Skip to main content
Log in

The effects of polymer gel electrolyte composition on performance of quasi-solid-state dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polymer gel electrolytes based on poly(acrylic acid)-poly(ethylene glycol) (PAA–PEG) hybrid have been prepared and applied to developed quasi-solid-state dye-sensitized solar cells (DSCs). PAA–PEG hybrid was synthesized by polymerization reaction. Quasi-solid-state DSCs were fabricated with synthesized PAA–PEG electrolyte. The effects of alkali iodides LiI, KI, and I2 concentrations on liquid electrolyte absorbency and ionic conductivity of PAA–PEG were investigated. The evolution of the solar cell parameters with polymer gel electrolyte compositions was revealed. DSCs based on PAA–PEG with optimized KI/I2 concentrations showed better performances than those with optimized LiI/I2 concentrations. The electrochemical impedance spectroscopy technique was employed to examine the electron lifetime in the TiO2 electrode and quantify charge transfer resistances at the TiO2/dye/electrolyte interface and the counter electrode in the solar cells based on the PAA–PEG hybrid gels. A maximum conversion efficiency of 4.96% was obtained for DSCs using KI based quasi-solid electrolyte under 100 mW cm−2. Our work suggests that KI can be the promising alkali metal iodide for improving the performance of PAA–PEG hybrid gel DSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Tennakone K, Perera V, Kottegoda I, Kumara G (1999) J Phys D Appl Phys 32:374–379

    Article  CAS  Google Scholar 

  3. Bach U, Lupo D, Comte P, Moser JE (1998) Nature 395:583–585

    Article  CAS  Google Scholar 

  4. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) Nat Mater 2:402–407

    Article  CAS  Google Scholar 

  5. Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P (2002) Nano Lett 2:1259–1261

    Article  CAS  Google Scholar 

  6. Katsaros G, Stergiopoulos T, Arabatzis IM, Papadokostaki KG, Falaras P (2002) J Photochem Photobiol A 149:191–198

    Article  CAS  Google Scholar 

  7. Kim YJ, Kim JH, Kang MS, Lee MJ, Won J, Lee JC, Kang YS (2004) Adv Mater 16:1753–1757

    Article  CAS  Google Scholar 

  8. Cao F, Oskam G, Searson PC (1995) J Phys Chem 99:17071–17080

    Article  CAS  Google Scholar 

  9. Yang H, Huang ML, Wu JH, Lan Z, Hao SC, Lin JM (2008) Mater Chem Phys 110:38–42

    Article  CAS  Google Scholar 

  10. Zhang J, Han HW, Wu SJ, Xu S, Zhou CH, Yang Y, Zhao XZ (2007) Nanotechnology 18:295606

    Article  Google Scholar 

  11. Zhang DW, Li XD, Sun Z, Chen YW, Huang SM (2008) The 2nd IEEE International Nanoelectronics Conference (INEC 2008):1335–1339

  12. Lan Z, Wu JH, Lin JM, Huang ML (2007) J Power Sources 164:921–925

    Article  CAS  Google Scholar 

  13. Lan Z, Wu JH, Lin JM, Huang ML, Li PJ, Li QH (2008) Electrochim Acta 53:2296–2301

    Article  CAS  Google Scholar 

  14. Wu JH, Lan Z, Lin JM, Huang ML, Hao SC, Sato T, Yin S (2007) Adv Mater 19:4006–4011

    Article  CAS  Google Scholar 

  15. Ito S, Chen P, Comte P (2007) Prog Photovolt 15:603–612

    Article  CAS  Google Scholar 

  16. Ito S, Nazeeruddin M, Liska P, Comte P (2006) Prog Photovolt 14:589–601

    Article  CAS  Google Scholar 

  17. Kim JH, Kang MS, Kim YJ, Won J, Kang YS (2005) Solid State Ionics 176:579–584

    Article  CAS  Google Scholar 

  18. Liu Y, Hagfeldt A, Xiao XR, Lindquist SE (1998) Sol Energy Mater Sol Cells 55:267–281

    Article  CAS  Google Scholar 

  19. Peter LM (2007) Phy Chem Chem Phys 9:2630–2642

    Article  CAS  Google Scholar 

  20. Hara K, Horiguchi T, Kinoshita T, Sayama K, Arakawa H (2001) Sol Energy Mater Sol Cells 70:151–161

    Article  CAS  Google Scholar 

  21. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Electrochim Acta 47:4213–4225

    Article  CAS  Google Scholar 

  22. Wang Q, Moser JE, Grätzel M (2005) J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  23. Han L, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka RR (2005) Appl Phys Lett 86:213501–213504

    Article  Google Scholar 

  24. Zhang DW, Li XD, Chen S, Tao F, Sun Z, Yin XJ, Huang SM (2009) J Solid State Electrochem. doi:10.1007/s10008-009-0982-3

    Google Scholar 

  25. Kusama H, Kurashige M, Arakawa H (2005) J Photochem Photobiol A: Chem 169:169–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 10774046), Shanghai Municipal Science and Technology Committee (No.09JC1404600, No.0852 nm06100 and No.08230705400) and Singapore Ministry of Education innovation fund (MOE IF Funding MOE2008-IF-1-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhang, D., Yin, X.J. et al. The effects of polymer gel electrolyte composition on performance of quasi-solid-state dye-sensitized solar cells. J Solid State Electrochem 15, 1271–1277 (2011). https://doi.org/10.1007/s10008-010-1201-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1201-y

Keywords

Navigation