Skip to main content
Log in

Direct and solvent-assisted keto–enol tautomerism and hydrogen-bonding interactions in 4-(m-chlorobenzylamino)-3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-one: a quantum-chemical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The tautomeric equilibrium of the title triazole compound was computationally analyzed at the B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory. The solvent effect was considered for three solvents (chloroform, methanol, and water). Two distinct mechanisms were applied: a direct intramolecular transfer using the polarizable continuum model (PCM) and a solvent-assisted mechanism. The calculations indicated that the keto form is more stable in all cases. It was found that the barrier heights for the tautomerization reaction are very high, indicating a relatively disfavored process. Although the barrier heights for solvent-assisted reactions are significantly lower than those for the unassisted tautomerization reaction, implying the importance of the superior catalytic effect of the solvents, monosolvation was not found to be sufficient for the reaction to occur. Finally, the two intermolecular hydrogen-bonding interactions in the crystal structure were investigated in the gas phase; according to the calculated energies and structural parameters, the order of stability is N3–H3···O1 > N1–H1···O1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cucinotta CS, Ruini A, Catellani A, Stirling A (2006) Ab initio molecular dynamics study of the keto-enol tautomerism of acetone in solution. ChemPhysChem 7(6):1229–1234

    Article  CAS  Google Scholar 

  2. Brovarets’ OO, Hovorun DM (2013) Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dyn 31(8):913–936

    Article  Google Scholar 

  3. Samijlenko SP, Yurenko YP, Stepanyugin V, Hovorun DM (2011) Tautomeric equilibrium of uracil and thymine in model protein–nucleic acid contacts. Spectroscopic and quantum chemical approach. J Phys Chem B 114(3):1454–1461

  4. Brovarets’ OO, Hovorun DM (2010) How stable are the mutagenic tautomers of DNA bases? Biopolym Cell 26(1):72–76

    Article  Google Scholar 

  5. Brovarets’ OO, Hovorun DM (2010) Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation. Biopolym Cell 26(4):295–298

    Article  Google Scholar 

  6. Smith MB, March J (2001) March’s advanced organic chemistry. Wiley, New York

    Google Scholar 

  7. Pitucha M, Karczmarzyk Z, Wysocki W, Kaczor AA, Matosiuk D (2011) Experimental and theoretical investigations on the keto–enol tautomerism of 4-substituted 3-[1-methylpyrrol-2-yl)methyl]-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. J Mol Struct 994(1–3):313–320

  8. Matosiuk D, Fidecka S, Antkiewicz-Michaluk L, Lipkowski J, Dybala I, Koziol AE (2002) Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine. Part 2. Synthesis and pharmacological activity of 1,6-diaryl-5,7(1H)dioxo-2,3-dihydroimidazo[1,2-a]-[1,3,5]triazines. Eur J Med Chem 37(9):761–772

  9. Matosiuk D, Fidecka S, Antkiewicz-Michaluk L, Dybala I, Koziol AE (2002) Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine. Part 3. Synthesis and pharmacological activity of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazoles. Eur J Med Chem 37(10):845–853

  10. Sztanke K, Fidecka S, Kedzierska E, Karczmarzyk Z, Pihlaja K, Matosiuk D (2005) Antinociceptive activity of new imidazolidine carbonyl derivatives. Part 4. Synthesis and pharmacological activity of 8-aryl-3,4-dioxo-2H,8H-6,7-dihydroimidazo[2,1-c][1,2,4]triazines. Eur J Med Chem 40(2):127–134

  11. Temperini C, Cecchi A, Scozzafava A, Supuran CT (2009) Carbonic anhydrase inhibitors. Comparison of chlorthalidone and indapamide X-ray crystal structures in adducts with isozyme II: when three water molecules and the keto–enol tautomerism make the difference. J Med Chem 52(2):322–328

  12. Brovarets’ OO, Hovorun DM (2014) Can tautomerization of the A·T Watson–Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dyn 32(1):127–154

  13. Brovarets’ OO, Hovorun DM (2014) Why the tautomerization of the G·C Watson–Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. J Biomol Struct Dyn 32(9):1474–1499

  14. Brovarets’ OO, Hovorun DM (2015) The physicochemical essence of the purine·pyrimidine transition mismatches with Watson–Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding. J Biomol Struct Dyn 33(1):28–55. doi:10.1080/07391102.2013.852133

  15. Brovarets’ OO, Hovorun DM (2014) The nature of the transition mismatches with Watson–Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. J Biomol Struct Dyn 23:1–21. doi:10.1080/07391102.2014.924879

  16. Kosenkov D, Kholod Y, Gorb L, Shishkin O, Hovorun DM, Mons M, Leszczynski J (2009) Ab initio kinetic simulation of gas-phase experiments: tautomerization of cytosine and guanine. J Phys Chem B 113(17):6140–6150

  17. Furmanchuk A, Isayev O, Shishkin OV, Hovorun DM, Leszczynski J (2011) Novel view on the mechanism of water-assisted proton transfer in the DNA bases: bulk water hydration. Phys Chem Chem Phys 13(10):4311–4317

    Article  CAS  Google Scholar 

  18. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

  19. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

  20. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

  21. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Ghomi M, Hovorun DM (2007) The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine. AIM electron density topological study. Chem Phys Lett 447(1–3):140–146

    Article  CAS  Google Scholar 

  22. Sahu PK, Chaudhari A, Lee S-L (2004) Theoretical investigation for the hydrogen bond interaction in THF–water complex. Chem Phys Letters 386(4–6):351–355

  23. Ponomareva AG, Yurenkoa YP, Zhurakivsky RO, van Mourik T, Hovorun DM (2012) Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Phys Chem Chem Phys 14(19):6787–6795

    Article  CAS  Google Scholar 

  24. Ponomareva AG, Yurenkoa YP, Zhurakivsky RO, van Mourik T, Hovorun DM (2012) Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G: a comprehensive theoretical investigation. J Biomol Struct Dyn 32(5):730–740

    Article  Google Scholar 

  25. Unangst PC, Shrum GP, Connor DT, Dyer RD, Schrier DJ (1992) Novel 1,2,4-oxadiazoles and 1,2,4-thiadiazoles as dual 5-lipoxygenase and cyclooxygenase inhibitors. J Med Chem 35(20):3691–3698

    Article  CAS  Google Scholar 

  26. Mullican MD, Wilson MW, Connor DT, Kostlan CR, Schrier DJ, Dyer RD (1993) Design of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as orally-active, nonulcerogenic antiinflammatory agents. J Med Chem 36(8):1090–1099

  27. Jones DH, Slack R, Squires S, Wooldridge KRH (1965) Antiviral chemotherapy. I. The activity of pyridine and qinoline derivatives against neurovaccinia in mice. J Med Chem 8(5):676–680

    Article  CAS  Google Scholar 

  28. Sughen JK, Yoloye T (1978) Medicinal applications of indole derivatives. Pharm Acta Helv 53(3–4):65–92

    Google Scholar 

  29. Shams El-Dine SA, Hazzaa AAB (1974) Synthesis of compounds with potential fungicidal activity. Pharmazie 29:761–763

    CAS  Google Scholar 

  30. Stillings MR, Welbourn AP, Walter DS (1986) Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 2. Aminoalkyl derivatives. J Med Chem 29(11):2280–2284

    Article  CAS  Google Scholar 

  31. Sztanke K, Tuzimski T, Rzymowska J, Pasternak K, Kandefer-Szerszeń M (2008) Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur J Med Chem 43(2):404–419

    Article  CAS  Google Scholar 

  32. Ilango K, Valentina P (2010) Synthesis and biological activities of novel 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles. Der Pharm Chem 2(2):16–22

  33. Demirbas N, Ugurluoglu D, Demirbas A (2002) Synthesis of 3-alkyl(aryl)-4-alkylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5-dihydro-1H-1,2,4-triazol-5-ones as antitumor agents. Bioorg Med Chem 10(12):3717–3723

    Article  CAS  Google Scholar 

  34. Kane JM, Dudley MW, Sorensen SM, Miller FP (1988) 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. J Med Chem 31(6):1253–1258

    Article  CAS  Google Scholar 

  35. Vreugdenhil W, Haasnoot JG, Reedijk J, Spek AL (1987) Ferromagnetic and antiferromagnetic spin coupling in Ni4O4 cubane-type clusters with 4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole as a ligand. The X-ray structure of a new dumbbell-like double cubane cluster. Inorg Chim Acta 129(2):205–216

  36. Van Albada GA, De Graaff RAG, Haasnoot JG, Reedijk J (1984) Synthesis, spectroscopic characterization, and magnetic properties of unusual 3,5-dialkyl-1,2,4-triazole compounds containing N-bridging isothiocyanato ligands. X-ray structure of trinuclear bis[(μ-thiocyanato-N)bis(μ-3,5-diethyl-1,2,4-triazole-N 1,N 2)bis(thiocyanato-N)(3,5-diethyl-1,2,4-triazole-N 1)nickel(II)-N,N 1,N 1′]nickel(II) dihydrate. I. Inorg Chem 23(10):1404–1408

  37. Vos G, le Febre RA, de Graaff RAG, Haasnoot JG, Reedijk J (1983) Unique high-spin-low-spin transition of the central ion in a linear, trinuclear iron(II) triazole compound. J Am Chem Soc 105(6):1682–1683

  38. Kahn O, Martinez CJ (1998) Spin-transition polymers: from molecular materials toward memory devices. Science 279(5347):44–48

    Article  CAS  Google Scholar 

  39. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17(1):49–56

    Article  CAS  Google Scholar 

  40. Dennington R II, Keith T, Millam J (2007) GaussView, version 4.1.2. Semichem Inc., Shawnee Mission

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Revision E.01. Gaussian Inc., Wallingford

  42. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

  44. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654

    Article  CAS  Google Scholar 

  45. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269

  46. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166(3):281–289

    Article  CAS  Google Scholar 

  47. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161

    Article  CAS  Google Scholar 

  48. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527

    Article  CAS  Google Scholar 

  49. Hobza P, Zahradnik R (1988) Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies: successes and failures. Chem Rev 88(6):871–897

  50. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) State of the art in counterpoise theory. Chem Rev 94(7):1873–1885

  51. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  52. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129

    Article  Google Scholar 

  53. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  54. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  Google Scholar 

  55. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093

    Article  CAS  Google Scholar 

  56. Moore WJ (1974) In: Physical chemistry. Longman, London, pp 282–299

  57. Atkins PW (1994) In: Physical chemistry. Oxford University Press, Oxford, pp 147–170

  58. Özdemir N, Dinçer M, Kahveci B, Ağar E, Şaşmaz S (2003) 4-(m-Chlorobenzylamino)-3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-one. Acta Crystallogr E59(8):o1223–o1225

    Google Scholar 

  59. Nikolaienko TY, Bulavin LA, Hovorun DM (2011) How flexible are DNA constituents? The quantum-mechanical study. J Biomol Struct Dyn 29(3):563–575

  60. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Engl 34:1555–1573

  61. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta A 55(7–8):1585–1612

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their helpful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namık Özdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, N.B., Özdemir, N. Direct and solvent-assisted keto–enol tautomerism and hydrogen-bonding interactions in 4-(m-chlorobenzylamino)-3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-one: a quantum-chemical study. J Mol Model 21, 19 (2015). https://doi.org/10.1007/s00894-015-2574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2574-8

Keywords

Navigation