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Abstract A brief account on the development of proba-

bility theory and statistics is given. These subjects may

help the chemist to interpret the information content of his

experimental data. Their source and validity, however, is

often unclear. A series of papers, of which this is the first,

intends to present a clearer view by illustrating the origin of

the data-analysis tools. The major figures in this field are

mentioned, their achievements presented and the mutual

links outlined. The intention is the provision of a common

basis for the discussion of statistical aspects relevant to

metrology in chemistry. The chemist should see probability

theory and statistics as tools to assist in the daily practice of

data interpretation to arrive at an objective conclusion.

Keywords Probability theory � Statistics � Determinism �
Pearson � Neyman � Fisher

Introduction

‘‘I often say that when you can measure what you are

speaking about and express it in numbers, you know

something about it. And when you cannot measure it,

when you cannot express it in numbers, your knowledge

is meager and of unsatisfactory kind. It may be the

beginning of knowledge, but you have scarcely, in your

thought, advanced to the stage of science, whatever the

matter be’’ [1]. This famous statement of the physicist

Lord Kelvin certainly ignores some achievements of

biology and geology but illustrates strikingly the focus on

numbers and mathematical formulations in the sciences.

These imply precision, clarity, and unambiguity. Galilei’s

statement ‘‘if I were again beginning my studies, I would

follow the advice of Plato and start with mathematics’’

combines two major names in history of human intellect

in their appreciation of mathematics. Mathematics imply

purity, symmetry, harmony, and truth. These elements

describe what human lives lack. Human life is unstable

and, for sure, unpredictable. Despite expressing itself in

the language of mathematics with numbers and formulas,

statistics does not have a reputation similar to that of, e.g.,

geometry and arithmetic, or physics. ‘‘Statistics—the

curse of the analytical classes’’ is the title of an article on

the use and abuse of statistics in papers devoted to ana-

lytical chemistry [2]. Science (from the Latin ‘‘scire’’: to

know) is devoted to knowledge. Statistics is devoted to

doubt and uncertainty. Hence the subjects seem to have

conflicting (if not mutually exclusive) objectives. There

are numerous jokes (and less joking quotes) about sta-

tistics and statisticians. Isn’t it foolish to study uncertainty

and doubt when all the scientific world craves for cer-

tainty? Knowledge and uncertainty are opposite faces of

the same medal. One cannot go without the other.

Objectivity in proposing a scientific hypothesis also

requires a statement on the relevant aspects the hypothesis

cannot cover.

‘‘It is the primary task of statistics intended for scientific

use to convince oneself and others that the data have been

interpreted fairly’’ [3]. No learned person would reject

statistics as a useless or even stupid subject. Nevertheless,

when his arguments are commented on with reference to

statistics, the predominant reaction is depreciation. Or
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helplessness when advice on certain aspects of a data set is

given in terms of statistics. The reasons for these reactions

lie, in part, in the lack of formal education of most chemists

in statistics. In many cases statistical knowledge reduces to

mean value and standard deviation. Few are able to

explain, e.g., the meaning of degrees of freedom. The

meaning of the correlation coefficient in linear regression

[4–7] is another practical example of the role of statistical

properties in chemistry. Despite its rather poor perfor-

mance, the correlation coefficient is regularly found in

chemical communications for the purpose of underscoring

the quality of the data presented. The other situation is the

frustration in the eyes of a chemist seeking advice on his/

her data interpretation. Modern statistical techniques, e.g.

computer-intensive statistics, non-parametric statistics, and

classification techniques including factor analysis, are

widely unknown. It is not the primary objective of this

paper, the first in a series, to remedy the situation. How-

ever, metrologists have the task of communicating the

magnitude of doubt associated with a set of measurement

values. And doubt is one subject where statistics can make

a helpful contribution—if some basic understanding of the

history and methods of this important field of data analysis

are available. No science can escape the stamp of time

which coins its progress and its language. Therefore this

paper deals mainly with history. To focus the vast subject,

the development of statistics through the centuries will be

described on the basis of eminent contributions. The pre-

sentation is necessarily subjective.

A highly abbreviated history on probability

and statistics

Arguably, statistics does not have its basis in pondering

doubt and probability, but in data collection. The words

‘‘statistics’’ and ‘‘state’’ do have the same linguistic roots.

The oldest scriptures are telling not about gods but about

goods. The administrators of the first complex human

social structures had to document tax laws and their

implementation by citizens. Thus the libraries of cuneiform

writings in Khorsabhad and Ninive (established in Meso-

potamia about 1000–500 BC) did not predominantly

forward artistic literature like the Gilgamesh Epic but

heaps of clay panels holding the number of crop bushels

delivered to the ruler’s stores and the tributes received from

conquered neighbors. The initially pictorial symbols used

to denote these quantities eventually developed into script.

In a world where life was short and instability prevailed,

human concepts about the surrounding world were handed

down orally as myths. Homer’s Iliad and Odyssey are

prominent examples from the Achaian period of Greek

history (eighth century BC). A major achievement of

pre-Socratic philosophers in Greece (fifth century BC) was

to separate rational reasoning from myth. Prior to this, the

gods and their deeds were as real as are electrons and

molecules in our times. Logical reflection about this world

(as perceived by the five senses) provided evidence that

some events can be predicted while in other cases the event

cannot be known beforehand. In order to know, one must

try. In Latin, to try is ‘‘probare’’ and from this the word

‘‘probabilitas’’ is derived. The earliest documentation of

this word comes from Cicero [8] and connects what usually

happens with what is ordinarily believed [9]. From the

subjective interpretation of probability to a mathematically

founded probability theory was a long journey, and one

which had many sideways dead-ends. Thus, it is easier to

say where mathematical probabilities did not come from

than the opposite [10]. Where chance rules, determinism

was sought—and found in the seemingly eternal stability of

the stars. Here was predictability, stability, and harmony.

At least, if the outcome of an event is uncertainty, one

wants to know what the likely outcomes might be or what

could expected. In fact, for lasting years during early

modern times chance was discussed usually in connection

with expectation E:

pV ¼ E ð1Þ

where p is the probability of the event, V its outcome value,

and E the expectation (note: this is a historic definition of

expectation). If the probability p of obtaining an outcome

of V = 100 € is 0.1, then the expectation E is 10 €. In

relationship expressed by Eq. (1) probability has changed

from a term expressing personal belief into a

(dimensionless) quantity. It may, therefore, not be

surprising that the first text offering a mathematical

formulation for probability was in terms of what players

in a game should get. Huygens’ ‘‘De ratiociniis in ludo

aleae’’ [11] was published briefly after Blaise Pascal and

Pierre de Fermat exchanged letters over a question

nowadays known as the ‘‘problem of points’’. The

question was posed by A. Gombaud Chevalier de Méré:

two players P1 and P2 agree to play a series of fair games

until one of them has won a specified number N of games.

The play is suddenly interrupted. P1 has won N1 games and

P2 N2 games. How should the stakes be divided? A series

of publications on probabilities was initiated, from

Graunt’s ‘‘Observations on the Bills of Mortality’’ [12] to

Bernoulli’s ‘‘Ars Conjectandi’’ [13]. Graunt’s work on

mortality tables, together with Halley’s similar work using

data of the City of Breslau, reminds us that probability was

seen as a subject of science but not primarily as a tool for

science. The ‘‘Ars Conjectandi’’ was published

posthumously in 1713 and contains, in addition to an

annotated version of Huygens’ treatise, a proof of

Newton’s binomial theorem,
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an application of Eq. (2) to games with dice and an outline

of possible uses in civilian, moral, and economic matters

(developing the (weak) law of large numbers). Experi-

mental science was just at its beginning. The first natural

law (on acceleration) was formulated by Galilei in

approximately 1610. The great period of systematic

experimentation was just to start. Nevertheless, Galilei

emphasized in the ‘‘Discorsi’’ [14] that measurement

results cannot be arbitrarily exact

From the data collected during the eighteenth century on

such diverse subjects as birth, death, crime, and the

movement of stars it became evident that chance follows

rules. De Moivre even mentioned the error law Eq. (3)

N ¼ 1

r
ffiffiffiffiffiffi
2p
p expð� ðx� lÞ2

2r2
Þ ð3Þ

in 1733 even though its basis remained enigmatic. Bayes’

posthumously published treatise ‘‘An essay towards

solving a problem in the doctrine of chances’’ [15] laid

the foundations of what is known today as conditional

probabilities. In its simple form Bayes’ theorem is given by

Eq. (4)

PðAjBÞ ¼ PðAÞ PðBjAÞ
PðAÞ PðBjAÞ þ PðA0ÞPðBjA0Þ : ð4Þ

where events A and B have probabilities of P(A) and P(B),

respectively. A0 is the complementary event of A. The

symbol P(A|B) denotes a conditional probability, that is a

probability that event A occurs provided event B occurred.

The importance of the theorem can be appreciated from

both the terms P(A|B) and P(B|A). If the conditional

probability P(B|A) is known but P(A|B) is required, Eq. (4)

provides a way to obtain it. Bayes’ theorem, despite its

importance, often remains obscure to people for several

reasons. First the concept of ‘‘conditional probability’’ is

unknown to most chemists. Further, it is clear that in case

of independent (unconditional) events the probability of

observing the two events A with probability P(A) and B

with probability P(B) is P(A)P(B) but ‘‘conditional prob-

ability’’ is less clear. Therefore, a brief example may

illustrate its importance.

Consider an immunoassay. The immunoassay will be

positive in presence of a doping substance in 99% of cases.

Only in 1% of the cases where no drug is present the

immunoassay will be positive (so-called false-positive

result). The percentage of samples to the laboratory actu-

ally contaminated with the drug is, say, 1%. The question

of interest is: if the immunoassay indicates contamination

with doping drug, what will be the probability that the

sample is actually contaminated? This is a simple example

because only two possibilities exist. The probability P(A)

that a sample holds the doping drug is 0.01. The probability

that the immunoassay is positive if the sample is contam-

inated is 0.99. The probability P(A0) that the sample is not

contaminated is (1 - P(A)) = 0.99. The probability

P(B|A0) that the immunoassay is positive despite the fact

the sample is clean is 0.01. Hence we have

PðAjBÞ ¼ 0:01 � 0:99 = ðð0:01 � 0:99Þ
þ ð0:99 � 0:01ÞÞ
¼ 0:5: ð5Þ

The result can be presented in another way. Of 10,000

samples, only 100 are contaminated (and 99 of these are

detected by the immunoassay). 9,900 samples are not

contaminated. Of these 9,900 samples, 1% are falsely

detected positive. i.e. 99 samples. Hence, if the

immunoassay forwards a positive result, it is correct in

only 50% of the cases. This example may also illustrate the

importance of the presumption of innocence. It is also

important to recognize that Bayes’ theorem is valid

irrespective of whether frequencies or subjective

probabilities are used. Bayes’ theorem plays an important

role if the probabilities are of a subjective nature. If there

are assumptions about the distribution of the outcome A

(say a measurand in a measurement), these assumptions can

be expressed by a probability function f(A). This function is

the prior. If some measurements on A are performed, new

data D are available and the distribution L(A|D) needs to be

evaluated (the likelihood function). Using Eq. (4) with

P(A) = f(A) and P(B|A) = L(A|D), the posterior function

P(A|D) can be obtained. It represents the new information

about the distribution of the measured values given the new

data D. The numerator is usually chosen to ensure that the

area under the distribution P(A|D) is unity. Calculating with

distributions is usually not simple and, in its time, Bayes’

theorem was mostly ignored. Nowadays, with computers at

hand for numerical integration, Bayes’ theorem is receiving

increasing attention [16–18].

Probability theory around 1750 concentrated on mor-

tality, life insurance, and annuities. Statistics contributed to

the social field—including gambling. Leibnitz considered

probability theory as a mathematical version of legal rea-

soning. It is, at this stage, important to understand that

probability and chance only referred to limited human

knowledge. The world itself was deterministic. Given the

initial constraints were known, all future development was

thought to be predictable. On this basis, Laplace analyzed

the seemingly odd behavior of the planets Jupiter and

Saturn [19], thereby not only illustrating the stability of the

solar system but also introducing new mathematical con-

cepts (e.g. the term ‘‘potential’’ and the Laplace operator).

His treatise on probability [20] became a cornerstone of
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probability theory. Before Laplace, probability theory was

solely concerned with mathematical analysis of games of

chance. Laplace applied probabilistic ideas to many sci-

entific and practical problems. The theory of errors,

actuarial mathematics, and statistical mechanics are

examples of some of the important applications of proba-

bility theory developed in the nineteenth century.

For metrologists, the period between 1760 and 1810 is

of special significance. Laplace, like Lavoisier, was a

member of the Metrological Commission founded in 1791

to establish unified standards for weight and measures. The

foundations of what today has developed into the SI were

laid in these times. From these times also came the rec-

ognition that chance follows laws. For one, the mortality

tables proved the constancy of female and male birth rates

and Gauss [21] gave an elegant proof of Eq. (3), nowadays

known as the Gaussian distribution. In between, the

expeditions sent out to measure the Paris meridian [22]

accomplished their goal [23] and, eventually, established

internationally recognized references like the meter, the

kilogram, and the second. Even though probability theory

and science went separately, the laws of chance and

probability were developed in parallel to the extremely

deterministic natural laws of Galilei and Newton. In the

nineteenth century scientists were searching for laws,

causality, and prediction. Probability theory, however, did

not provide a sufficient basis for any conclusion about

individual events. While one faction of the 19th centuries

probabilists focused on the mean values of their observa-

tions (e.g. crime, marriages, suicides, birth, death) thereby

discovering surprising stability, the other faction studied

variation revealing fluctuation incompatible with pure

chance. Still, measurement data did not play a role in

probability theory. The leaders in probability theory in the

nineteenth century concentrated on eugenics [24]. Eugenics

deals with interference to improve the human gene pool.

Galton invented the term ‘‘eugenics’’ and wrote the first

book on the subject [25]. Galton also invented linear

regression and pioneered the use of the Gaussian distri-

bution, Eq. (3), to interpret histograms of collected data.

Galton’s successor was Karl Pearson. Pearson is a co-

founder of psychology and biometry. His contributions on

statistics should be known to almost all scientists—he is

the originator of the correlation coefficient [26], the v2

goodness-of-fit test [27], and the method of moments [28].

The institution created by Galton at University College,

London, became an Institute of Applied Statistics in 1911.

The institute attracted further excellence, e.g. Pearson’s son

Egon, Jerzy Neyman, John Wishart, and Ronald Fisher.

The often recipe-like application of numerical operations to

derive certain figures of merit (mean value, standard

deviation, confidence limits, significance tests) is based

on the work of statisticians from Galton to Fisher. A

considerable part of Fisher’s scientific work is accessible at

the University of Adelaide Digital Library [29].

Pearson, Neyman and Fisher

Egon Pearson, Jerzy Neyman, and Ronald Fisher shaped

what is known to many chemists as ‘‘the statistics’’. The

terms ‘‘statistical model’’, ‘‘hypothesis testing’’ [30, 31],

‘‘Null hypothesis’’, ‘‘Type I error’’, ‘‘Type II error’’, and

‘‘significance test’’ are some of those introduced by the

London group. Unfortunately, despite (or because of) their

close work on the same subject, the personal relationship

among them was rather poor. A consequence is that a real

synopsis of the different views (Neyman/Pearson, Fisher,

Bayes) and their specific developments is not available.

While statistical methods gradually entered many scientific

fields, the in part controversial views of the originators of

the methods were ignored or, even worse, mishmashed. It

is not uncommon that some of the present readers are

reading the names of Pearson, Neyman, and perhaps even

Fisher here for the first time. Original literature, where

important concepts are developed and not seldom contro-

versially discussed, is rarely referred to. Instead the various

approaches are often mixed and the underlying concepts

almost ignored. The Neyman/Pearson school compares

hypotheses [32] while the Fisherian school uses the sig-

nificance test [33]. The implications are subtle and often

confusing. Fisher significance tests are widely required in

medical and other literature and are often applied

mechanically [34]. The significance test seems to be

favored over hypothesis testing, because only one

hypothesis (the Null hypothesis stating that the observed

effect is due to random variation) is tested against the data.

Here, the only possible error is a Type I error: The effect is

accepted as significant despite being random. This risk can

be reduced by choosing a small test criterion p. The

hypothesis test compares the Null hypothesis against its

alternative. Two types of error are possible—a Type I error

that the effect is accepted despite being random must be

balanced against the Type II error to reject an effect as

random despite being significant. R. Fisher moved to Ro-

thamstead Agricultural Station in 1919. Most of the

popularization of his statistical methods was done during

this time, especially via his textbooks [35–37].

In Rothamstead a large number of data awaited analysis.

Typical studies asked for the effect of some substance on

biomass production. Which fertilizer is better? What crop-

rotation system works better for what kind of soil? Such

questions were highly relevant economically. But how to

address them? Fisher’s answer was randomization, analysis

of variance (ANOVA), maximum likelihood, and the the-

oretical concepts of efficiency and sufficiency. Here is no
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space to fully appreciate the contribution of Fisher who, in

addition to his statistical work, continued to contribute to

eugenics and genetics. It is, however, almost impossible to

overestimate Fisher’s impact: ‘‘Fisher was a genius who

almost single-handedly created the foundations for modern

statistical science ….’’ [38].

Kolmogorov and the theoretical foundation

of probability

This sweep through the concepts of probability would be

incomplete without a reference to A.N. Kolmogorov. The

name Kolmogorov is, today, mainly associated with the

Kolmogorov–Smirnov test [39]. However, Kolmogorov

provided an axiomatic basis of the properties the concept of

probability should have [40]. Probability is a very old

concept but, as will be summarized below, a concept which

has multiple meanings. To give an example, classical

probability calculus introduced by, e.g., Bernoulli [13] and

de Moivre [41], gives the probability of an event as a ratio

of equally likely cases that favor it to the total number of

equally likely cases possible under the circumstances. The

‘‘equally likely case’’ was important. In play, ‘‘equally

likely’’ also means fair. Introducing probability in terms of

urn models (as usually practiced in school education) is

also implicitly based on the assumptions that any draw

from the urn is equally likely. It should be noted in passing

that this classical approach led to some paradoxes, e.g. the

Bertrand paradoxes [42]. Kolmogorov based probability on

set theory. An event is a set from a measurable space (note:

‘‘measurable set’’ is a general mathematical concept

implying that certain properties of the set can be quanti-

fied). Measure theory assigns to each set of a field of sets a

number between 0 and 1, its probability. This setting seems

simple but develops into a complex mathematical structure.

Striking analogies exist, e.g., between expectation and the

integral over the set or orthogonality of functions and

independence of random variables. Two principles were

offered to connect probabilities P(X) with reality. First, if

an experiment E is repeated a large number of times, the

relative frequency of event X will differ very slightly from

P(X). Second, if P(X) is very small, one can be practically

certain that when E is carried out only once, the event X

will not occur at all [43]. Thus, the primitive notion of the

probability was related to first principles.

Frequentists, Bayesians and the different meanings

of probability

All the previous discussions would be of limited impor-

tance to metrologists if the situation concerning the

fundamentals of science had not changed radically at the

beginning of the twentieth century. One reason for that is

quantum theory. Kolmogorov, like Fisher, was a frequen-

tist. To a frequentist the probability of an event is equal to

its relative occurrence in a larger number of repetitions of

an experiment. Thus, the repeatability of an experiment is

an essential element in the application of statistical tools.

As co-worker at the agricultural station at Rothamstead and

in his eugenic studies, Fisher had access to a large number

of data. It was clear, especially after the contributions of

Gosset [44], that the law of large numbers required a larger

number of repetitions of an experiment if the power of a

significance test was not to be compromised. In the social

sciences, also, the sample size was usually larger than

about 30. Fisher insisted on the use of frequencies because

these were based on actually observed/measured data.

These data formed the closest connection with reality

available. And reality was, still, deterministic. Thus,

compared with the subjective probabilities of Laplace, the

frequentist approach appeared to be a major progress in the

direction of objectivity. During the 19th century, Laplace

was the authority on the use of probability: ‘‘It is remark-

able that a science which began with the consideration of

games of chance has become the most important object of

human knowledge’’ [20]. He suggested a subjective inter-

pretation of probability along Bayes’ theorem. His famous

quote: ‘‘Probability theory is nothing but common sense

reduced to calculation’’ is an account to this position. It is

also worth noting that the major statistical tool in the 19th

century, the least-squares method, was not a subject of

dispute, because it can be derived by sampling theory

approaches, on the basis of maximum likelihood, and by

Bayesian inference with the same final result. The dispute

between subjectivists and frequentists is, nevertheless, still

vivid [45].

Quantum mechanics gradually brought probability the-

ory into physics and chemistry [46]. Determinism faded

and with it, the close relationship between reality and

measurement data. Heisenberg’s Uncertainty Principle

introduced chance to the so-called exact sciences and the

Copenhagen interpretation of quantum chemistry made

clear that experimenter and experiment are never inde-

pendent of each other [47]. Probability theory is still

expanding, e.g. in biology, genetics, politics, economics,

physiology, and psychology. So, it may be expected that at

some future date a unified interpretation of probability will

become available. However, there are at least three dif-

ferent interpretations of probability. To Laplace and his

contemporaries probability was a state of mind. Another

view defines probability as an essentially unanalyzable but

intuitively understandable logical relationship between

propositions. There must be a logical intuition of the

probable relationships between evidence and conclusions,
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the latter becomes a subject of ‘‘rational belief’’ [48]. The

third view rests on the concept of frequency which

emerged during the 19th century.

Variation, uncertainty, and metrology

It seems possible that the three different views turn out as

different facets of the same gem. Probability is a rational

concept to deal with doubt. If the doubt can be quantified

on a rational basis, better (whatever the criterion for

‘‘better’’ may be) decisions can be made. If the likely

outcomes of an experiment are pondered, the information

available on the experiment and the conditions under which

the experiment is performed play a role in assessing, e.g.,

the risks of the experiment. The fact that circumstances,

even at the highest level of control, cannot be predictable to

an arbitrary degree, gives weight to the aspects of variation

and associated uncertainty. What is the likely outcome if

the experiment is repeated? If it is repeated under different

circumstances? What can be concluded if many indepen-

dent outcomes from an experiment are available, i.e. from

round-robin tests? It is common to search for answers to

these questions with statistics. The Gaussian distribution

(Eq. 3) is the almost undisputed (and unchecked) model for

data variance [49–51]. It is, however, also evident that the

data interpreted by metrologists, the data forwarded by

metrologists, and the quality assurance of the data for-

warded by metrologists, are not Gaussian or, at least,

should not expected a priori to be a sample from a Gaussian

distribution. Metrologists care about the quality of data

which are measured. The uncritical interpretation of mea-

surement values in terms of Gaussian distributions (which

is already implied by the evaluation of a measurement

uncertainty, uc, which is symmetric with the reported

measurement value, and the use of k = 2 as expansion

factor) does have its own risks. It is important to under-

stand the rationale in the use of the Gaussian distribution

and its limitations in order not to compromise the metro-

logical intentions, e.g. to warrant traceability. There are

alternatives. Simulation, e.g. by Monte Carlo methods, is

one possibility, rarely encountered in metrological

approaches in chemical measurement. Another possibility

is the use of robust estimators [52] or non-parametric

statistics.

Conclusions

Reporting measurement results without a statement about

their likely variability is an anachronism. For some time

the complexity of chemical measurements could be used as

an excuse. Nowadays, the computer is a valuable tool in

generating uncertainty estimates. How to do that (the

procedures) must be a field of active research when taking

a metrological approach to chemical measurement. In

practice the willingness to request and to provide a state-

ment of measurement uncertainty by the stakeholders in the

field is currently rather low. This reluctance may be

explained by inertia [53]. From observation during the past

15 years of performing research on statistical/metrological

properties of complex chemical measurements [54] it must

be concluded that the fear of having to deal with details of

statistics is at least an additional obstacle.

This very brief summary intends to provide a ‘‘golden

thread’’ through the development of probability theory and

statistics. The reader is encouraged to use these comments

and the information provided by the references as a starting

point for an independent journey through statistics. Sta-

tistics is an active field of research. The existence of a

mathematical basis for the interpretation of probability (a

basis for theoretical statistics) does not preclude the exis-

tence of three different interpretations of probability. It

should be emphasized that the concept of probability, in its

beginnings, was purely heuristic. The latin word ‘‘probare’’

means ‘‘to try’’ and therefore carries an essentially empir-

ical notion. Thus it does not offer a consistent axiomatic

building free of contradictions. The tools predominantly

used by chemists are founded in the theory of errors

established during nineteenth century. To appreciate the

differences between the various schools, the reader may

study the controversy between the Fisherian and the

Pearson/Neyman approach to statistical inference as an

example. In general, study of the original papers is highly

encouraged.

Further papers will deal with the Gaussian distribution

and its properties and with least-squares regression, cor-

relation, and robust statistics. With a basic understanding

of the rationale behind expansion factors and standard

deviations, the discussion of practical aspects, e.g. the

combination of measurement values obtained from profi-

ciency tests, will hopefully become more efficient.
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22. Guedj D (2000) Le mètre du monde. Editions de Seuil, Paris/F

23. Delambre JBJ (1808–1810) Base du système metrique d́cimal, ou
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