Skip to main content

Advertisement

Log in

Randomized in situ study on the efficacy of CO2 laser irradiation in increasing enamel erosion resistance

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this double-blind, randomized in situ study was to evaluate the erosion-preventive effect of a specific set of CO2 laser parameters, associated or not with fluoride.

Methods

Two hundred forty bovine enamel blocks were prepared for individual palatal appliances (n = 6 samples/appliance). The study had four phases of 5 days each, with ten volunteers and the following treatments: CO2 laser irradiation (L), fluoride treatment (F), combined fluoride and laser treatment (FL), and no treatment, control (C). Laser irradiation was performed at 0.3 J/cm2 (5 μs/226 Hz/10.6 μm) and the fluoride gel contained AmF/NaF (12′500 ppm F/pH = 4.8–6). For erosive demineralization, the appliances were immersed extra-orally in citric acid (0.05 M/20 min/pH = 2.3) twice daily. Analysis of enamel surface loss was done using a 3D-laser profilometer on 3 days. Additionally, fluoride uptake was quantified and scanning electron microscopies were done. Data were analyzed with repeated measures ANOVA and post hoc pairwise comparisons (α = 0.05).

Results

At all analyzing days, both laser groups caused the lowest means of enamel loss, which were also statistically significant lower than C (p < 0.05). At day 5, FL means ± SD (33.6 ± 12.6 μm) were even significantly lower than all other groups (C 67.8 ± 15.4 μm; F 57.5 ± 20.3 μm; L 46.8 ± 14.5 μm). Significantly increased enamel fluoride uptake was observed for both fluoride-containing groups (p < 0.05) at day 1.

Conclusion

Compared to the control, the CO2 laser irradiation with a specific set of laser parameters (0.3 J/cm2/5 μs/226 Hz) either alone or in combination with a fluoride gel (AmF/NaF) could significantly decrease enamel erosive loss up to 5 days in situ.

Clinical relevance

Combined CO2 laser-fluoride treatment has a significant anti-erosive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lussi A, Carvalho TS (2014) Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci 25:1–15. https://doi.org/10.1159/000360380

    Article  PubMed  Google Scholar 

  2. Shellis RP, Barbour ME, Jesani A, Lussi A (2013) Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to pH and acid type. Caries Res 47:601–611. https://doi.org/10.1159/000351641

    Article  PubMed  Google Scholar 

  3. Shellis RP, Featherstone JD, Lussi A (2014) Understanding the chemistry of dental erosion. Monogr Oral Sci 25:163–179. https://doi.org/10.1159/000359943

    Article  PubMed  Google Scholar 

  4. Huysmans MC, Young A, Ganss C (2014) The role of fluoride in erosion therapy. Monogr Oral Sci 25:230–243. https://doi.org/10.1159/000360555

    Article  PubMed  Google Scholar 

  5. Lussi A, Carvalho TS (2015) The future of fluorides and other protective agents in erosion prevention. Caries Res 49(Suppl 1):18–29. https://doi.org/10.1159/000380886

    Article  PubMed  Google Scholar 

  6. Schlueter N, Duran A, Klimek J, Ganss C (2009) Investigation of the effect of various fluoride compounds and preparations thereof on erosive tissue loss in enamel in vitro. Caries Res 43:10–16

    Article  PubMed  Google Scholar 

  7. Ganss C, Neutard L, von Hinckeldey J, Klimek J, Schlueter N (2010) Efficacy of a tin/fluoride rinse: a randomized in situ trial on erosion. J Dent Res 89:1214–1218. https://doi.org/10.1177/0022034510375291

    Article  PubMed  Google Scholar 

  8. Magalhaes AC, Dos Santos MG, Comar LP, Buzalaf MA, Ganss C, Schlueter N (2016) Effect of a single application of TiF4 varnish versus daily use of a low-concentrated TiF4/NaF solution on tooth erosion prevention in vitro. Caries Res 50:462–470. https://doi.org/10.1159/000448146

    Article  PubMed  Google Scholar 

  9. Wiegand A, Schneider S, Sener B, Roos M, Attin T (2014) Stability against brushing abrasion and the erosion-protective effect of different fluoride compounds. Caries Res 48:154–162. https://doi.org/10.1159/000353143

    Article  PubMed  Google Scholar 

  10. Hove LH, Holme B, Young A, Tveit AB (2008) The protective effect of TiF4, SnF2 and NaF against erosion-like lesions in situ. Caries Res 42:68–72. https://doi.org/10.1159/000112816

    Article  PubMed  Google Scholar 

  11. Schlueter N, Klimek J, Ganss C (2014) Effect of a chitosan additive to a Sn2+−containing toothpaste on its anti-erosive/anti-abrasive efficacy--a controlled randomised in situ trial. Clin Oral Investig 18:107–115. https://doi.org/10.1007/s00784-013-0941-3

    Article  PubMed  Google Scholar 

  12. Ganss C, von Hinckeldey J, Tolle A, Schulze K, Klimek J, Schlueter N (2012) Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent 40:1036–1043. https://doi.org/10.1016/j.jdent.2012.08.005

    Article  PubMed  Google Scholar 

  13. Pini NI, Lima DA, Lovadino JR, Ganss C, Schlueter N (2016) In vitro efficacy of experimental chitosan-containing solutions as anti-erosive agents in enamel. Caries Res 50:337–345. https://doi.org/10.1159/000445758

    Article  PubMed  Google Scholar 

  14. Fox JL, Yu D, Otsuka M, Higuchi WI, Wong J, Powell G (1992) Combined effects of laser irradiation and chemical inhibitors on the dissolution of dental enamel. Caries Res 26:333–339

    Article  PubMed  Google Scholar 

  15. Fried D, Seka W, Glena RE, Featherstone JDB (1996) Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation. Opt Eng 35:1976–1984

    Article  Google Scholar 

  16. Featherstone JDB, Barrett-Vespone NA, Fried D, Kantorowitz Z, Seka W (1998) CO2 laser inhibition of artificial caries-like lesion progression in dental enamel. J Dent Res 77:1397–1403

    Article  PubMed  Google Scholar 

  17. Gerard DE, Fried D, Featherstone JD, Nancollas GH (2005) Influence of laser irradiation on the constant composition kinetics of enamel dissolution. Caries Res 39:387–392

    Article  PubMed  Google Scholar 

  18. Rechmann P, Fried D, Le CQ, Nelson G, Rapozo-Hilo M, Rechmann BM, Featherstone JD (2011) Caries inhibition in vital teeth using 9.6-mum CO2-laser irradiation. J Biomed Opt 16:071405. https://doi.org/10.1117/1.3564908

    Article  PubMed  PubMed Central  Google Scholar 

  19. Esteves-Oliveira M, Zezell DM, Meister J, Franzen R, Stanzel S, Lampert F, Eduardo CP, Apel C (2009) CO2 laser (10.6 μm) parameters for caries prevention in dental enamel. Caries Res 43:261–268

    Article  PubMed  Google Scholar 

  20. Esteves-Oliveira M, Pasaporti C, Heussen N, Eduardo CP, Lampert F, Apel C (2011) Prevention of toothbrushing abrasion of acid-softened enamel by CO2 laser irradiation. J Dent 39:604–611. https://doi.org/10.1016/j.jdent.2011.06.007

    Article  PubMed  Google Scholar 

  21. Esteves-Oliveira M, Pasaporti C, Heussen N, Eduardo CP, Lampert F, Apel C (2011) Rehardening of acid-softened enamel and prevention of enamel softening through CO2 laser irradiation. J Dent 39:414–421. https://doi.org/10.1016/j.jdent.2011.03.006

    Article  PubMed  Google Scholar 

  22. Ganss C, Klimek J, Schaffer U, Spall T (2001) Effectiveness of two fluoridation measures on erosion progression in human enamel and dentine in vitro. Caries Res 35:325–330

    Article  PubMed  Google Scholar 

  23. Ramalho KM, Eduardo Cde P, Heussen N, Rocha RG, Lampert F, Apel C, Esteves-Oliveira M (2013) Protective effect of CO2 laser (10.6 mum) and fluoride on enamel erosion in vitro. Lasers Med Sci 28:71–78. https://doi.org/10.1007/s10103-012-1071-x

    Article  PubMed  Google Scholar 

  24. West NX, Davies M, Amaechi BT (2011) In vitro and in situ erosion models for evaluating tooth substance loss. Caries Res 45(Suppl 1):43–52

    Article  PubMed  Google Scholar 

  25. Hara AT, Zero DT (2014) The potential of saliva in protecting against dental erosion. Monogr Oral Sci 25:197–205. https://doi.org/10.1159/000360372

    Article  PubMed  Google Scholar 

  26. Hara AT, Ando M, Gonzalez-Cabezas C, Cury JA, Serra MC, Zero DT (2006) Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res 85:612–616

    Article  PubMed  Google Scholar 

  27. Ganss C, Schlueter N, Friedrich D, Klimek J (2007) Efficacy of waiting periods and topical fluoride treatment on toothbrush abrasion of eroded enamel in situ. Caries Res 41:146–151

    Article  PubMed  Google Scholar 

  28. Cury JA, Francisco SB, Simoes GS, Del Bel Cury AA, Tabchoury CP (2003) Effect of a calcium carbonate-based dentifrice on enamel demineralization in situ. Caries Res 37:194–199. https://doi.org/10.1159/000070444

    Article  PubMed  Google Scholar 

  29. Wiegand A, Attin T (2011) Design of erosion/abrasion studies--insights and rational concepts. Caries Res 45(Suppl 1):53–59

    Article  PubMed  Google Scholar 

  30. Schlueter N, Lussi A, Tolle A, Ganss C (2016) Effects of erosion protocol design on erosion/abrasion study outcome and on active agent (NaF and SnF2) efficacy. Caries Res 50:170–179. https://doi.org/10.1159/000445169

    Article  PubMed  Google Scholar 

  31. Attin T, Deifuss H, Hellwig E (1999) Influence of acidified fluoride gel on abrasion resistance of eroded enamel. Caries Res 33:135–139

    Article  PubMed  Google Scholar 

  32. Lagerweij MD, Buchalla W, Kohnke S, Becker K, Lennon AM, Attin T (2006) Prevention of erosion and abrasion by a high fluoride concentration gel applied at high frequencies. Caries Res 40:148–153. https://doi.org/10.1159/000091062

    Article  PubMed  Google Scholar 

  33. Marinho VC, Worthington HV, Walsh T, Chong LY (2015) Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Syst Rev 6:CD002280. https://doi.org/10.1002/14651858.CD002280.pub2

    Article  Google Scholar 

  34. Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlueter N, Schmalz G, Shellis RP, Tveit AB, Wiegand A (2015) Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear--diagnosis and management. Clin Oral Investig 19:1557–1561. https://doi.org/10.1007/s00784-015-1511-7

    Article  PubMed  Google Scholar 

  35. Wiegand A, Bichsel D, Magalhaes AC, Becker K, Attin T (2009) Effect of sodium, amine and stannous fluoride at the same concentration and different pH on in vitro erosion. J Dent 37:591–595

    Article  PubMed  Google Scholar 

  36. Saxegaard E, Rolla G (1988) Fluoride acquisition on and in human enamel during topical application in vitro. Scand J Dent Res 96:523–535

    PubMed  Google Scholar 

  37. Ganss C, Schlueter N, Klimek J (2007) Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions--a comparison of in vitro and in situ results. Arch Oral Biol 52:9–14

    Article  PubMed  Google Scholar 

  38. Esteves-Oliveira M, Witulski N, Hilgers RD, Apel C, Meyer-Lueckel H, de Paula Eduardo C (2015) Combined tin-containing fluoride solution and CO2 laser treatment reduces enamel erosion in vitro. Caries Res 49:565–574. https://doi.org/10.1159/000439316

    Article  PubMed  Google Scholar 

  39. Esteves-Oliveira M, Zezell DM, Ana PA, Yekta SS, Lampert F, Eduardo CP (2011) Dentine caries inhibition through CO2 laser (10.6 μm) irradiation and fluoride application, in vitro. Arch Oral Biol 56:533–539. https://doi.org/10.1016/j.archoralbio.2010.11.019

    Article  PubMed  Google Scholar 

  40. Rolla G, Ogaard B, Cruz Rde A (1993) Topical application of fluorides on teeth. New concepts of mechanisms of interaction. J Clin Periodontol 20:105–108

    Article  PubMed  Google Scholar 

  41. Featherstone JD, Mayer I, Driessens FC, Verbeeck RM, Heijligers HJ (1983) Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral. Calcif Tissue Int 35:169–171

    Article  PubMed  Google Scholar 

  42. Fried D, Murray MW, Featherstone JDB, Akrivou M, Dickenson KM, Duhn C and Ojeda OP (1999) Dental hard tissue modification and removal using sealed TEA lasers operating at λ=9.6 μm and 10.6 μm. Book title. SPIE-International Society of Optical Engineering, Bellingham, WA, San Jose

  43. Zuerlein MJ, Fried D, Featherstone JDB (1999) Modeling the modification depth of carbon dioxide laser-treated dental enamel. Lasers Surg Med 25:335–347

    Article  PubMed  Google Scholar 

  44. Batista GR, Rocha Gomes Torres C, Sener B, Attin T, Wiegand A (2016) Artificial saliva formulations versus human saliva pretreatment in dental erosion experiments. Caries Res 50:78–86. https://doi.org/10.1159/000443188

    Article  PubMed  Google Scholar 

  45. Hannig M, Hess NJ, Hoth-Hannig W, De Vrese M (2003) Influence of salivary pellicle formation time on enamel demineralization--an in situ pilot study. Clin Oral Investig 7:158–161. https://doi.org/10.1007/s00784-003-0219-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was part of joint thesis supervision between RWTH Aachen University, Germany and University of São Paulo, Brazil.

Funding

This study was funded by FGD (Forschungsgemeinschaft Dental #360303, Germany), START Program of the Medical Faculty of the RWTH Aachen University (#AZ43/09, Germany), and CNPq (#305574/2008–6, Brazil). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Esteves-Oliveira.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by Ethical Committee of Medical School of the RWTH Aachen University (#EK 134/09)

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, K.M., Eduardo, C.P., Heussen, N. et al. Randomized in situ study on the efficacy of CO2 laser irradiation in increasing enamel erosion resistance. Clin Oral Invest 23, 2103–2112 (2019). https://doi.org/10.1007/s00784-018-2648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2648-y

Keywords

Navigation