Skip to main content
Log in

Infinite-dimensional polynomial processes

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We introduce polynomial processes taking values in an arbitrary Banach space \({B}\) via their infinitesimal generator \(L\) and the associated martingale problem. We obtain two representations of the (conditional) moments in terms of solutions of a system of ODEs on the truncated tensor algebra of dual respectively bidual spaces. We illustrate how the well-known moment formulas for finite-dimensional or probability-measure-valued polynomial processes can be deduced in this general framework. As an application, we consider polynomial forward variance curve models which appear in particular as Markovian lifts of (rough) Bergomi-type volatility models. Moreover, we show that the signature process of a \(d\)-dimensional Brownian motion is polynomial and derive its expected value via the polynomial approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abi Jaber, E., Cuchiero, C., Larsson, M., Pulido, S.: A weak solution theory for stochastic Volterra equations of convolution type. Working paper (2019). Available online at arXiv:1909.01166

  2. Abi Jaber, E., El Euch, O.: Markovian structure of the Volterra Heston model. Stat. Probab. Lett. 149, 63–72 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Abi Jaber, E., Larsson, M., Pulido, S.: Affine Volterra processes. Ann. Appl. Probab. 29, 3155–3200 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Ackerer, D., Filipović, D.: Linear credit risk models. Finance Stoch. 24, 169–214 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Ackerer, D., Filipović, D., Pulido, S.: The Jacobi stochastic volatility model. Finance Stoch. 22, 667–700 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Ahdida, A., Alfonsi, A.: A mean-reverting SDE on correlation matrices. Stoch. Process. Appl. 123, 1472–1520 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16, 887–904 (2016)

    MathSciNet  Google Scholar 

  9. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and Kolmogorov equations by means of deep learning. Working paper (2018). Available online at arXiv:1806.00421

  10. Bennedsen, M., Lunde, A., Pakkanen, M.: Decoupling the short-and long-term behavior of stochastic volatility. Working paper (2016). Available online at arXiv:1610.00332

  11. Benth, F., Detering, N., Krühner, P.: Independent increment processes: a multilinearity preserving property. Stochastics (2020), forthcoming. https://doi.org/10.1080/17442508.2020.1802458

    Article  Google Scholar 

  12. Benth, F., Krühner, P.: Representation of infinite-dimensional forward price models in commodity markets. Commun. Math. Stat. 2, 47–106 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Bergomi, L.: Smile dynamics I. Risk 17(9), 117–123 (2004)

    Google Scholar 

  14. Bergomi, L.: Smile dynamics II. Risk 18(10), 67–73 (2005)

    Google Scholar 

  15. Bergomi, L.: Smile dynamics III. Risk 21(10), 90–96 (2008)

    Google Scholar 

  16. Biagini, S., Zhang, Y.: Polynomial diffusion models for life insurance liabilities. Insur. Math. Econ. 71, 114–129 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Blath, J., Casanova, A.G., Kurt, N., Wilke-Berenguer, M.: A new coalescent for seed-bank models. Ann. Appl. Probab. 26, 857–891 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Boedihardjo, H., Geng, X., Lyons, T., Yang, D.: The signature of a rough path: uniqueness. Adv. Math. 293, 720–737 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Buehler, H.: Consistent variance curve models. Finance Stoch. 10, 178–203 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Chen, K.T.: Integration of paths, geometric invariants and a generalized Baker–Hausdorff formula. Ann. Math. 65, 163–178 (1957)

    MathSciNet  MATH  Google Scholar 

  21. Chen, K.T.: Iterated path integrals. Bull. Am. Math. Soc. 83, 831–879 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Chevyrev, I., Lyons, T.: Characteristic functions of measures on geometric rough paths. Ann. Probab. 44, 4049–4082 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Cuchiero, C.: Polynomial processes in stochastic portfolio theory. In: Stochastic Processes and Their Applications, vol. 129, pp. 1829–1872 (2019)

    MATH  Google Scholar 

  24. Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., Teichmann, J.: Discrete-time signatures and randomness in reservoir computing. Working paper (2020). Available online at arXiv:2010.14615

  25. Cuchiero, C., Keller-Ressel, M., Teichmann, J.: Polynomial processes and their applications to mathematical finance. Finance Stoch. 16, 711–740 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Cuchiero, C., Larsson, M., Svaluto-Ferro, S.: Probability measure-valued polynomial diffusions. Electron. J. Probab. 24(30), 1–32 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Cuchiero, C., Teichmann, J.: Markovian lifts of positive semidefinite affine Volterra type processes. Decis. Econ. Finance 42, 407–448 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Cuchiero, C., Teichmann, J.: Generalized Feller processes and Markovian lifts of stochastic Volterra processes: the affine case. J. Evol. Equ. 20, 1301–1348 (2020)

    MathSciNet  Google Scholar 

  29. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003)

    MathSciNet  MATH  Google Scholar 

  30. El Euch, O., Rosenbaum, M.: The characteristic function of rough Heston models. Math. Finance 29, 3–38 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Etheridge, A.: An Introduction to Superprocesses. University Lecture Series, vol. 20. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  32. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, 2nd edn. Wiley Series in Probability and Statistics. Wiley, New York (2005)

    MATH  Google Scholar 

  33. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254, 109–153 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Lecture Notes in Mathematics, vol. 1760. Springer, Berlin (2001)

    MATH  Google Scholar 

  35. Filipović, D., Gourier, E., Mancini, L.: Quadratic variance swap models. J. Financ. Econ. 119, 44–68 (2016)

    Google Scholar 

  36. Filipović, D., Larsson, M.: Polynomial diffusions and applications in finance. Finance Stoch. 20, 931–972 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Filipović, D., Larsson, M.: Polynomial jump-diffusion models. Stoch. Syst. 10, 71–97 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Filipović, D., Tappe, S., Teichmann, J.: Term structure models driven by Wiener processes and Poisson measures: existence and positivity. SIAM J. Financ. Math. 1, 523–554 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Fleming, W.H., Viot, M.: Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28, 817–843 (1979)

    MathSciNet  MATH  Google Scholar 

  40. Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17, 153–188 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Friz, P., Hairer, M.: A Course on Rough Paths. Springer, Berlin (2014)

    MATH  Google Scholar 

  42. Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18, 933–949 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Heitzinger, C., Pammer, G., Rigger, S.: Cubature formulas for multisymmetric functions and applications to stochastic partial differential equations. SIAM/ASA J. Uncertain. Quantificat. 6, 213–242 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Horvath, B., Jacquier, A., Tankov, P.: Volatility options in rough volatility models. SIAM J. Financ. Math. 11, 437–469 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  46. Jacquier, A., Martini, C., Muguruza, A.: On VIX futures in the rough Bergomi model. Quant. Finance 18, 45–61 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Janson, S.: Tensor norms on ordered normed spaces, polarization constants, and exchangeable distributions. Working paper (2018). Available online at arXiv:1811.02450

  48. Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., Lyons, T.: Deep signature transforms. In: Wallach, H., et al. (eds.), Advances in Neural Information Processing Systems, vol. 32, pp. 3105–3115. Curran Associates, Red Hook (2019)

    Google Scholar 

  49. Kimura, M.: Diffusion models in population genetics. J. Appl. Probab. 1, 177–232 (1964)

    MathSciNet  MATH  Google Scholar 

  50. Kotelenez, P.: Comparison methods for a class of function valued stochastic partial differential equations. Probab. Theory Relat. Fields 93, 1–19 (1992)

    MathSciNet  MATH  Google Scholar 

  51. Kunze, M.: On a class of martingale problems on Banach spaces. Electron. J. Probab. 18, 104 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Larsson, M., Svaluto-Ferro, S.: Existence of probability measure valued jump-diffusions in generalized Wasserstein spaces. Electron. J. Probab. 25, 1–25 (2020)

    MathSciNet  Google Scholar 

  53. Levin, D., Lyons, T., Ni, H.: Learning from the past, predicting the statistics for the future, learning an evolving system. Working paper (2013). Available online at arXiv:1309.0260

  54. Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14, 215–310 (1998)

    MathSciNet  MATH  Google Scholar 

  55. Milian, A.: Comparison theorems for stochastic evolution equations. Stoch. Int. J. Probab. Stoch. Process. 72, 79–108 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Papavasiliou, A., Ladroue, C.: Parameter estimation for rough differential equations. Ann. Stat. 39, 2047–2073 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Perez Arribas, I., Salvi, C., Szpruch, L.: Sig-SDEs model for quantitative finance. Working paper (2020). Available online at arXiv:2006.00218

  58. Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer, Berlin (2013)

    Google Scholar 

  59. Schmidt, T., Tappe, S., Yu, W.: Infinite dimensional affine processes. Stoch. Process. Appl. 130, 7131–7169 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Svaluto-Ferro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors gratefully acknowledge financial support by the Vienna Science and Technology Fund (WWTF) under grant MA16-021.

Appendices

Appendix A: Auxiliary results

We collect here auxiliary results which are needed in Sect. 2.

Lemma A.1

Fix \(p({y})=\sum _{j=0}^{k}\langle {a}_{j},{y}^{\otimes j}\rangle \) for \({a}_{j}\in ({B}^{\otimes j})^{*}\). Then \(p({y})=0\) for all \({y}\in {B}\) if and only if \({a}_{j}=0\) for all \(j\).

Proof

Note that \(\langle {a}_{j},{y}^{\otimes j}\rangle =0\) for all \({y}\in {B}\) if and only if \(\langle {a}_{j},\tilde{{y}}\rangle =0\) for all \(\tilde{{y}}\in {B}^{\otimes j}\) and thus if and only if \({a}_{j}=0\). If \(p({y})=0\) for all \({y}\in {B}\), then \({a}_{0}=p(0)=0\). Proceeding inductively, we can prove that \(\langle {a}_{j},{y}^{ \otimes j}\rangle =\lim _{{\varepsilon }\to 0}{\varepsilon }^{-j}p({ \varepsilon }{y})=0\) and the “only if” part follows. The “if” part is clear. □

Lemma A.2

Let \(L\colon P^{D}\to P\) be an \({\mathcal{S}}\)-polynomial operator. Then there exists a \(k\)th dual operator corresponding to \(L\) for each \(k\in {\mathbb{N}}\).

Proof

We claim that there exists a \({B}\)-polynomial operator \(\widetilde{L}:P^{D}\to P\) such that \((\widetilde{L}p)|_{\mathcal{S}}=(Lp)|_{\mathcal{S}}\) for each \(p\in P^{D}\). In other words, we claim that for each \(p\in P^{D}\), there exists a \(q_{p}\in P\) such that \(q_{p}=Lp\) on \({\mathcal{S}}\), \(\deg (q_{p}) \le \deg (p)\) and \(p\mapsto q_{p}\) is linear. If this is the case, the claim follows by Lemma A.1.

We proceed by induction. Set \(P^{D}_{k}:=\{p\in P^{D}:\deg (p)\leq k\}\) and for all \(p\in P^{D}_{0}\), set \(\widetilde{L}p\equiv q\), where \(q\in {\mathbb{R}}\) satisfies \((Lp)|_{\mathcal{S}}\equiv q\). Clearly, \(\widetilde{L}|_{P^{D}_{0}}\) is linear, satisfies the \({B}\)-polynomial property and \((\widetilde{L}p)|_{\mathcal{S}}=(Lp)|_{\mathcal{S}}\) for all \(p\in P^{D}_{0}\). Fix \(k\in {\mathbb{N}}\) and suppose that \(\widetilde{L}|_{P^{D}_{k}}\) is linear, satisfies the \({B}\)-polynomial property and \((\widetilde{L}p)|_{\mathcal{S}}=(Lp)|_{\mathcal{S}}\) for all \(p\in P^{D}_{k}\). Consider the set of all pairs \((V,{\mathcal{L}})\) of a vector space \(V\) such that \(P^{D}_{k}\subseteq V \subseteq P^{D}_{k+1}\) and \({\mathcal{L}}: V\to P\) is a linear extension of \(\widetilde{L}|_{P^{D}_{k}}\) satisfying the \({B}\)-polynomial property and such that \(({\mathcal{L}}p)|_{\mathcal{S}}= (Lp)|_{\mathcal{S}}\) for all \(p\in V\). By a standard application of Zorn’s lemma, this set has a maximal element \((V,{\mathcal{L}})\) with respect to the order relation given by

$$ (V_{1},{\mathcal{L}}_{1})\text{ ``} {{\leq }} \text{'' }(V_{2},{ \mathcal{L}}_{2})\qquad :\Longleftrightarrow \qquad V_{1}\subseteq V_{2} \text{ and ${\mathcal{L}}_{2}|_{V_{1}}={\mathcal{L}}_{1}$.} $$

Assume by way of contradiction that \(V\neq P^{D}_{k+1}\) and pick \(p\in P^{D}_{k+1}\setminus V\). Since \(L\) is \({\mathcal{S}}\)-polynomial, there exists a \(q\in P\) such that \((Lp)|_{\mathcal{S}}=q\) and \(\deg (q)\leq k+1\). Set \({\mathcal{L}}p:=q\) and extend ℒ to \(V+{\mathbb{R}}p\) linearly. Linearity of \(L\) and ℒ yields that \(({\mathcal{L}}\tilde{p})|_{\mathcal{S}}=(L\tilde{p})|_{\mathcal{S}}\) for all \(\tilde{p}\in V+{\mathbb{R}}p\). Finally, noting that \(\deg (\tilde{p}+\alpha p)=k+1\) for all \(\tilde{p}\in V\) and \(\alpha \neq 0\), we can conclude that

$$ \deg \big({\mathcal{L}}(\tilde{p}+\alpha p)\big)=\deg ({\mathcal{L}} \tilde{p} +\alpha q)\leq \max \big(\deg ({\mathcal{L}}\tilde{p}), \deg ( \alpha q)\big)\leq k+1 $$

contradicts the maximality of \((V,{\mathcal{L}})\). Setting \(\widetilde{L} p:= {\mathcal{L}}p\) for all \(p\in P^{D}_{k+1}\) concludes the proof. □

Appendix B: Proofs of Propositions 4.7 and 4.10

We collect here the proofs of the VIX moment formulas stated in Sect. 4.4.

Proof of Proposition 4.7

Recall that by Remark 4.5 (iii), the process \((\lambda _{t})_{t \geq 0}\) solves the martingale problem for the \({B}\)-polynomial operator \(L:P^{D}\to P\). We follow now the scheme outlined in Sect. 4.4.1. Throughout the proof, we use the following inequalities. Set \(C_{t}:=e^{\frac{k(k-1)}{2}\sum _{\ell =1}^{m}\int _{0}^{t+\Delta }K_{\ell }(\tau )^{2}d\tau }\) and note that \(e^{\int _{0}^{t}V_{k}(x+ \tau 1)d\tau }\leq C_{t}<\infty \) for each \(t>0\). Observe also that by Benth and Krühner [12, Lemma 3.2], we have

$$ |{y}(x)|\leq {\overline{c}}\| {y}\|_{\alpha }\qquad \text{and}\qquad \frac{1}{\Delta }\int _{0}^{\Delta }{y}'(x+t)dx\leq \|{y}\|_{\alpha }$$
(B.1)

for each \({y}\in {B}\), for some constant \({\overline{c}}>0\).

(i) We observe that \(M_{n}\vec{y}=({\mathcal{M}}_{0}{y}_{0},\ldots ,{\mathcal{M}}_{n}{y}_{n})\) with

$$\begin{aligned} {\mathcal{M}}_{k}{y}( x)&=1^{\top }\nabla {y}(x)+V_{k}(x){y}(x),\qquad {y} \in \! \big(\!\operatorname{dom} (\mathcal{A})\big)^{\otimes k}, \end{aligned}$$

where \(\mathcal{A}\) is given by (4.4).

(ii) Observe that for each \({y}\in (\operatorname{dom}(\mathcal{A}))^{\otimes k}\), the corresponding ODE (4.10) can be seen as a PDE corresponding to the Cauchy problem with potential \(V_{k}\) of a pure drift process \(dX_{t}= 1 dt\) on \(\mathbb{R}^{k}\). The Feynman–Kac formula thus yields that its classical strong solution on \(({\mathbb{R}}_{+}\setminus \{0\})^{k}\times [0,T]\) is given by \(Z_{t}y( x):={y}(x+t1)e^{\int _{0}^{t}V_{k}(x+\tau 1)d\tau }\). Moreover, by (4.9), the definition of \(C_{t}\) and (B.1), we get

$$ |\langle \widehat{{a}}^{\otimes k},Z_{t}{y}^{\otimes k}\rangle _{\alpha }| =\bigg|\frac{1}{\Delta ^{k}}\int _{[0,\Delta ]^{k}}Z_{t}{y}^{ \otimes k}(\vec{x})d\vec{x}\bigg| \leq {\overline{c}}^{k}C_{t} \|{y}\|_{\alpha }^{k} $$

for each \({y}\in {B}\). This implies that \(\langle \widehat{{a}}^{\otimes k},Z_{t}{y}\rangle _{\alpha }\leq { \overline{c}}^{k}C_{t} \|y\|_{\times }\) for each \({y}\in {B}^{\otimes k}\) and thus (4.11).

(iii) Due to the above estimate, we can define a candidate solution \({a}_{t} \in ({B}^{\otimes k})^{*}\) (in the sense of Definition 3.3) to \(\partial _{t}{a}_{t}={\mathcal{L}}_{k}{a}_{t}\) for \({a}_{0}=\widehat{{a}}^{\otimes k}\) as

$$ \langle {a}_{t},{y}\rangle _{\alpha }:=\langle \widehat{{a}}^{\otimes k},Z_{t}{y} \rangle _{\alpha }=\frac{1}{\Delta ^{k}}\int _{[0,\Delta ]^{k}}{y}( x+t1)e^{ \int _{0}^{t}V_{k}( x+\tau 1)d\tau }d x,\qquad {y}\in {B}^{\otimes k}. $$

(iv) To conclude the proof, we need to check that \(({a}_{t})_{t\geq 0}\) satisfies the conditions of the dual moment formula in Theorem 3.4 (i)–(iii). Observe that \(({a}_{t})_{t\geq 0}\) satisfies condition (i) if and only if \(({a}_{t})_{t\geq 0}\subseteq {\mathcal{D}}({\mathcal{L}}_{k})\) and

$$\begin{aligned} \langle {a}_{t}, y^{\otimes k }\rangle _{\alpha }=\langle \widehat{{a}}, y^{\otimes k }\rangle _{\alpha } +\int _{0}^{t} \langle \mathcal{L}_{k} a_{s}, y^{\otimes k }\rangle _{\alpha }ds \end{aligned}$$
(B.2)

for all \(y \in B\). We prove now the following claims.

Claim 1: \({a}_{t}\in {\mathcal{D}}({\mathcal{L}}_{k})\). To show this, we fix \(t\geq 0\) and construct a sequence \({a}_{n}=\sum _{i=1}^{n}\alpha _{n,i}{a}_{n,i}^{\otimes k}\) such that \({a}_{n,i}\in D\), \(\|{a}_{n}-{a}_{t}\|_{*k}\to 0\) and \(\|{\mathcal{L}}_{k} {a}_{n}-{\mathcal{L}}_{k} {a}_{t}\|_{*k}\to 0\), where \({\mathcal{L}}_{k} {a}_{t}\in ({B}^{\otimes k})^{*}\) is uniquely determined by

$$ \langle {\mathcal{L}}_{k} {a}_{t},{y}^{\otimes k}\rangle _{\alpha }= \frac{1}{\Delta ^{k}}\int _{[0,\Delta ]^{k}}{\mathcal{M}}_{k}{y}^{ \otimes k}(x+t1)F(x)dx ,\qquad {y}\in \operatorname{dom}(\mathcal{A}), $$
(B.3)

for \(F( x):=e^{\int _{0}^{t}V_{k}( x+\tau 1)d\tau }\). Observe that the assumptions on \(K\) guarantee that \(F\) is symmetric and continuous on \([0,\Delta ]^{k}\). By the Stone–Weierstrass theorem, we can therefore find a sequence \(F_{n}=\sum _{i=1}^{n}\alpha _{n,i}F_{n,i}^{\otimes k}\), \(n \in {\mathbb{N}}\), such that \(F_{n,i}\in C([0,\Delta ])\) and \({\varepsilon }_{n}:=\|F_{n}-F\|_{\infty ,k}\to 0\) for \(n\to \infty \), where \(\|{\,\cdot \,}\|_{\infty ,k}\) denotes the supremum norm on \([0,\Delta ]^{k}\). Define \({a}_{n,i}\in {B}\) such that

$$ \langle {a}_{n,i},{y}\rangle _{\alpha }:=\frac{1}{\Delta }\int _{0}^{\Delta }{y}(x+t)F_{n,i}(x)dx $$

for each \({y}\in {B}\). Using (B.1), we obtain the estimates

$$\begin{aligned} |\langle {a}_{n,i},{\mathcal{A}}{y}\rangle _{\alpha }|&\leq \frac{1}{\Delta }\int _{0}^{\Delta }|{\mathcal{A}}{y}(x+t)|dx\|F_{n,i}\|_{ \infty ,1}\leq \|{y}\|_{\alpha }\|F_{n,i}\|_{\infty ,1}, \\ |\langle \langle {a}_{n,i},K_{\ell }{y}\rangle \rangle _{\alpha }| &= \lim _{z\to 0}|\langle {a}_{n,i},K_{\ell }({\,\cdot \,}+z){y}({\,\cdot \,}+z)\rangle _{\alpha }| \\ &\leq \frac{1}{\Delta }\int _{0}^{\Delta }|K_{\ell }(x+t){y}(x+t)||F_{n,i}(x)|dx \\ &\leq {\overline{c}}\|{y}\|_{\alpha }\|F_{n,i}\|_{\infty ,1} \frac{1}{\Delta }\int _{t}^{\Delta +t} K_{\ell }(x)^{2}dx, \end{aligned}$$

from which we conclude that \({a}_{n,i}\in D\). Next, using again (B.1), we have for each \({y}\in {B}\) that

$$ |\langle {a}_{n}-{a}_{t},{y}^{\otimes k}\rangle _{\alpha }|\leq \bigg( \frac{1}{\Delta }\int _{0}^{\Delta }|y(x+t)|dx\bigg)^{k}{\varepsilon }_{n} \leq {\overline{c}}^{k}\|y\|_{\alpha }^{k}{\varepsilon }_{n} $$

which by (4.3) proves that \(\| {a}_{n}-{a}_{t}\|_{*k}\leq {\overline{c}}^{k}{\varepsilon }_{n}\) and thus that \(\|{a}_{n}-{a}_{t}\|_{*k}\to 0\) for \(n \to \infty \). Since for each \({y}\in \operatorname{dom}(\mathcal{A})\), we have again by (B.1) that

$$\begin{aligned} |\langle {\mathcal{L}}_{k} {a}_{n}-{\mathcal{L}}_{k} {a}_{t},{y}^{ \otimes k}\rangle _{\alpha }| &\leq \bigg(\frac{1}{\Delta ^{k}}\int _{[0, \Delta ]^{k}}|{\mathcal{M}}_{k}{y}^{\otimes k}( x+t1)|d x\bigg) { \varepsilon }_{n} \\ &\leq \bigg(k{\overline{c}}^{k-1} +\frac{k(k-1)}{2}{\overline{c}}^{k} \frac{1}{\Delta }\sum _{\ell =1}^{m}\int _{t} ^{\Delta +t} K_{\ell }(x)^{2}d x\bigg)\|y\|_{\alpha }^{k}{\varepsilon }_{n} \end{aligned}$$

and \(\operatorname{dom}(\mathcal{A})\) is dense in \({B}\), we can also conclude that \(\|{\mathcal{L}}_{k} {a}_{n}-{\mathcal{L}}_{k} {a}_{t}\|_{*k}\to 0\). As a side product of this computation, we also get

$$ |\langle {\mathcal{L}}_{k} {a}_{t},{y}\rangle _{\alpha }|\leq c_{t} \|{y} \|_{\times },\qquad {y}\in {B}^{\otimes k}, $$
(B.4)

where \(c_{t}:=(k{\overline{c}}^{k-1} +\frac{k(k-1)}{2}{\overline{c}}^{k} \frac{1}{\Delta }\sum _{\ell =1}^{m}\int _{t} ^{\Delta +t} K_{\ell }(x)^{2}d x)\|F\|_{\infty ,k}\).

Claim 2: \(\partial _{t}{a}_{t}={\mathcal{L}}_{k}{a}_{t}\). Fix \({y}\in \operatorname{dom}(\mathcal{A})\) and define \(m_{t}:=Z_{t}{y}^{\otimes k}\). Observe that for all \(x\in (0,\Delta ]^{k}\) and \(t\in [0,T]\), we have

$$\begin{aligned} |\partial _{t}m_{t}( x)| &=\big|\partial _{t}\big({y}^{\otimes k}(x+t1)e^{ \int _{0}^{t}V_{k}(x+\tau 1)d\tau }\big)\big| \\ &=\bigg|\bigg(\sum _{i=1}^{k} y'(x_{i}+t)\prod _{j\neq i}{y}(x_{j}+t)+ \prod _{i=1}^{k}{y}(x_{i}+t)V_{k}(x+t1)\bigg) \\ &\qquad \times e^{\int _{0}^{t}V_{k}(x+\tau 1)d\tau }\bigg| \\ &\leq \big(k \|{y}'\|_{\alpha }\|{y}\|_{\alpha }^{k-1}{\overline{c}}^{k}+{ \overline{c}}^{k}\overline{V}_{k}(x)\|{y}\|_{\alpha }^{k}\big)C_{T}, \end{aligned}$$

where \(\overline{V}_{k}( x):=\sup _{t\in [0,T]}V_{k}(x+1t)\). Condition (4.12) then implies that the map \(x\mapsto \sup _{t\in [0,T]}|\partial _{t}m_{t}( x)|\) is dominated by an integrable function. Hence the Leibniz integral rule and (B.3) yield

$$\begin{aligned} \partial _{t}\langle {a}_{t},{y}^{\otimes k}\rangle _{\alpha }&= \frac{1}{\Delta ^{k}}\int _{[0,\Delta ]^{k}}\partial _{t}m_{t}( x) d x \\ &=\frac{1}{\Delta ^{k}}\int _{[0,\Delta ]^{k}}\partial _{t}\big({y}^{ \otimes k}(x+1t)e^{\int _{0}^{t}V_{k}(x+\tau 1)d\tau }\big) d x \\ &=\frac{1}{\Delta ^{k}}\int _{[0,\Delta ]^{k}} {\mathcal{M}}_{k}{y}^{ \otimes k}( x +1t)e^{\int _{0}^{t}V_{k}(x+\tau 1)d\tau } d x \\ &=\langle {\mathcal{L}}_{k}{a}_{t},{y}^{\otimes k}\rangle _{\alpha } \end{aligned}$$

for each \({y}\in \operatorname{dom}(\mathcal{A})\). Since \((\langle {\mathcal{L}}_{k}{a}_{t},{y}^{\otimes k}\rangle _{\alpha })_{t \geq 0}\) is continuous, (B.2) follows by the fundamental theorem of calculus. By (B.4), this result can be extended to all \({y}\in {B}\) and the claim follows.

Claim 3: Conditions (ii) and (iii) of Theorem 3.4hold. We apply Lemma 3.17. The moment condition is satisfied by assumption and (3.8) holds since \(\sup _{t\in [0,T]}c_{t}<\infty \) with \(c_{t}\) given in (B.4).

The result now follows from Theorem 3.4. □

Proof of Proposition 4.10

Recall that by Remark 4.5 (iii), the process \((\lambda _{t})_{t \geq 0}\) solves the martingale problem for the \({B}\)-polynomial operator \(L:P^{D}\to P\). We follow again the scheme of Sect. 4.4.1. Throughout the proof, we need the following inequalities. Set \(C_{t}:=e^{t{\overline{c}}^{k}\|V_{k}\|_{\times }}\) and note that for each \(f:[0,t]\to [0,\Delta +t]^{k}\) and each \(t>0\), it holds that \(e^{\int _{0}^{t}V_{k}(f(\tau ))d\tau }\leq C_{t}<\infty \).

(i) We observe that \(M_{n}\vec{y}=({\mathcal{M}}_{0}{y}_{0},\ldots ,{\mathcal{M}}_{n}{y}_{n})\) for

$$ {\mathcal{M}}_{k}{y}(x)=1^{\top }\nabla {y}(x)+\int {y}( x+\xi )\nu (x,d \xi ),\qquad {y}\in \big(\operatorname{dom}(\mathcal{A})\big)^{ \otimes k}, $$

where \(\mathcal{A}\) is given by (4.4).

(ii) We now prove that \(m_{t}=Z_{t}y(x):={\mathbb{E}}[e^{\int _{0}^{t}V_{k}(X^{(k)}_{\tau })d \tau }{y}(X^{(k)}_{t})|X^{(k)}_{0}=x]\) solves (4.10) (seen as a PDE) on \({\mathbb{R}}_{+}^{k}\times [0,T]\) for each \({y}\in {\mathbb{R}}+C^{1}_{0}({\mathbb{R}}_{+}^{k})\) and thus, since \((\operatorname{dom}({\mathcal{A}}))^{\otimes k}\subseteq {\mathbb{R}}+C^{1}_{0}({ \mathbb{R}}_{+}^{k})\), for each \(y\in (\operatorname{dom}({\mathcal{A}}))^{\otimes k}\). Indeed, this follows from the Feynman–Kac formula. To see this, note that \({\mathcal{M}}_{k}{y}( x)={\mathcal{G}}^{(k)} {y}( x)+V_{k}( x){y}(x)\). Moreover, by the assumptions on \(K\), we know that the map \(x \mapsto \int (\| \xi \|^{2} \wedge 1) \nu (x, d\xi )\) is continuous and bounded. This yields the existence of a unique solution to the martingale problem for \({\mathcal{G}}^{(k)}:{\mathbb{R}}+C^{1}_{0}({\mathbb{R}}_{+}^{k})\to { \mathbb{R}}+C_{0}({\mathbb{R}}_{+}^{k})\) (see e.g. Jacod and Shiryaev [45, Theorem III.2.34]). Moreover, by Itô’s formula, \(Z_{t}y\) is differentiable with respect to \(t\) whence the claim follows.

In particular, \((Z_{t})_{t \geq 0}\) is a strongly continuous semigroup on \({\mathbb{R}}+C_{0}({\mathbb{R}}_{+}^{k})\) with generator \(\mathcal{M}_{k}\), implying that

$$\begin{aligned} \lim _{{\varepsilon }\to 0}\frac{1}{{\varepsilon }}\|Z_{t+{ \varepsilon }}y-Z_{t}y-{\varepsilon }{\mathcal{M}}_{k} Z_{t}y\|_{\times }=0 \end{aligned}$$
(B.5)

for each \(y \in {\mathbb{R}}+C^{1}_{0}({\mathbb{R}}_{+}^{k})\). Finally, since

$$ {\mathbb{P}}\big[X^{(k)}_{t}\in [0,\Delta +t]^{k} \big| X^{(k)}_{0} \sim {\mathcal{U}}([0,\Delta ]^{k})\big]=1, $$

we get from (4.9) and (B.1) that

$$ |\langle \widehat{{a}}^{\otimes k},Z_{t}{y}^{\otimes k}\rangle _{\alpha }| =\big|{\mathbb{E}}\big[e^{\int _{0}^{t}V_{k}(X^{(k)}_{\tau })d \tau }{y}^{\otimes k}(X^{(k)}_{t})\big| X^{(k)}_{0}\sim {\mathcal{U}}([0, \Delta ]^{k})\big]\big| $$

which is bounded by \({\overline{c}}^{k}C_{t} \|{y}\|_{\alpha }^{k}\) for \({y}\in {\mathbb{R}}+C_{0}({\mathbb{R}}_{+}^{k})\), and thus for \({y} \in (\operatorname{dom}({\mathcal{A}}))^{\otimes k}\). This proves (4.11).

(iii) Due to (4.11) and using the notation introduced in (4.9), we can now define a candidate solution \({a}_{t}\in ({B}^{\otimes k})^{*}\) (in the sense of Definition 3.3) to \(\partial _{t}{a}_{t}={\mathcal{L}}_{k}{a}_{t}\) for \({a}_{0}=\widehat{{a}}^{\otimes k}\) as

$$ \langle {a}_{t},{y}\rangle _{\alpha }:=\langle \widehat{{a}}^{\otimes k},Z_{t} {y}\rangle _{\alpha },\qquad {y}\in {B}^{\otimes k}. $$

(iv) In order to conclude the proof we just need to check that \(({a}_{t})_{t\geq 0}\) satisfies the conditions of the dual moment formula as given in Theorem 3.4 (i)–(iii). Similarly as in the proof of Proposition 4.7, they consist in the following properties.

Claim 1: \(\partial _{t}\langle {a}_{t},{y}^{\otimes k}\rangle _{\alpha }= \langle {a}_{t},{\mathcal{M}}_{k} {y}^{\otimes k}\rangle _{\alpha }\). Observe that fixing \({y}\in {\mathbb{R}}+C_{0}^{1}({\mathbb{R}}_{+}^{k})\) and using that

$$ \langle {a}_{t+{\varepsilon }},{y}\rangle _{\alpha }=\langle \widehat{{a}}^{\otimes k},Z_{t+{\varepsilon }}{y}\rangle _{\alpha }= \langle \widehat{{a}}^{\otimes k},Z_{t}Z_{\varepsilon }{y}\rangle _{\alpha }=\langle {a}_{t}, Z_{\varepsilon }{y}\rangle _{\alpha }, $$

we can compute by (B.5) that

$$\begin{aligned} \frac{1}{{\varepsilon }}|\langle {a}_{t+{\varepsilon }},{y}\rangle _{\alpha }-\langle {a}_{t},{y}\rangle _{\alpha }-{\varepsilon }\langle {a}_{t},{ \mathcal{M}}_{k} {y}\rangle _{\alpha }| &=\frac{1}{{\varepsilon }}| \langle {a}_{t},Z_{{\varepsilon }}{y}\rangle _{\alpha }\!-\langle {a}_{t},{y} \rangle _{\alpha }\!-{\varepsilon }\langle {a}_{t},{\mathcal{M}}_{k} {y} \rangle _{\alpha }| \\ & \leq \|{a}_{t}\|_{*k}\frac{1}{{\varepsilon }}\|Z_{{\varepsilon }}{y}-{y}-{ \varepsilon }{\mathcal{M}}_{k} {y}\|_{\times } \end{aligned}$$

which goes to 0. Hence \(\partial _{t}\langle {a}_{t},{y}\rangle _{\alpha }=\langle {a}_{t},{ \mathcal{M}}_{k} {y}\rangle _{\alpha }\) for all \(y \in {\mathbb{R}}+C_{0}^{1}({\mathbb{R}}_{+}^{k})\).

Claim 2: \({a}_{t}\in {\mathcal{D}}({\mathcal{L}}_{k})\). Observe that since \({y}\mapsto \int {y}(x+\xi )\nu (x,d\xi )\) is a bounded linear operator, we have that \({\mathcal{D}}({\mathcal{L}}_{k})\) coincides with

$$ {\mathcal{D}}({{\mathcal{A}}^{*}\otimes {\mathrm{Id}}^{\otimes (k-1)}}):= \{{a}\in ({{B}^{\otimes k}})^{*}\colon \langle {a},\nabla {y}^{ \otimes k}\rangle _{\alpha }\leq C_{a}\|{y}\|_{\alpha }^{k},\ {y}\in \operatorname{dom}({\mathcal{A}})\}. $$

Fix \({y}\in {\mathbb{R}}+C_{0}^{1}({\mathbb{R}}_{+})\) and note that

$$ \langle {a}_{t},{\mathcal{M}}_{k}{y}^{\otimes k}\rangle _{\alpha }= \partial _{t}\langle {a}_{t},{{y}^{\otimes k}}\rangle _{\alpha }= \partial _{t}\langle \widehat{{a}}^{\otimes k},Z_{t}{{y}^{\otimes k}} \rangle _{\alpha }=\langle \widehat{{a}}^{\otimes k},{\mathcal{M}}_{k}Z_{t}{{y}^{ \otimes k}}\rangle _{\alpha }. $$

Since \({\mathcal{M}}_{k}Z_{t}{{y}^{\otimes k}}\in {\mathbb{R}}+C_{0}({ \mathbb{R}}_{+}^{k})\) we know that \(1^{\top }\nabla Z_{t}{{y}^{\otimes k}}\in {\mathbb{R}}+C_{0}({\mathbb{R}}_{+}^{k})\). By the fundamental theorem of calculus, we can thus compute

$$\begin{aligned} &\langle \widehat{{a}}^{\otimes k},{\mathcal{M}}_{k}Z_{t}{{y}^{ \otimes k}}\rangle _{\alpha }\\ &=\bigg\langle \widehat{{a}}^{\otimes k},1^{\top }\nabla Z_{t}{{y}^{ \otimes k}}+\int Z_{t}{y}^{\otimes k}({\,\cdot \,}+\xi )\nu ({\, \cdot \,},d\xi )\bigg\rangle _{\alpha }\\ &= \frac{k}{\Delta }\langle \widehat{{a}}^{\otimes (k-1)}, Z_{t}{{y}^{ \otimes k}}(\Delta ,{\,\cdot \,})\rangle _{\alpha }-\frac{k}{\Delta }\langle \widehat{{a}}^{\otimes (k-1)}, Z_{t}{{y}^{\otimes k}}(0,{\, \cdot \,})\rangle _{\alpha }\\ &\phantom{=:}+\bigg\langle \widehat{{a}}^{\otimes k},\int Z_{t}{y}^{\otimes k}({ \,\cdot \,}+\xi )\nu ({\,\cdot \,},d\xi )\bigg\rangle _{\alpha }\\ &= \frac{k}{\Delta }{\mathbb{E}}\big[e^{\int _{0}^{t}V_{k}(X^{(k)}_{\tau })d \tau }{y}^{\otimes k}(X^{(k)}_{t}) \big| X^{(k)}_{0}=\delta _{\Delta }\otimes {\mathcal{U}}([0,\Delta ]^{k-1})\big] \\ &\phantom{=:}-\frac{k}{\Delta }{\mathbb{E}}\big[e^{\int _{0}^{t}V_{k}(X^{(k)}_{\tau })d \tau }{y}^{\otimes k}(X^{(k)}_{t}) \big| X^{(k)}_{0}=\delta _{0} \otimes {\mathcal{U}}([0,\Delta ]^{k-1})\big] \\ &\phantom{=:}+\frac{k(k-1)}{2\Delta ^{2}}\bigg(\int _{0}^{\Delta }K(x)dx\bigg)^{2} \\ &\phantom{=:+}\times {\mathbb{E}}\big[e^{\int _{0}^{t}V_{k}(X^{(k)}_{\tau })d\tau }{y}^{ \otimes k}(X^{(k)}_{t}) \big| X^{(k)}_{0}=\delta _{0}\otimes \delta _{0} \otimes {\mathcal{U}}([0,\Delta ]^{k-2})\big]. \end{aligned}$$

An inspection of this expression yields

$$ | \langle {a}_{t},{\mathcal{M}}_{k}{y}^{\otimes k}\rangle _{\alpha }| \leq \bigg(\frac{2k}{\Delta }+\frac{k(k-1)}{2\Delta ^{2}}\int _{0}^{\Delta }K(x)^{2}dx\bigg) C_{t} {\overline{c}}^{k}\|{y}\|^{k}_{\alpha }=:c_{t} \|{y}\|^{k}_{\alpha }$$

for all \(t\in [0,T]\). Since \(\operatorname{dom}(\mathcal{A})\subseteq {\mathbb{R}}+C^{1}_{0}({ \mathbb{R}}_{+})\), the claim follows by noting that

$$ \langle {a}_{t},\nabla {y}^{\otimes k}\rangle _{\alpha }\leq \bigg(c_{t}+ \|{a}_{t}\|_{*k}\frac{k(k-1)}{2}\|K\|_{\alpha }^{2}\bigg)\|{y}\|_{\alpha }^{k}. $$

Claim 3: Conditions (ii) and (iii) of Theorem 3.4hold. We again apply Lemma 3.17. The moment condition is satisfied by assumption, and (3.8) holds because we have \(\sup _{t\in [0,T]}c_{t}<\infty \) with \(c_{t}\) given just above. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuchiero, C., Svaluto-Ferro, S. Infinite-dimensional polynomial processes. Finance Stoch 25, 383–426 (2021). https://doi.org/10.1007/s00780-021-00450-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-021-00450-x

Keywords

Mathematics Subject Classification (2020)

JEL Classification

Navigation