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Abstract A simple way to improve the accuracy of the frag-
mentation methods is proposed. The formalism was applied to
the elongation (ELG) method at restricted open-shell Hartree-
Fock (ROHF) level of theory. The α-helix conformer of
polyglycine was taken as a model system. The modified
ELG method includes a simplified electrostatic field resulting
from point-charge distribution of the system’s environment. In
this way the long-distance polarization is approximately taken
into account. The field attenuates during the ELG process to
eventually disappear when the final structure is reached. The
point-charge distributions for each ELG step are obtained
from charge sensitivity analysis (CSA) in force-field atoms
resolution. The presence of the intermediate field improves the
accuracy of ELG calculations. The errors in total energy and
its kinetic and potential contributions are reduced by at least
one-order of magnitude. In addition the SCF convergence of
ROHF scheme is improved.

Keywords Charge sensitivity analysis . Electronegativity
equalizationequations .Elongationcutoffmethod .Elongation
method . Population analyses . Order-Nmethods

Introduction

Development of linear scaling methods, or order-N methods,
is of primary importance in quantum chemistry. There are two
main approaches leading to linear scaling. They can be clas-
sified as numerical and chemical approaches. The former
linearizes every step of Hartree-Fock (HF) or Kohn-Sham
(KS) schemes. Nowadays, the construction of HF and KS
matrices is linear [1–8]. To reach this goal and to solve HF/
KS equations several techniques are applied, for example,
prescreening techniques [9], the continuous fast multipole
method [1, 10–14], order-N exchange [15], near-field ex-
change [16], tree-code approaches [14, 17], density fitting,
density matrix minimization techniques [18–21], linear scal-
ing quadrature methods [22, 23], sparse matrix algebra [24,
25], code parallelization [26], and GPU accelerators [27]. The
chemical approaches are based on the so called nearsighted-
ness approximation [28]. It assumes that the electronic struc-
ture of a given molecular fragment is predominantly deter-
mined by its nearest neighborhood and the influence of very
distant fragments is negligible. The nearsightedness approxi-
mation is strongly related to generalized product function of
McWeeny [29]. Several techniques using generalized product
function have been proposed. They are called the fragmenta-
tion methods. They differ in conditions imposed on mutual
interactions among fragments. In the most advanced fragment
molecular orbital (FMO) method [30–34] and elongation
(ELG) method [35–41] all interactions are rigorously taken
into account. The opposite situation appears when fragments
are treated completely independently [42, 43]. Intermediate
situations are also possible [44–51]. However, one should
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remember that by simplifying the interactions and narrowing
the variation space a systematic error is introduced.

In this paper we describe a simple way to improve the
accuracy of the fragmentation methods. The self consistent
field (SCF) calculations for selected molecular fragments are
performed in the electrostatic field created by the point-charge
distribution of the fragment’s complementary part. The for-
malism is applied to elongation method where it is an inter-
mediate construction. The field diminishes in each step of the
elongation procedure and finally disappears after the electron-
ic structure of the whole system is obtained. This intermediate
electrostatic field introduces the long-distance polarization
into ELG calculations and is a step beyond the nearsighted-
ness approximation. There have been some attempts to in-
clude the polarization effects in charged polymers, however,
they limited the fragment’s complementary part to charged
groups only. Here, we propose a uniform treatment of the
fragment’s complementary part. Point charge distribution
was also used by Exner and Mezey [45] to diminish the
distance criterion in the adjustable density matrix assembler
method.

The paper is organized as follows. First, we briefly describe
the ELG methods and charge sensitivity analysis (CSA) used
to derive the point-charge distributions. Next, we give infor-
mation connected with computational details. Then, the per-
formance of the method is shown. The analysis is focused on
the accuracy. Finally, the conclusions are given along with the
future prospects.

Elongation and elongation cutoff technique

Elongat ion method mimics the polymer iza t ion/
copolymerization reaction mechanism [35, 36]. The electronic
structure of the whole molecular system (M) is synthesized by
enlarging a so called starting cluster (M1). The SCF calcula-
tions performed onM1 initialize the ELG process. This step is
complemented with molecular orbital (MO) localization pro-
cedure. The canonical M two fragments: A1 and B1 [37]. Next,
the size of the system is enlarged by adding a new molecular
fragment C1. The localized molecular orbitals (LMOs)
assigned to fragment A1, which is far away from the chain
propagation center, are frozen. The LMOs of B1 and guess
MOs of C1 constitute the variation space S1. Then, SCF
calculations on S1 are performed. Such propagation proce-
dure is continued, step by step, until M is built. Every SCF
step of chain propagation is followed by molecular orbital
localization. Canonical MOs are localized onto Ai and Bi
fragments. The LMOs assigned to Ai are excluded from
variation space (they are frozen in the ELG process). The
LMOs assigned to Bi together with MOs of Ci constitute the
active space (Si). The whole ELG procedure can be sum-
marized as follows:

M 1 ¼LMO
A1

���B1

� �
ð1aÞ

M2 ¼ A1

���B1 þ C1

� �
≡
SCF

A1

���S1
� �

¼LMO
A1 þ A2

���B2

� �
≡ A2

���B2

� �

M3 ¼ A2
���B2 þ C2

� �
≡
SCF

A2
���S2

� �
¼LMO

A2 þ A3

���B3

� �
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���B3

� �

⋮
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���Bn−2 þ Cn−2

� �
≡
SCF

An−2
���Sn−2

� �
¼LMO

An−2 þ An−1

���Bn−1

� �

≡ An−1
���Bn−1

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1bÞ

M ¼ Mn ¼ An−1
���Bn−1 þ Cn−1

� �
≡
SCF

An−1
���Sn−1

� �
ð1cÞ

Equations 1a, 1b, and 1c correspond to initialization, chain
propagation, and chain termination, respectively. Notice that
there is no need to localize MO in the final step (Eq. 1c).

In the ELG scheme the size of variation space is almost
constant. One can eventually take advantage of the sparseness
in the LMO representation [39, 40, 52, 53]. In the limit of
perfect localization, LMOs assigned to the frozen fragment
(CAi ) have no tails in the active fragment and vice versa,
LMOs assigned to the active fragment (CSi ) have no tails in
the frozen one. Therefore, instead of constructing the Fock or

Kohn-Sham matrix of Mi-1 (FAO
Mi−1Mi−1

), the FAO
SiSi

block is

built. Such elongation cutoff scheme (ELG/C) operates within
a low-dimensional subspace,

C†
Si
Fiþ1CSi ¼ 0

†

AiSi
C†

SiSi

� � FAO
AiAi FAO

AiSi

FAO
SiA

i FAO
SiSi

 !
0AiSi
CSiSi

� �

≡FMO
SiSi

¼ C†
SiSi

FAO
SiSi

CSiSi

ð2Þ

and avoids the known bottleneck of the SCF calculations, i.e.,
diagonalization. The lower indices in Eq. (2) are introduced to
indicate dimensions and the block 0AiSi is filled with zeros. In
addition, the number of two-electron repulsion integrals is
substantially reduced as long as the total energy of Mi is not
needed. It was demonstrated that ELG/C scheme is linear in
CPU time at HF [52] and KS [53] levels of theory for a linear
or quasi-linear polymer. The ELG scheme can be generalized
to three-dimensional (3D) systems. In such a generalized ELG
scheme the frozen LMOs of a given fragment can reenter the
variation space [54–56].

In the ELG (ELG/C) scheme the molecular fragments are
not treated equivalently. Namely, the starting cluster does not
know its “future” while Sn-1 possesses the whole knowledge
of M. Such way of building M is consistent with the near-
sightedness approximation [28] which is a common
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assumption in the fragmentation methods. However, it is also
a source of errors. To reduce this error, the ELG (ELG/C)
process can be performed in an approximate field arising from
complementary part ofMi, for example its point charge distri-
bution. The ith subsystem’s complementary part is denoted by

Mi. By enlarging the system size (i→n) the complementary

part becomes smaller and finally (i=n) disappears (Mnis a zero
set). This electrostatic field is an intermediate construction,
therefore, the final energy of M should be greater than the
reference HF (KS) one.

Charge sensitivity analysis in force-field atoms resolution

The intermediate point-charge distribution can be easily ob-
tained from charge sensitivity analysis [57]. CSA is based on
second-order Taylor expansion of the system’s energy EM

with respect to atomic charges. The CSA formalism in global
resolution (without constraints on charge flow) can be sum-
marized in a single matrix equation [58]:

0 1 1 ⋯ 1
1
1
⋮
1

η11 η12 ⋯ η1N
η21 η22 ⋯ η2N
⋮ ⋮ ⋱ ⋮
ηN1 ηN2 ⋯ ηNN

0
BBB@

1
CCCA

−χ
q1
q2
⋮
qN

0
BBB@

1
CCCA ¼

q
−χ�

1
−χ�

2
⋮
−χ�

N

0
BBB@

1
CCCA

ð3Þ

where η={ηij=∂2EM/∂qi∂qj} is the hardness matrix, q is the
total charge and χ=∂EM/∂q is the global electronegativity [59,
60] of a molecular system M composed of N atoms. Vectors
q=(q1,q2,…qN)

T and χ=(χ1
*,χ2

*,…χN
* )T group the atomic

charges and electronegativities, respectively. The first equa-
tion in (3) is a closure relation:

q ¼
X
i¼1

N

qi ð4Þ

The remaining equations

χ ¼ χi ¼ χ�
i þ

X
j¼1

N

ηijq j; j ¼ 1; 2; ; N ð5Þ

are the electronegativity equalization equations (χ1=χ2=
…=χN=χ) [61]. The charge distribution inside M can be
obtained by inverting Eq. (3):
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Here, β={βij=∂2EM/∂vi∂vj=−∂qj/∂vi=−∂qi/∂vj} is the po-
larization matrix (linear response matrix). The vector v=(v1,
v2,…vN) denotes the external potential due to nuclei. The
remaining undefined quantities are the global hardness [62,
63] η=∂2EM/∂q2 and the Fukui function (FF) [63] vector
f={fi=(∂qi/∂q)v=−(∂μ/∂vi)q}. The hardness matrix η and the
vector of atomic electronegativities χ are the base parameters
of CSA. In the force-field atoms resolution they depend on the
atomic number, hybridization and local chemical environment
of atoms constituting the system. We have recently derived
these parameters for different population analyses [64, 65].

Computational details

All ELG (ELG/C) calculations were performed at restricted
open-shell Hartree-Fock (ROHF) level of theory using
GAMESS package [66, 67]. Three different basis sets, name-
ly: STO-3G, 6-31G, and 6-31G(d), were applied. The alpha-
helix conformer of polyglycine was taken as a model system.
The starting cluster was built of 15 amino acid units. In each
step of the elongation eight units were frozen and another
eight units were added to the system. This ELG propagation
scheme is denoted as 15/8. The elongation process was termi-
nated for 55 glycine units. In the case of ELG/C calculations,
the cutoff procedure was initialized for a system made up of
31 units (15/8:31). The geometry of alpha-helix was the same
as in our earlier paper [52]. We have chosen this conformer
since, for a given partitioning scheme, the error in its total
energy was bigger than for other conformers (C5, C7, and 310-
helix).

The point charge distribution for different population anal-
yses was obtained from CSA calculations. Five different
charge distributions were used, namely, Bader (B) [68],
Hirshfeld (H) [69], Mülliken (M) [70], Natural (N) [71], and
Voronoi (V) [72] population analyses. The ELG calculations
were carried out for each charge distribution. The errors in
total (tot), kinetic (kin), and potential (pot) energies were
defined with respect to the conventional (supermolecule)
ROHF energies:

ΔEx ¼ EELG
x −EROHF

x ; x ¼ tot; kin; potð Þ ð7Þ

By definition ΔEM=ΔEtot is greater than zero since ELG
(ELG/C) is a variational method. There are no such restric-
tions on its components, therefore, ΔEkin (ΔEpot) may be
either negative or positive. We have chosen ROHF cal-
culations since the propagation at RHF level of theory would
require saturation of “broken” bonds. This means that each
intermediate subsystem (15, 23, 31, 39, and 47 units) would
have to be saturated by a hydrogen atom. To avoid perturba-
tion created by this artificial hydrogen atom ROHF scheme
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was selected. One can expect that the intermediate electrostat-
ic field should stabilize the system and should improve the
SCF convergence. The proposed modification of ELG (ELG/
C) scheme has no influence on CPU time since one-electron
integrals are computed only once, before the SCF process.

Results and discussion

The errors introduced by ELG and modified ELG schemes are
plotted in Fig. 1. Parts a, b, and c correspond to STO-3G, 6-
31G, and 6-31G(d) basis sets, respectively. The error in the
total energy is always positive. The ELG and modified ELG
methods are variational, therefore the calculated energies are
higher than the reference ROHF energies. All energies are
computed for the final system built up of 55 units. The
intermediate energies cannot be directly compared with the
reference ROHF energies since they have quite a different
meaning. The first error bar in each figure corresponds to
standard ELG calculations with qMi

¼ 0 (no field). The re-

maining error bars correspond to different population analyses
employed in the modified ELG procedure. The error in ELG
calculation depends on the basis set and increases with its size.
For 6-31G(d) basis set it is about two-orders of magnitude
greater than for the minimal basis set. The presence of the
intermediate field arising from charges from every population
analysis reduces the error in the total energy. The reproduction
of conventional ROHF energies is improved by about one
order of magnitude for STO-3G (Fig. 1a) and 6-31G (Fig. 1b)
basis sets. The improvement for 6-31G(d) basis is the most
pronounced (Fig. 1c). The error is reduced by three orders of
magnitude for B, M, and N population analyses. For all basis
sets the modified ELG scheme with V and H charges works
slightly worse than with B, M, and N charges. The change-
ability in total energy with the basis set size is the smallest for
B and N charges. The errors in total energies are equal to 0.01,
0.02, and 0.02 kcal mol-1 for STO, 6-31G, and 6-31G(d) basis
sets, respectively.

Therefore, by taking the long-distance polarization into
account, even in the simplified way, the reproduction of the
reference ROHF energy is much better and the error does not
exceed 1 kcal mol-1. It should also bementioned that, although
Fig. 1 corresponds to ELG and modified ELG schemes, they
present the errors in the ELG/C and modified ELG/C
schemes. The reason for that is that the cutoff error (Etot

ELG−
Etot
ELG/C) is at least two orders of magnitude smaller than the

elongation error (Etot
ELG−EtotROHF).

To understand the improvement in reproduction of the
system’s total energy we have decomposed Etot

ELG into its
potential (Epot

ELG) and kinetic (Ekin
ELG) components. The errors

with respect to conventional potential (Epot
ROHF) and kinetic

(Ekin
ROHF) energies are illustrated in Fig. 2. The black error bars

correspond to ΔEkin while white error bars to ΔEpot. Again,
the first error bar in each figure corresponds to standard ELG
scheme. As it was mentioned in Computational details, the
errors in potential and kinetic energies may be either positive
or negative. It is clearly seen in Fig. 2a. Depending on the
population analysis, the error in kinetic energy is positive (B
and N) or negative (H, M and V). Regardless of the basis set
and the population analysis, the error in potential energy
always has the opposite sign toΔEkin. Its magnitude is almost
the same as that of ΔEpot. This error cancelation causes the
accuracy in the total energy to be one order of magnitude
greater than in its potential and kinetic components. Based on
the virial theorem, a different ratio ΔEpot/ΔEkin should be
expected. However, one should remember that the virial the-
orem is exact for the true ground-state wave function. The
approximate wave function fulfils it only approximately. For
more extended basis sets [6-31G and 6-31G(d)], ΔEpot for
modified ELG scheme is negative andΔEkin is positive. In the
case of standard ELG scheme, ΔEpot is negative for 6-31G
and positive for 6-31G(d) basis sets, respectively.

Fig. 1 The error [a.u.] in the total energies introduced by 15/8 ELG and
modified ELG schemes [with Bader (B), Hirshfeld (H), Mülliken (M),
Natural (N), and Voronoi (V) charge distributions] with respect to con-
ventional ROHF calculations for polyglycine chain made up of 55 units.
Parts (a), (b), and (c) correspond to STO-3G, 6-31G, and 6-31G(d) basis
sets
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It is clear from the figures that the intermediate electrostatic
field improves the reproduction of kinetic and potential ener-
gies. Such improvement is evident for 6-31G(d) basis set. One
should expect such behavior since slightly populated polari-
zation functions on heavy atoms should be sensitive to the
intermediate field used in the modified ELG calculations. All
the results of modified ELG calculations at 6-31G(d) basis set
show that the kinetic energy is overestimated due to the
influence of point charges.

Finally, let us analyze the SCF convergence during ELG
calculations. All intermediate subsystems are radicals
(dublets). Only the whole system is closed-shell. The SCF
convergence for radicals is worse than for closed-shell singlet
states. The SCF convergence is illustrated in Fig. 3. Parts a, b,
and c correspond to STO-3G, 6-31G, and 6-31G(d) bases,

respectively. One can observe that, except for B, M, and N
charges at STO-3G basis set calculations, the field stabilizes
the radicals. It means that fewer SCF cycles are required to
reach the same assumed accuracy in comparison to standard
ELG scheme. The differences between ELG and modified
ELG schemes are more pronounced for the starting cluster.
For larger basis set, the M and N population analyses give the
fastest convergence. In general, the natural population analy-
sis (N) gives the best performance of calculations both in
accuracy and convergence. At the end of the elongation pro-
cess the number of iterations is the same for all curves. The
system is then closed-shell and the number of iterations in the
SCF cycle is small.

Conclusions

A simple modification of the elongation (elongation cutoff)
method was proposed. Namely, the intermediate electrostatic
field was introduced. The field is exerted by distributed mono-
poles located in the positions of atoms of the system’s com-
plementary part and it disappears in the final stage of the
elongation calculations. Therefore, it does not violate the
variational character of the ELG method. The modified ELG

Fig. 2 The error [a.u.] in the potential (white bars) and kinetic (black
bars) energies introduced by 15/8 ELG and modified ELG schemes [with
Bader (B), Hirshfeld (H), Mülliken (M), Natural (N), and Voronoi (V)
charge distribution] with respect to conventional ROHF calculations for
polyglycine chain made up of 55 units. Parts (a), (b), and (c) correspond
to STO-3G, 6-31G, and 6-31G(d) basis sets

Fig. 3 The SCF convergence during ELG and the modified ELG [with
Bader (B), Hirshfeld (H), Mülliken (M), Natural (N), and Voronoi (V)
charge distribution] calculations. Parts (a), (b), and (c) correspond to
STO-3G, 6-31G, and 6-31G(d) basis sets
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scheme was tested for alpha-helix of polyglycine chain (55
glycine units). Several population analyses were applied.
Charges were computed using CSA scheme, independently
of the quantum chemical calculations. It was shown that the
long-distance polarization, introduced by the field, improved
the performance of the ELG method. The errors in the total,
kinetic, and potential energies were reduced by at least one
order of magnitude. The natural, Bader, and Mülliken popu-
lation analyses gave the best agreement with the reference,
conventional ROHF energies for the largest basis set. The
proposed method can be easily adopted to other fragmentation
techniques.

The modified ELG method improved the convergence of
the SCF process at ROHF level of theory. The temporary
electrostatic field stabilized the intermediate radical, therefore
fewer cycles were involved during the SCF step. We plan to
adopt the formalism at RHF and UHF levels of theory.
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