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Abstract Charge sensitivity analysis (CSA) in force-field
atoms resolution was applied to describe the mutual polarization
of reactants as well as charge-transfer (CT) effects. An inclusion
complex of β-cyclodextrin with salicylic acid was used as a
model system. Three CSA models were taken into account and
verified on a Born–Oppenheimer molecular dynamics (BOMD)
trajectory. The models differed in terms of the equilibrium
conditions imposed on the system. It was demonstrated that
mutual polarization is an important source of stabilization, in
contrast to the results obtained from static charge calculations.
The energy lowering induced by CTwas small and comparable
to the CT stabilization that occurs in hydrogen-bonded systems.
All models correctly described the main topological features of
the BOMD energy surface. CSA in force-field atoms resolution
qualitatively reproduced the charge reorganization accompa-
nying hydrogen-bond formation. It was shown that CSA param-
eters are very sensitive to the bond formation process, which
suggests that they could be applied in reactive force fields as
detectors of newly formed chemical bonds.

Keywords Charge sensitivity analysis . Molecular
mechanics/dynamics . Polarizable force fields . Polarization
effect . Charge-transfer effects .β-Cyclodextrin . Inclusion
complexes . Bond detectors

Introduction

Classical molecular mechanics (MM) and molecular dynam-
ics (MD) simulations have become powerful tools for study-
ing large molecular systems. They can deal with systems
consisting of hundreds of thousands of atoms, and can
simulate their dynamic behavior over a time scale of nano-
seconds. They are especially important when studying bio-
molecules and condensed phases, as the results of such
simulations complement experimental results and provide
insight into microscopic properties that cannot be probed
experimentally [1, 2]. They are capable of effectively treat-
ing these large-scale systems through the utilization of sim-
plified functions that express the system’s potential energy
U(R) in terms of the coordinates of the atoms, R ¼
R1; R2; . . . ; RNð Þ , where N is the total number of atoms.
In the most popular additive force fields [3–9], electrostatic
contributions to U(R) are described using the Coulomb
potential between static atomic partial charges:

UelstðRÞ ¼
X
i

X
j 6¼i

qiqj
e � Rij

; ð1Þ

where qi and qj are the charges on atoms i and j, respective-

ly, ε is the dielectric constant, and Rij ¼ Ri � Rj

�� �� is the

distance between atoms i and j.
In additive force fields, many-body effects—particularly

polarization—are neglected (i.e., electronic degrees of free-
dom are ignored, and the charge distribution is assumed to
remain constant during the simulation). To implicitly account
for the polarization that occurs in condensed phases, partial
atomic charges determined for the gas phase are systematical-
ly overestimated by 10–20 % [10, 11]. This approach takes
into account the potential energy contributions neglected in
U(R) using an average. There are, however, a variety of
systems for which such an approximation is insufficient. In
general, these systems contain inhomogeneities where
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polarizable molecules experience changes in the dielectric
environment, for example in interfacial regions: liquid–vapor,
liquid–liquid, or protein–solvent surfaces, or solutions of ions.
Polarization also plays an important role when various ther-
modynamic processes have to be considered.

Currently models that explicitly include polarization in
MD simulations include polarizable dipoles [12–14], the
classical Drude oscillator [15, 16], and the fluctuating
charge (FQ) model [17–23]. The first two models allow
for the occurrence of induced dipole moments at various
sites in the system (atoms, bonds, lone pairs). In the FQ
model, the values of atomic partial charges are allowed to
vary. This is based on the electronegativity equalization
(EE) principle [24–26]. The Drude and FQ models have
the advantage of preserving the Coulombic potential for
electrostatic interactions without introducing an additional
dipole–dipole term. In MD simulations, all three models can
be solved iteratively or with extended Lagrangian mechan-
ics [27]. The FQ model can also be solved using matrix
inversion.

Charge sensitivity analysis (CSA) was first formulated in
the 1990s in the framework of density functional theory
(DFT) [28, 29]. Although it was originally designed as a
tool to complement ab initio calculations, it can—after
suitable parameterization—be used as a semi-empirical
method. It provides information about the charge distribu-
tion in a molecular system and about the system’s reactivity
(Fukui function and softness/hardness data). It is based on
the second-order Taylor expansion of the system’s energy
with respect to population variables and on the EE principle.
From this point of view, the FQ model is similar to CSA.
However, this is only one aspect of CSA. CSA undoubtedly
provides a wider perspective. The reactivity information
built into the CSA formalism can be used in qualitative
structure–activity relationship (QSAR) and qualitative struc-
ture–property relationship (QSPR) models. The huge poten-
tial of conceptual DFT in such models has been
demonstrated in the literature [30–36]. In our previous paper
[37], we parameterized CSA for the AMBER ff99 [38, 39]
force field on the basis of static calculations performed in
the global equilibrium state. In this paper, we present the
utilization of CSA for other types of equilibria. In MD simu-
lations, it is typical to employ a reactant perspective—each
reactant preserves its own identity, manifested as a unique set
of bonding parameters. In this paper, in addition to global
equilibrium, we will use the approach of imposing a partial
equilibrium on the system (i.e., the reactants are mutually
polarized but there is no charge transfer between them).
Moreover, we will explore the dynamic behavior of partial
charges and other CSA parameters along a simulated trajec-
tory of a molecular system.

The paper is organized as follows. We first present a short
survey of CSA, before introducing a model system and

providing computational details. We then describe the
obtained results, and finally present our conclusions and
future prospects in this field.

Charge sensitivity analysis

The basis of CSA is the Taylor expansion of the energy of a
molecular system M with respect to atomic charges, trun-
cated at the quadratic term:

dEM ¼ d1EM þ d2EM ¼ P
i

@EM
@qi

� �
dqi þ 1

2

P
i

P
j

@2EM
@qi@qj

� �
dqidqj

¼ χy0dqþ 1
2dq

yη0dq
;

ð2Þ
Here, q is the vector grouping atomic partial charges,

qy¼ q1; q2; . . . ; qNð Þ, χy0¼ c01; c
0
2; . . . ; c

0
N

� �¼ c0i ¼@EM=
�

@qi:g is the vector of atomic electronegativities, η0 ¼ η0ij ¼
n

@2EM @qi@qj
� g is the hardness matrix, and N is the total

number of atoms in the system. An index of “0” indicates that
derivatives were evaluated for q=0. Electronegativity repre-
sents the ability of an atom to attract electrons and, in the
framework of DFT, is identified as the negative chemical
potential [40]. It fulfills Sanderson’s electronegativity equal-
ization principle, which states that for the equilibrium charge
distribution, electronegativity is equalized throughout space:

c1 ¼ c2 ¼ . . . ¼ cN ¼ ceq � c: ð3Þ
In other words, electrons flow between atoms until the

atomic electronegativities are equalized. Note that the elec-
tronegativity in an open system (global equilibrium) is equal
to ci ¼ c0i þ

P
j η

0
ijqj . In MD simulations, one often deals

with molecular systems constructed from smaller subsys-
tems (e.g., individual molecules). It is convenient to impose
a charge conservation constraint on each of these subsys-
tems. Electronegativity is then equalized in each of the
fragments but not in the system as a whole.

By taking the derivative of Eq. 2 with respect to the i-th
atomic charge and applying the EE principle (Eq. 3), one
arrives at a set of linear equations for the equilibrium charge
distribution in M. If M is constructed from two subsystems
A and B, M = (A|B) (the solid line indicates no charge
transfer between A and B), the CSA equations can be
summarized as the following single matrix equation:

0 0 1A 0B
0 0 0A 1B
1
y
A 0

y
A η0

AA η0
AB

0
y
B 1

y
B η0

BA η0
BB

0
BBB@

1
CCCA

�ceqA
�ceqB
qA
qB

0
BB@

1
CCA ¼

qA
qB
�χ0A
�χ0B

0
BB@

1
CCA; ð4Þ
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where 1A (1B) and 0A (0B) are unity and zero vectors of
dimension NA (NB), and ceqA and ceqB are the fragments’
equalized electronegativities. The hardness matrix η0 and
the vector that groups the atomic electronegativities χ0 are
divided into sub-blocks. The first two rows in Eq. 4 repre-
sent the charge conservation constraints for A and B on qA
and qB, respectively. The remaining equations describe elec-
tronegativity equalization.

The equilibrium charge distribution in M is obtained by
inverting the matrix in Eq. 4:

�ceqA
�ceqB
qA
qB

0
BB@

1
CCA ¼

�ηAA �ηAB fAA fAB
�ηBA �ηBB fBA fBB

f
y
AA f

y
AB �βAA �βAB

f
y
BA f

y
BB �βBA �βBB

0
BBB@

1
CCCA

�
qA
qB
�χ0A
�χ0B

0
BB@

1
CCA ð5Þ

The elements of the inverse matrix are: diagonal Fukui
function (FF) indices, fAA ¼ @qi2A @qA=f g and fBB ¼
@qi2B @qB=f g ; off-diagonal Fukui function indices, fAB ¼
@qi2A @qB=f g and fBA ¼ @qi2B @qA=f g; the condensed hard-

ness matrix ηfrg ¼ ηXY ¼ @cX @qY ;= X ; Y ¼ A; Bð Þf g, and
the polarization matrix βXY ¼ @qi2X @vj2Y

�� 	
; X ; Y ¼

A; Bð Þg. The Fukui function describes the response of a given
atom to a perturbation in the total number of electrons
in its fragment (diagonal FF) or another fragment (off-
diagonal FF). Diagonal FF vectors are normalized to
unity, fAA1A

† = fBB1B
† = 1, while off-diagonal FF vectors

are normalized to zero, fAB1B
† = fBA1A

† = 0. The block (βXY)
of the polarization matrix represents the charge reorganization
within X induced by perturbation in the external potential on
the j-th atom of Y (vj∈Y). Both the diagonal and off-diagonal
blocks of the polarization matrix are normalized to zero:

XNX

i2X bXYð Þij ¼ 0; X ; Yð Þ 2 A;Bf g: ð6Þ

Atomic (diagonal) hardnesses describe an atom’s strength
to block electron flow. They can be related to the hard and
soft acids and bases (HSAB) principle [41]. In the frozen
core approximation, the off-diagonal elements of the hard-
ness matrix can be related to the Coulomb exchange inte-
grals between valence shell s electrons:

η0ij � sisi sjsj


� � ¼ sisi sjsj

��� �� 1

2
sisj sjsi

��� � � Jij � 1

2
Kij

ð7Þ
They can be further approximated by neglecting the ex-

change integrals,Kij, and reducing ηij to the Coulomb integrals

Jij. Therefore, one can determine the crudest approximation of
η0ij as 1/Rij. However, for short separations, the utilization of

1/Rij results in incorrect behavior, and semi-empirical combi-
nation formulae should be used instead. In accordance with
our previous studies [42], we adopted Ohno’s formula [43]:

η0ij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ij þ R2
ij

q ; ð8Þ

where aij ¼ 2 η0ii þ η0jj

� �.
� 2 η0i þ η0j

� �.
. Therefore, only

diagonal hardnesses are needed to construct the hardness
matrix.

The empirical parameters of CSA are the effective elec-
tronegativities and diagonal hardnesses of atoms in mole-
cules. These depend on the atomic number, hybridization,
and chemical environment of a given atom, and are deter-
mined by reproducing the gas-phase charge distribution
calculated with an ab initio method for a set of training
molecules. In our previous work [37, 42], we determined
CSA parameters based on Mulliken population analysis
(MPA) [44] and a hybridization/chemical environment clas-
sification inherited from the AMBER ff99 force field [38].

Model systems and computational details

An inclusion complex of β-cyclodextrin (BCD) with sali-
cylic acid (SAL) was used to illustrate the performance of
CSA. The BCD molecule contains seven glucopyranose
residues which form a shallow truncated cone with primary
and secondary hydroxyl groups exposed to the solvent. The
primary hydroxyl groups form the smaller rim of the cone.
The secondary hydroxyl groups form the bigger rim. The
molecule contains a hydrophobic cavity and is able to in-
corporate many organic molecules. Inclusion complexes of
BCD with different “guest” molecules are stabilized by
weak interactions (van der Waals and hydrogen bonds). At
the classical MD level of theory, each reactant preserves its
identity, so complexes of BCD are good candidates to use
when describing mutual polarization. In addition, the guest
molecule breaks the high symmetry of the host (BCD)
molecule. This leads to huge charge distribution inhomoge-
neities in glucopyranose residues and allows us to check the
parameterization of CSA in reactant resolution.

BCD has several conformers; more information about
their structures can be found in [45–49]. The conformer
with a counterclockwise orientation of hydrogen bonds in
both rims was chosen. The guest molecule was assumed to
be in a planar conformation. The most stable conformer of
SAL contains an intramolecular hydrogen bond between the
phenyl hydroxyl hydrogen atom and the carbonyl oxygen
atom from the carboxylic group. A less stable conformer
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was chosen for the MD calculation since, at first glance, it
appears better suited to inter-reactant hydrogen-bond forma-
tion. The structures of the host and guest molecules are
shown in Scheme 1.

The initial structures of both molecules were obtained at
the B3LYP/6-31G(d) level of theory using the Gaussian 09
[50] suite of programs. The starting geometry of the com-
plex was obtained by placing the SAL molecule on the C7

symmetry axis of BCD, with the line joining the C1 and C4
aromatic carbons coinciding with the symmetry axis. This
initial structure was the starting point in Born–Oppenheimer
MD (BOMD) calculations. The TeraChem [51] general
purpose quantum chemistry software package was used. A
10 ps MD run with 1 fs time steps at 300 K was performed
at the B3LYP/6-31G level of theory. An empirical disper-
sion correction was utilized. The trajectory obtained was
recalculated at the molecular mechanics (MM) level of
theory. The CHARMM force field for hydrocarbons was
employed. Data concerning pyranose monosaccharides and
glycoside linkages were taken from [52] and [53]. In our
previous work [37], we parameterized CSA using a diverse
training set consisting of small organic molecules and
AMBER ff99 all-atom force-field resolution. In the
CHARMM force field, however, the sp3 carbon atoms are
additionally differentiated into secondary, primary, tertiary,
and quaternary, as well as according to their chemical envi-
ronment. None of these features were observed when
force-field resolution was achieved with AMBER ff99.
The classification of aliphatic hydrogen atoms also dif-
fered between the two force fields. In order to preserve
the consistency of the CHARMM carbohydrate force
field, we corrected the CSA parameters for BCD using
the same protocol as before and a training set contain-
ing mono- and polyhydroxylated alcohols, simple linear
and cyclic ethers, carbohydrates (aldoses, ketoses, fura-
noses, pyranoses, and disaccharides), and other model

compounds. For the SAL molecule, defined using the
CHARMM general force field for small molecules, the
atom types were consistent with the previous CSA res-
olution, so the original parameter set was retained. All
parameters are collected in Table 1. Three types of MM
runs were performed using the NAMD package [54]. In the
first MM run, the charge distribution was frozen. The
Mulliken charges obtained at the B3LYP/6-31G(d) level
were used. In the second and third MM runs, charges
were derived using Eq. 5 for each point on the trajec-
tory. In the second MM run, the charges in each sub-
system were constrained (see Eq. 4). In the third run,
CT between subsystems was allowed, and only the
global charge of the BCD/SAL complex was con-
strained. In other words, two first rows/columns of
Eq. 4 were replaced with one row/column: (0, 1N).
These three types of calculations are termed the electro-
static (ES), polarization (P), and charge-transfer (CT)
runs throughout the paper; these names reflect the phys-
ical effects that are additionally included in the MM calcu-
lations. The ES, P, and CT runs are characterized by the

following equilibria: MES ¼ 1A 2Aj . . .j NAj 1B 2Bj . . .j NBjjð Þ,
MP ¼ ð 1A..

.
2A

..

.
. . . ..

.
NAj 1B..

.
2B

..

.
. . . ..

.
NB:Þ , a n d MCT ¼

ð1A..
.
2A

..

.
. . . ..

.
NA

..

.
1B

..

.
2B

..

.
. . . ..

.
NBÞ . Solid/dotted lines indicate

that charge flow between atoms is forbidden/allowed.

Results and discussion

A detailed analysis of the trajectory obtained allowed us to
distinguish the following steps in the inclusion process: (i) the
O7′ and H7′ atoms of SAL form a hydrogen bond with the O6
atom of BCD (inter-reactant hydrogen bond); (ii) the O2 and

Scheme 1 The host BCD
molecule (a) together with the
glucopyranose residue (b) and
the guest SAL molecule (c)

4166 J Mol Model (2013) 19:4163–4172



H2 atoms of SAL form a hydrogen bond with O2 of BCD
(inter-reactant hydrogen bond); (iii) the O2 and H2 atoms of
SAL form a hydrogen bond with O3 of BCD (inter-reactant
hydrogen bond); (iv) O2, H2, and O7 of SAL form a hydrogen
bond (intra-reactant hydrogen bond). Steps (ii) and (iii) have
intermediate character. These inter-reactant hydrogen bonds
appear to consecutively disappear after a conformational
change in the SAL molecule and the formation of the intra-
reactant hydrogen bond (step (iv)). The hydrogen bonds
formed in steps (i) and (iv) are preserved for the rest of the
simulation. The first is formed for t ∈ (700,900), while the
second is formed for t ∈ (6400, 6600). Therefore, two main
domains can be distinguished: one for t ∈ (900, 6400) and the
other for t ∈ (6600, 10000).

Energy and charge profiles

Figure 1 shows the time evolution of the system’s energy.
Note that the B3LYP/6-31G total energy (red curve) was
shifted by a constant value in order to allow all of the curves
to be plotted together. In general, the remaining curves
should be shifted, since none of the force-field terms result-
ing from Taylor expansions include the zero-order contribu-
tion (e.g., bond stretching term). Two main domains can be
distinguished along the trajectory. The average energy in the
first domain (after step (i)) is higher than that in the second
domain (after step (iv)). The relative positions of the curves
on the energy scale agree with expectation: mutual

polarization introduces additional stabilization into the sys-
tem. It can be seen that the P (purple) and CT (blue, dotted
line) curves are shifted down by about 100 kcal/mol with
respect to the ES (green) curve. By removing the barrier to
charge flow between BCD and the guest molecule, further
stabilization is introduced. The CT stabilization doesn’t
exceed 0.5 kcal/mol, so the P and CT curves are practically
indistinguishable. Such energy lowering is typical in the
hydrogen-bonded systems [55–57].

The fluctuations in BOMD energy are smaller than those
seen in the MM runs (ES, P, and CT). The MM curves differ
only in the electrostatic contribution. The geometries at a given
time step are exactly the same for all runs. Therefore, the
bonding and van der Waals energies are also the same. This
indicates that the bigger amplitudes seen for the P, CT, and ES
runs are due to the bonding and van derWaals terms, which can
be corrected for by adjusting some of the force-field parameters.

The shapes of ES, P, and CT curves are almost identical,
and reproduce the main topological features of the BOMD
curve. Figures S1 and S2 of the “Electronic supplementary
material” (ESM) clearly demonstrate this, as they present
the first and second derivatives of the system’s energy
with respect to time for a narrow region of the trajectory,
6400 ≤ t ≤ 6600. This part of the trajectory was chosen since it
corresponds to the hydrogen-bond formation that restores the
most stable conformer of the SAL molecule (step (iv)). It is
evident that the BOMD energy profile is very well repro-
duced. The positions of the extrema and the curvatures of all
of the curves are almost identical.

Table 1 Effective hardness (in eV/e2; second column) and electroneg-
ativity (in eV/e; third column) data for CHARMM force-field atoms
(first column)

CHARMM type η0 χ0

CHARMM carbohydrate force field

HCP1 27.46 8.44

HCA1 26.50 10.00

HCA2 26.50 10.00

CC3161 16.59 12.41

CC3163 16.59 12.41

CC3162 16.07 12.13

CC321 17.43 12.97

OC311 26.79 22.37

OC301 31.97 24.02

OC3C61 31.97 24.02

CHARMM general force field for small molecule drug design

HGR61 29.10 9.48

HGP1 18.87 10.76

CG2R61 11.96 11.99

CG2O2 13.44 11.61

OG2D1 14.93 50.31

OG311 17.11 16.32
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Fig. 1 Variations in total energy versus time in the ab initio BOMD
run (red curve), ES run (green curve), CT run (blue curve), and P run
(purple curve) for the BCD/SAL complex
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A diagram showing the correlation between the
B3LYP/6-31 and CSA charges is shown in Fig. 2. This
figure includes all atoms for t ∈ (6400, 6600). The correla-
tion coefficient is higher than 0.99. Our charges are slightly
underestimated with respect to the B3LYP charges. Some of
these discrepancies are due to basis set inconsistency: name-
ly, the CSA model was parameterized for 6-31G(d) charges
while, due to a lack of d-functions in the TeraChem pack-
age, they were compared with the 6-31G charges. The
correlation diagram shows the average characteristic. It is
important to determine whether the trends in charge reorga-
nization accompanying hydrogen-bond formation are the
same in both sets. Figures S3a and S3b of the ESM relate
to the MPA and CSA charges, respectively. Charges from
the CT run and the P run are indistinguishable, so only one
of these sets (that from the CT run) was plotted. The main
features of MPA charge evolution are preserved by CSA.
Namely, O7 and H2 (the hydroxyl hydrogen atom) exhibit
“step-like” population changes.

CSA parameter profiles

Inclusion in the BCD cavity can modify the physicochemical
properties of the guest molecules (solubility, diffusion, subli-
mation, volatility, chromatographic mobility, hydrophobicity,
reactivity, etc.) [58]. The influence of BCD on the physico-
chemical properties of the guest molecule can be seen in
Figs. 3 and 4, which show electronegativity and hardness
data. Figure 3 presents the reactant electronegativities cSAL

(green curve) and cBCD (red curve), together with the global
electronegativity c (blue curve). The most important observa-
tion that can be made from this figure is the fact that the
electronegativity of the whole inclusion complex is almost
the same as the electronegativity of the BCD molecule. A
similar observation follows from Fig. 4. The hardness of the
inclusion complex η (global hardness) is the same as the
diagonal hardness ηBCD,BCD. Such behavior demonstrates that
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Fig. 2 Correlation between CSA and MPA charges for the BCD/SAL
complex, obtained for simulation frames corresponding to
6400 < t < 6600 fs
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the electronic properties of the inclusion complex are closer to
those of the host BCD molecule. In other words, the presence
of the guest molecule is masked and the SAL/BCD complex
resembles the host molecule. Taking into account the bioa-
daptability of BCD [59], it is not surprising that BCD has
found widespread application as an encapsulating material for
medicaments and food ingredients, since the weak interactions
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Fig. 5 Time evolutions of selected elements of the polarization matrix.
Part A presents bSAL;BCDH70;O6 and bSAL;BCDO70 ;O6 ; while part B presents bSAL;SALH2;O7
and bSAL;SALO2;O7 (see Scheme 1 for atom labels)

0 2000 4000 6000 8000 10000

0.00

0.05

0.10

0.15

0.20

H2

O7

f iSA
L

,S
A

L

t [fs]

O2

Fig. 6 Time evolutions of the diagonal FF indices of the O2
( c y a n ) , H 2 ( b l a c k ) , a n d O 7 ( g r e e n ) a t o m s f o r

partitioning of the system,
where A = SAL and B = BCD (see Scheme 1 for atom labels)
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Scheme 1 for atom labels)
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stabilizing the complex allows the guest molecule to be re-
leased at the target location.

The history of the inclusion process is reflected in the
CSA data. The parameters most sensitive to bond formation
are the polarization matrix elements and the diagonal FF
indices. The diagonal FF indices and polarization matrix
elements correspond to the P run [intra-reactant equilibrium:

MP ¼ ð 1A..
.
2A

..

.
. . . ..

.
NAj 1B..

.
2B

..

.
. . . ..

.
NBÞ ]. One can expect

that the atoms involved in hydrogen-bond formation are
the most sensitive to a perturbation in the external potential
or in the number of electrons.

In Fig. 5, the population responses of the hydrogen-
accepting oxygen to an external potential perturbation on
the hydrogen atom (black curve) and the hydrogen-donating
oxygen atom (red curve) are plotted. The polarization matrix
is symmetric, so these elements also describe the population
responses of the hydrogen and hydrogen-donating oxygen
atoms to an external potential perturbation on the hydrogen-
accepting oxygen atom (Maxwell relations). Parts A and B
correspond to inter-reactant (step (i)) and intra-reactant (step
(iv)) hydrogen bonds, respectively. One can observe step-

like behavior by bSAL;BCDH70;O6 , bSAL;BCDO70;O6 (part A) and bSAL;SALH2;O7 ,

bSAL;SALO2;O7 (part B). The jump in the average value of bSAL;BCDH70;O6

or bSAL;SALH2;O7 is greater than that of bSAL;BCDO70;O6 or bSAL;SALO2;O7 .

Figure 6 presents the evolutions of diagonal FF indices
over time. Atoms involved in the formation of the intra-
fragment hydrogen bond (namely O2, H2, and O7 of SAL)
were taken into account. The diagonal FF index
fi
AA= ∂qiA/∂qA, measures the response of the i-th atom

population of A (SAL) to the oxidation/reduction of A as a
whole. One can observe step-like behavior in all of the
curves (in an averaged sense). This behavior is especially
apparent for H2. After hydrogen-bond formation, the atom
becomes harder and the initial average FF value of 0.10 is
halved to 0.05 (FF can be considered as the normalized
softness and hardness is the inverse of the softness). For
the remaining atoms, the jump in FF index is less pro-
nounced. The hydrogen-donating atom (O2) becomes
harder after bond formation, while the hydrogen-accepting
oxygen (O7) becomes softer. The variations in the off-
diagonal FF indices are shown in Fig. 7. The same atoms
involved in the intra-fragment hydrogen bond of the SAL
molecule are considered. Off-diagonal effects are rather
subtle in comparison with those for the diagonal FF indices.
This is not surprising, since they measure the response of the
i-th atom of SAL to the oxidation/reduction of BCD. None

of the curves show step-like behavior. The values of

f SAL;BCDO2 and f SAL;BCDO7 gradually increase from one domain

(its average value) to the other domain. f SAL;BCDH2 exhibits
huge fluctuations that are damped after intra-fragment

hydrogen-bond formation. These fluctuations were
connected with inter-reactant hydrogen-bond formation
(steps (ii) and (iii)). The off-diagonal FF indices carry the
“chemical” information (hybridization, rehybridization, po-
larization, etc.), especially in local or molecular orbital
resolution [60, 61].

The clear and sharp character of the changes in FF
indices and polarization matrix elements indicates that they
should be a very good descriptors for detecting bond for-
mation during MD simulations. In particular, they are better
indicators than atomic charges, which have a smoother
transition between the two domains. Of course, atomic
charges cannot be used as indicators in static force fields.

Conclusions and future prospects

In this paper, polarization and charge-transfer contributions
were incorporated into MM calculations using a CSA ap-
proach. CSA is based on electronegativity equalization
equations supplemented by charge conservation equations.
The results obtained for the BCD/SAL inclusion complex
indicate that our model properly describes the energetics and
charge reorganization that accompany the insertion of a
guest molecule into the BCD cavity. In addition, the reac-
tivity descriptors built into the CSA formalism can be used
as indicators of specific chemical processes that occur in the
system. This method can be easily extended to systems
comprising a huge number of molecules. Work aiming at
incorporating CSA in MD packages is currently being car-
ried out. It appears that CSA parameters can be applied to
developed reactive force fields which allow to investigate
chemical reactions.
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