Li-ion batteries. J Electrochem Soc 157:A770

    Article  CAS  Google Scholar 

  29. Goodenough JB, Hong HY-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mat Res Bull 11:203–220

    Article  CAS  Google Scholar 

  30. Hong HY-P (1976) Crystal structures and crystal chemistry in the system Na1+x Zr2Si x P3−x O12. Mat Res Bull 11:173–182

    Article  CAS  Google Scholar 

  31. Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sources 26:403–408

    Article  CAS  Google Scholar 

  32. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) Mapping of transition-metal redox couples in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc 144:2581–2586

    Article  CAS  Google Scholar 

  33. Padhi AK, Nanjundaswamy KS, Goodenough JB (1992) Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  34. Zaghib K, Mauger A (2009) Goodenough, J.B., F. Gendron, and C.M Julien. Positive electrode: lithium iron phosphate. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 264–296

    Chapter  Google Scholar 

  35. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. 196th Electrochemical Society Meeting, Honolulu, Hawaii

  36. Zaghib K, Mauger A, Goodenough JB, Julien CM (2011) Design and properties of LiFePO4 nanomaterials for high power applications. In: D. Lockwood (ed) Nanotechnology for Li-ion batteries. Springer, Berlin, 2011, Chap 8

  37. Massoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chemie 49:2371–2374

    Article  Google Scholar 

  38. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novak P, Bruce PG (2011) Reaction in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Amer Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  39. Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, Stevenson KJ, Goodenough JB (2012) CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc. (in press).

  40. Lu Y, Goodenough JB (2011) Rechargeable alkali-ion cathode-flow battery. J Mater Chem 21:10113–10117

    Article  CAS  Google Scholar 

  41. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2012) A lithium superionic conductor. Nature Materials (in press).

  42. Thaugadurai V, Weppener W (2005) J Power Sources 142:399–344

    Google Scholar 

  43. O’Callaghan MP, Cussen EJ (2007) Lithium dimer formation in the Li-conducting garnets Li5+x BaxLa3−x Ta2O12 (0 < x [≤] 0.16). Chem. Commun. 2048-2050

Download references

Acknowledgments

Financial support of The Robert A. Welch Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Goodenough.

Additional information

Contribution to the symposium: “The Origin, Development, and Future of the Lithium-Ion Battery”, University of Texas at Austin, October 22, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodenough, J.B. Rechargeable batteries: challenges old and new. J Solid State Electrochem 16, 2019–2029 (2012). https://doi.org/10.1007/s10008-012-1751-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1751-2

Keywords

Navigation