Skip to main content
Log in

Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Wave function theory (WFT) and density functional theory (DFT)—the two most popular solutions to electronic structure problems of atoms and molecules—share the same origin, dealing with the same subject yet using distinct methodologies. For example, molecular orbitals are artifacts in WFT, whereas in DFT, electron density plays the dominant role. One question that needs to be addressed when using these approaches to appreciate properties related to molecular structure and reactivity is if there is any link between the two. In this work, we present a piece of strong evidence addressing that very question. Using five polymeric systems as illustrative examples, we reveal that using quantities from DFT such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, Onicescu information energy, Rényi entropy, etc., one is able to accurately evaluate orbital-related properties in WFT like frontier orbital energies and the HOMO (highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital) gap. We verified these results at both the whole molecule level and the atoms-in-molecules level. These results provide compelling evidence suggesting that WFT and DFT are complementary to each other, both trying to comprehend the same properties of the electronic structure and molecular reactivity from different perspectives using their own characteristic vocabulary. Hence, there should be a bridge or bridges between the two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parr RG, Yang WT (1989) Density functional theory for atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  3. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  4. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys Chim Sin 25:590–600

    CAS  Google Scholar 

  5. Fukui K (1971) Recognition of stereochemical paths by orbital interaction. Acc Chem Res 4:57–64

    Article  CAS  Google Scholar 

  6. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  7. Hoffmann R, Woodward RB (1965) Selection rules for concerted cycloaddition reactions. J Am Chem Soc 87:2046–2048

    Article  CAS  Google Scholar 

  8. Liu SB (2016) Information-theoretic approach in density functional reactivity theory. Acta Phys Chim Sin 32:98–118

    Google Scholar 

  9. Mulliken R (1965) Molecular scientists and molecular science: some reminiscences. J Chem Phys 43:S2–S11

    Article  Google Scholar 

  10. Pan S, Sola M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem A 117:1843–1852

    Article  CAS  Google Scholar 

  11. Chattaraj PK, Giri S, Duley S (2012) Comment on ruling out any electrophilicity equalization principle. J Phys Chem A 116:790–791

    Article  CAS  Google Scholar 

  12. von Szentpaly L (2011) Ruling out any electrophilicity equalization principle. J Phys Chem A 115:8528–8531

    Article  Google Scholar 

  13. von Szentpaly L (2012) Reply to comment on ‘Ruling out any electrophilicity equalization principle’. J Phys Chem A 116:792–795

    Article  Google Scholar 

  14. von Weizsäcker CF (1935) Zur Theorie der Kernmassen. Z Phys 96:431–458

    Article  Google Scholar 

  15. Liu SB (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126:244103

    Article  Google Scholar 

  16. Liu SB, Govind N (2008) Toward understanding the nature of internal rotation barriers with a new energy partition scheme: ethane and n-butane. J Phys Chem A 112:6690–6699

    Article  CAS  Google Scholar 

  17. Liu SB, Govind N, Pedersen LG (2008) Exploring the origin of the internal rotational barrier for molecules with one rotatable dihedral angle. J Chem Phys 129:094104

    Article  Google Scholar 

  18. Liu SB, Hu H, Pedersen LG (2010) Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J Phys Chem A 114:5913–5918

    Article  CAS  Google Scholar 

  19. Liu SB (2013) Origin and nature of bond rotation barriers: a unified view. J Phys Chem A 117:962–965

    Article  CAS  Google Scholar 

  20. Torrent-Sucarrat M, Liu SB, De Proft F (2009) Steric effect: partitioning in atomic and functional group contributions. J Phys Chem A 113:3698–3702

    Article  CAS  Google Scholar 

  21. Ess DH, Liu SB, De Proft F (2010) Density functional steric analysis of linear and branched alkanes. J Phys Chem A 114:12952–12957

    Article  CAS  Google Scholar 

  22. Tsirelson VG, Stash AI, Liu SB (2010) Quantifying steric effect with experimental electron density. J Chem Phys 133:114110

    Article  Google Scholar 

  23. Huang Y, Zhong AG, Yang QS, Liu SB (2011) Origin of anomeric effect: a density functional steric analysis. J Chem Phys 134:084103

    Article  Google Scholar 

  24. Esquivel RO, Liu SB, Angulo JC, Dehesa JS, Antolin J, Molina-Espiritu M (2011) Fisher information and steric effect: Study of the internal rotation barrier of ethane. J Phys Chem A 115:4406–4415

    Article  CAS  Google Scholar 

  25. Zhao DB, Rong CY, Jenkins S, Kirk SR, Yin DL, Liu SB (2013) Origin of the cis-effect: a density functional theory study of doubly substituted ethylenes. Acta Phys-Chim Sin 29:43–54

    CAS  Google Scholar 

  26. Tsirelson VG, Stash AI, Liu SB (2013) Pauli potential and Pauli charge from experimental electron density. Comput Theor Chem 1006:92–99

    Article  CAS  Google Scholar 

  27. Wang YJ, Zhao DB, Rong CY, Liu SB (2014) Towards understanding the origin and nature of the conformational stability of water clusters: a density functional theory and quantum molecular dynamics study. Acta Phys Chim Sin 29:2173–2179

    Google Scholar 

  28. Fang D, Piquemal JP, Liu SB, Cisneros GA (2014) DFT-steric-based energy decomposition analysis of intermolecular interactions. Theor Chem Acc 133:1484

    Article  Google Scholar 

  29. Liu SB, Schauer CK (2015) Origin of molecular conformational stability: perspectives from molecular orbital interactions and density functional reactivity theory. J Chem Phys 142:054107

    Article  Google Scholar 

  30. Liu SB, Rong CY, Lu T (2014) Information conservation principle determines electrophilicity, nucleophilicity, and regioselectivity. J Phys Chem A 118:3698–3704

    Article  CAS  Google Scholar 

  31. Zhou XY, Rong CY, Lu T, Liu SB (2014) Hirshfeld charge as a quantitative measure of electrophilicity and nucleophilicity: Nitrogen-containing systems. Acta Phys-Chim Sin 30:2055–2062

    CAS  Google Scholar 

  32. Liu SB (2014) Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution. J Chem Phys 141:194109

    Article  Google Scholar 

  33. Liu SB (2015) Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge. J Phys Chem A 119:3107–3111

    Article  CAS  Google Scholar 

  34. Wu WJ, Wu ZM, Rong CY, Huang Y, Liu SB (2015) Computational study of chemical reactivity using information-theoretic quantities from density functional reactivity theory for electrophilic aromatic substitution reactions. J Phys Chem A 119:8216–8224

    Article  CAS  Google Scholar 

  35. Rong CY, Lu T, Chattaraj PK, Liu SB (2014) On the relationship among Ghosh–Berkowitz–Parr entropy, Shannon entropy and Fisher information. Indian J Chem Sect A 53:970–977

    Google Scholar 

  36. Rong CY, Lu T, Ayers PW, Chattaraj PK, Liu SB (2015) Scaling properties of information-theoretic quantities in density functional reactivity theory. Phys Chem Chem Phys 17: 4977–4988. Phys Chem Chem Phys 17: 11110–11111

    Article  CAS  Google Scholar 

  37. Wu ZM, Rong CY, Lu T, Ayers PW, Liu SB (2015) Density functional reactivity study pf SN2 reactions from information-theoretic perspective. Phys Chem Chem Phys 17:27052–27061

    Article  CAS  Google Scholar 

  38. Liu SB, Rong CY, Wu ZM, Lu T (2015) Rényi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory. Acta Phys-Chim Sin 11:2057–2063

    Google Scholar 

  39. Zhou XY, Rong CY, Lu T, Zhou PP, Liu SB (2016) Information functional theory: electronic properties as functionals of information for atoms and molecules. J Phys Chem A 120:3634–3642

    Article  CAS  Google Scholar 

  40. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  41. Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  42. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chem Acc 44:129–138

    Article  CAS  Google Scholar 

  43. Shannon CEA (1948) Mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  44. Fisher RA (1925) Theory of statistical estimation. Proc Cambridge Philos Soc 22:700–725

    Article  Google Scholar 

  45. Ghosh SK, Berkowitz M, Parr RG (1984) Transcription of ground-state density-functional theory into a local thermodynamics. Proc Natl Acad Sci USA 81:8028–8031

    Article  CAS  Google Scholar 

  46. Rényi A (1970) Probability Theory. North-Holland, Amsterdam

    Google Scholar 

  47. Onicescu O (1966) Energie informationnelle. C R Acad Sci Paris A 263:841–842

    Google Scholar 

  48. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154

    Article  CAS  Google Scholar 

  49. Liu SB (2007) On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules. J Chem Phys 126:191107

    Article  Google Scholar 

  50. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479–487

    Article  Google Scholar 

  51. Kullback S (1997) Information Theory and Statistics. Dover, Mineola

    Google Scholar 

  52. Nagy Á (2014) Fisher and Shannon information in orbital-free density functional theory. Int J Quantum Chem 114:1392–1395

    Google Scholar 

  53. Levy M, Ouyang H (1988) Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional. Phys Rev A 38:625–629

    Article  CAS  Google Scholar 

  54. Herring C, Chopra M (1988) Some tests of an approximate density functional for the ground-state kinetic energy of a fermion system. Phys Rev A 37:31–42

    Article  CAS  Google Scholar 

  55. Liu SB, Ayers PW (2004) Functional derivative of noninteracting kinetic energy density functional. Phys Rev A 70:022501

    Article  Google Scholar 

  56. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci USA 97:8879–8882

    Article  CAS  Google Scholar 

  57. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105:7391–7400

    Article  CAS  Google Scholar 

  58. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959

    Article  CAS  Google Scholar 

  59. Ayers PW (2006) Information theory, the shape function, and the Hirshfeld atom. Theor Chem Acc 115:370–378

    Article  CAS  Google Scholar 

  60. Zhang RQ, Bertran E, Lee ST (1998) Size dependence of energy gaps in small carbon clusters: the origin of broadband luminescence. Diam Relat Mater 7:1663–1668

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision D. 01. Gaussian, Inc, Wallingford

    Google Scholar 

  62. Becke AD (1993) Density‐functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  63. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  64. Ditchfield R, Hehre WJ, Pople JA (1971) A. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  65. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  66. Xiao SQ, Stuart AC, Liu SB, Zhou HZ, You W (2010) Conjugated polymer based on polycyclic aromatics for bulk heterojunction organic aolar cells: A case study of quadrathienonaphthalene polymers with 2% efficiency. Adv Funct Mater 20:635–643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.B.L. and C.Y.R. acknowledge support from the National Natural Science Foundation of China (No.21503076) and RQZ is supported in part by a grant from Environmental Conservation Fund (No. 921100 (29/2015)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiqin Zhang or Shubin Liu.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Rong, C., Zhang, R. et al. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J Mol Model 23, 3 (2017). https://doi.org/10.1007/s00894-016-3175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3175-x

Keywords

Navigation