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0. Introduction

The aim of this note is to obtain closed form pricing formulae for contracts
written on zero coupon bonds when the forward LIBOR rates are lognormal. Let
T0 = 0 < T1 < . . . < TN ≤ T∗ be a given sequence of settlement dates in an
economy with the time horizonT∗ and letδj = Tj − Tj−1 for j = 1, 2, . . . ,N .
Let B(t ,T) be the timet price of the zero coupon bond with maturityT. For a
given j ≤ N −1 the LIBOR rate prevailing at timet ≤ Tj over the time interval(
Tj ,Tj + δj +1

)
is defined by

1 + δj +1L
(
t ,Tj

)
=

B
(
t ,Tj

)
B
(
t ,Tj +1

) .
The lognormal model of LIBOR rates given by the Itô equation

dL(t ,Tj ) = µ
(
t ,Tj

)
L
(
t ,Tj

)
dt + γ

(
t ,Tj

)
L
(
t ,Tj

)
dW(t) (1)
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has attracted much attention recently because it avoids many shortcomings of
previous models: it agrees with the market practice, provides positive rates and
gives finite Eurodollar futures prices. Sandmann and Sondermann (1993) noticed
for the first time that the continuously compounded interest rate is not the right
one to be modelled. They have shown that the lognormal model of the effective
annual rates leads to finite Eurodollar futures prices (see also Sandmann and
Sondermann (1997)). The idea to build a model based on a version of effective
rates has been developed in Goldys et al. (1995) and in Brace et al. (1997), where
equation (1) is introduced and studied in the framework of infinite dimensional
diffusion processes. A thorough discussion of this model can be also found in
Musiela and Rutkowski (1995). A different approach, based on the inspired guess
of the equation for bond prices has been proposed in Rady and Sandmann (1994).
Their approach also produced positive yields and the closed form formulae for
the option prices.

In a series of papers Miltersen, Sandmann and Sondermann (see for example
Miltersen et al. (1997) and references therein) demonstrated how to use the
hedging argument in forward market to derive the closed form pricing formulae
for caps. It turned out that the derived formulae agree with the market practice
to price the options with the Black futures formula. The main step in Sandmann
et al. (1995) consisted of the derivation of the option price on zero coupon
bond by solving the partial differential equation corresponding to the forward
price process. A different approach has been proposed by Brace et al. (1997),
where the price of a cap is obtained directly by the convenient forward measure
transformation.

Given the advantages of the lognormal model of forward LIBOR rates, it
seems that the model given by (1) might provide a basis for pricing various
related contingent claims. In this paper we propose a purely probabilistic method
of price calculation for a large class of contingent claims based on the LIBOR
rate. This method allows to obtain the result of Miltersen et al. (1997) in a
natural way and can be also useful for other, more general, pricing problems
in the lognormal model. Results close to ours have been recently obtained by
Rady (1997), where the approach is also probabilistic. Rady applies the change
of numeraire method to derive prices of some standard options in the model
slightly more general than ours.

We will consider a class of contracts which payg(B(T,T +δ)) dollars at ma-
turity T (in what follows we consider one period only and therefore for simplicity
of notation we omit the period numberj ). Let

F (t ,T,T + δ) =
B(t ,T + δ)

B(t ,T)

be the forward price process. Then (1) implies that after the appropriate change
of measure, (see Miltersen et al. (1997)) the processF (t ,T,T + δ) satisfies,
under the forward measurePT , the equation

dF(t ,T,T + δ) = −γ(t ,T)F (t ,T,T + δ)(1− F (t ,T,T + δ))dWT (t), (2)
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where(WT ) is a Wiener process under the forward measure. The timet(≤ T)
price of this contract is

V (t ,T,T + δ) = B(t ,T)ET
(
g(F (T,T,T + δ))| Ft

)
(3)

whereET is the expectation with respect to the forward measure. The solution
to equation (2) is a Markov process and an exponential martingale. Therefore
putting x = F (t ,T,T + δ) we find that (see below for details)

V (t ,T,T + δ) = B(t ,T)ETg

(
x

F (T,T,T + δ)
F (t ,T,T + δ)

)
.

In Theorem 1 below we give an explicit formula for expressions of the type

ETg

(
x

F (T,T,T + δ)
F (t ,T,T + δ)

)
and in particular we recover the result of Miltersen et al. (1997).

1. The pricing formulae

We start with the discussion of the following abstract version of (2). Let
X(·, x), t ≥ 0, be a solution to the equation{

dX(t , x) = −X(t , x)(1− X(t , x))γ(t)dW(t),
X(0, x) = x, t ≤ T,

(4)

where we assume that the functionγ : [0,T] → R is bounded and mea-
surable. The processW is a Wiener process defined on a stochastic basis(
Ω,F ,

(
Ft
)
,P
)
, where the filtration

(
Ft
)

satisfies the usual conditions. If we
fix the initial condition then we writeX(t) instead ofX(t , x). Existence of a
unique global solution to (4) can be easily deduced from the general theory of
stochastic differential equations. However, in Lemma 1 below we provide a direct
proof by means of a simple transformation which is also crucial for the further
calculations. Consider the following stochastic differential equation

dZ(t) =
1
2

1− e−Z(t)

1 + e−Z(t)
γ2(t)dt − γ(t)dW(t). (5)

Since the drift term in this equation is defined by a bounded and globally Lipschitz
function, equation (5) has a unique strong nonexploding solution (see for example
Theorem 5.2.9 in Karatzas and Shreve (1988)).

Lemma 1. For every x∈ (0, 1) the process

X(t , x) =
1

1 + e−Z(t,z)

is a unique strong and nonexploding solution to equation (4), where Z(·, z) denotes
the solution of (5) starting from

z = log
x

1− x
.

Moreover,0 < X(t , x) < 1 for every t≥ 0.
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Proof. It is easy to see that equation (5) can be rewritten in the form

dZ(t) =

(
X(t) − 1

2

)
γ2(t)dt − γ(t)dW(t). (6)

Hence, applying the Itô formula to the processX we find that

dX(t) = −X(t)(1− X(t))dZ(t) + X(t)(1− X(t))

(
X(t) − 1

2

)
γ2(t)dt

= −X(t)(1− X(t))γ(t)dW(t).

Therefore, the processX is a solution to (4). Conversely, ifX is any local weak
solution to (4) then it is in fact a strong solution because the diffusion coefficient
in (4) is locally Lipschitz. Moreover, using the Itô formula in the same way as
in the first part of the proof we can show that the process

Z(t) = log
X(t)

1− X(t)

is a strong solution of equation (5), hence can be continued to a global one which
is unique. The last part of the lemma follows trivially from the definition of the
processX and uniqueness of solutions to (4).

From now on we assume thatX(0, x) = x ∈ (0, 1).

Theorem 1. Let g : R → R be a nonnegative Borel function. Then for every
x ∈ (0, 1) and T > 0 the expected value V(T, x) = Eg(X(T, x)) is given by the
formula

V (T, x) =
√

x(1− x) exp

(
−1

8
〈M 〉T

)
×E

(
g

(
1

1 + e−(z+MT )

)(
e(z+MT )/2 + e−(z+MT )/2

))
,

where z= log x
1−x and Mt =

∫ t
0 γ(s) dW(s).

Proof. The proof is based on a simple idea that for any random variableY (say)
we have

EY = E ((1− X(t))Y) + E (X(t)Y) .

Then we show that both processesX(t) and 1−X(t) are exponential martingales
and therefore the Girsanov theorem can be applied to both terms of the above
expression. It turns out that after the change of measure the random variableY
is an exponential of the Gaussian semimartingale which, after one more change
of measure, can be transformed into a Gaussian martingale. Finally, some simple
manipulations conclude the proof.

For any locally bounded and predictable processΦ defined on (Ω,F , (Ft ),
P) we will use the notation
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Et

(∫
ΦdW

)
= exp

(∫ t

0
ΦsdWs − 1

2

∫ t

0
Φ2

sds

)
.

It can be easily checked by the Itô formula that

X(t) = xEt

(∫
(X − 1)γ dW

)
. (7)

Note that the processX1(t) = 1− X(t) satisfies the equation

dX1(t) = X1(t) (1− X1(t)) γ(t)dW(t)

and therefore

1− X(t) = (1− x)Et

(∫
Xγ dW

)
Hence

V (T, x) = E

(
(1− X(T, x))g

(
1

1 + e−Z(T,x)

))
+E

(
X(T, x)g

(
1

1 + e−Z(T,x)

))
= (1− x)E

(
ET

(∫
Xγ dW

)
g

(
1

1 + e−Z(T,x)

))
+xE

(
ET

(∫
(X − 1)γ dW

)
g

(
1

1 + e−Z(T,x)

))
.

Let PX andP1−X be such probability measures on
(
Ω,F

)
that

dPX

dP
= ET

(∫
Xγ dW

)
and

dP1−X

dP
= ET

(∫
(X − 1)γ dW

)
.

Taking into account that by (6)

dZ(t) =

(
(X(t) − 1) +

1
2

)
γ2(t)dt − γ(t)dW(t)

we find that under the measurePX the processZ satisfies the equation

dZ(t) = −1
2
γ2(t)dt − γ(t)dW(t)

and under the measureP1−X

dZ(t) =
1
2
γ2(t)dt − γ(t)dW(t).

Therefore
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V (T, x) = (1− x)

×EX

(
g

((
1 + exp

(
−z +

∫ T

0
γ(s) dW(s) +

1
2

∫ T

0
γ2(s) ds

))−1))

+xE1−X

(
g

((
1 + exp

(
−z +

∫ T

0
γ(s) dW(s) − 1

2

∫ T

0
γ2(s) ds

))−1))
,

whereEX and E1−X denote expectations with respect to the measuresPX and
P1−X respectively and in each termW is a Wiener process under the correspond-
ing measure. Note also that by the Girsanov theorem the process

M−
t = Mt − 1

2
〈M 〉t

under the probability measureP− such that

dP−

dP1−X
= ET

(
1
2

M

)
is a martingale with the quadratic variation equal to〈M 〉t and so is the process

M +
t = Mt +

1
2
〈M 〉t

under the measureP+ such that

dP+

dPX
= ET

(
−1

2
M

)
.

Hence, denoting byE+ and E− expectations with respect to the measuresP+

andP− respectively we find that

V (T, x) = (1− x)E+

(
ET

(
1
2

M +

)
g

(
1

1 + e−z+M +
T

))

+xE−
(

ET

(
−1

2
M−

)
g

(
1

1 + e−z+M−T

))
.

Since the laws ofM + and M− underP+ and P− respectively are the same as
the law ofM underP which is symmetric we find that

V (T, x) = exp

(
−1

8
〈M 〉T

)
E+

(
g

(
1

1 + e−z−M +
T

)(
(1− x)e−

1
2 M +

T + xe
1
2 M +

T

))

=
√

x(1− x) exp

(
−1

8
〈M 〉T

)
E

(
g

(
1

1 + e−(z+MT )

)(
e−

1
2 (z+MT ) + e

1
2 (z+MT )

))
which concludes the proof of the theorem.

As a consequence of Theorem 1 we find the formula derived earlier in Miltersen
et al. (1997).
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Corollary 1. The time t(≤ T) price of a European call option with expiry T and
strike price K on a zero coupon bond maturing at T+ δ is

V (t ,T,T + δ) = (1− K )B (t ,T + δ) N

(
−l +

1
2
σ(t ,T)

)
−K (B(t ,T) − B (t ,T + δ)) N

(
−l − 1

2
σ(t ,T)

)
,

where

σ2(t ,T) =
∫ T

t
γ2(s,T) ds

and

l (t ,T) =
1

σ(t ,T)
log

K (B(t ,T) − B (t ,T + δ))
(1− K )B (t ,T + δ)

Proof. Using (3) and puttingx = F (t ,T,T + δ) we find that

V (t ,T,T + δ) = B(t ,T)ET

(
x

F (T,T,T + δ)
F (t ,T,T + δ)

− K

)+

.

Let g(y) = (y − K )+ with K > 0. Using the notationσ2 = σ2(t ,T) and

L =
1
σ

(
−z + log

K
1− K

)
we obtain from Theorem 1

V (T, x) =
√

x(1− x) exp

(
−1

8
σ2

)∫ ∞

L

(
1

1 + e−(z+σy)
− K

)
×
(

e−
1
2 (z+σy) + e

1
2 (z+σy)

)
n(y) dy,

wheren stands for the standard normal density. Therefore

V (T, x) =
√

x(1− x) exp

(
−1

8
σ2

)

·
(∫ ∞

L

1
1 + e−(z+σy)

(
e−

1
2 (z+σy) + e

1
2 (z+σy)

)
n(y) dy

−K
∫ ∞

L

(
e−

1
2 (z+σy) + e

1
2 (z+σy)

)
n(y) dy

)
=
√

x(1− x) exp

(
−1

8
σ2

)
(I1 − KI2) . (8)

We have

I1 =
∫ ∞

L
e

1
2 (z+σy)n(y) dy = ez/2eσ

2/8

(
1− N

(
L − 1

2
σ

))
and
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I2 = I1 + e−z/2eσ
2/8

(
1− N

(
L +

1
2
σ

))
.

Therefore taking (8) into account we obtain

V (T, x) =
√

x(1− x)(1− K )ez/2

(
1− N

(
L − 1

2
σ

))

−K
√

x(1− x)e−z/2

(
1− N

(
L +

1
2
σ

))
= x(1− K )N

(
−L +

1
2
σ

)
− K (1− x)N

(
−L − 1

2
σ

)
.

Finally, identifyingγ(t) with γ(t ,T) we obtain the corollary.
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