Skip to main content
Log in

Genexpressionssignaturen beim Mammakarzinom

Gene expression signatures in breast cancer

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Genexpressionssignaturen zeigen die molekulare Heterogenität des Mammakarzinoms. Die ersten Genexpressionssignaturen wurden mit DNA-Microarrays an frisch gefrorenem Tumorgewebe durchgeführt und führten zur Identifikation von sog. intrinsischen Subtypen wie Luminal A, Luminal B, „ERBB2“-like (HER2) und „basal-like“. Alternativ unterteilen andere Genexpressionssignaturen die Patientinnen in geringes und hohes Risiko für eine spätere Metastasierung. Für den praktischen Einsatz ist es wichtig, dass Genexpressionssignaturen auch an formalinfixiertem, in Paraffin eingebettetem Tumorgewebe durchgeführt werden können.

Ziel

Der Beitrag ist ein evidenzbasierter Review mit der Fragestellung nach der prognostischen Bedeutung von Genexpressionssignaturen beim frühen Mammakarzinom.

Material und Methoden

Mittels systematischer Literaturrecherche in Pubmed und manueller Recherche wurden relevante Publikationen zwischen 2000 und 2013 untersucht. Suchbegriffe waren „gene-expression“, „intrinsic subtypes“, „Endopredict“, „Mammaprint“, „Oncotype DX“, „PAM50“, „level of evidence“, „immune system“ in Kombination mit „prognosis“ und „breast cancer“.

Ergebnisse

Um eine falsche Risikoklassifikation und damit eine mögliche Unter- oder Übertherapie der Patientinnen zu vermeiden, müssen sorgfältige klinische und analytische Validierungen sowie ein hoher Level of Evidence (LoE) gefordert werden. Die kommerziell erhältlichen Genexpressionssignaturen der ersten Generation Endopredict® (LoE I), Mammaprint® (LoE II), Oncotype DX® (LoE I) und PAM50 (LoE II) werden von der Arbeitsgemeinschaft Gynäkologische Onkologie (AGO) mit +/− bewertet, d. h. sie können in individuellen Fällen durchgeführt werden; derzeit kann allerdings keine allgemeine Empfehlung gegeben werden. Diese Signaturen können eingesetzt werden, um v. a. bei östrogenrezeptorpositiven (ER-positiven) Patientinnen eine genauere Risikoabschätzung zu erreichen. Genexpressionssignaturen der zweiten Generation berücksichtigen demgegenüber Immunzelltranskripte und haben besonders bei ER-negativen und HER2-positiven sowie schnell proliferierenden Mammakarzinomen prognostische Bedeutung.

Schlussfolgerung

Genexpressionssignaturen mit einem hohen LoE können zu einer verbesserten prognostischen Abschätzung beim frühen Mammakarzinom beitragen.

Abstract

Context

Gene expression analysis has depicted the striking molecular heterogeneity in human breast cancer. DNA microarray analyses of fresh-frozen tissue identified several so-called intrinsic subtypes, such as luminal A, luminal B, ERBB2-like (HER2) and basal-like. Alternatively, gene expression signatures were used to distinguish patients with low risk or high risk for distant metastasis. To improve feasibility it is important that these gene expression analyses can be performed utilizing formalin-fixed paraffin-embedded tissue.

Objective

The aim of this evidence-based review was the prognostic significance of gene expression signatures in early breast cancer.

Material and methods

A systematic search in PubMed and a manual search were carried out to review relevant articles published between 2000 and 2013. Key words used were “gene-expression”, “intrinsic subtypes”, “Endopredict”, “Mammaprint”, “Oncotype DX”, “PAM50”, “level of evidence” and “immune system” in combination with “prognosis” and “breast cancer”.

Results

To avoid an inaccurate risk classification it is mandatory that meticulous clinical and analytical validation of these tests is performed and that a high level of evidence (LoE) is achieved. The commercially available gene expression signatures of the first generation, such as Endopredict® (LoE I), Mammaprint® (LoE II), Oncotype DX® (LoE I) and PAM50 (LoE II) are currently rated as +/− by the Working Group on Gynecological Oncology (AGO) suggesting that these tests may be performed only in individual cases and that a general recommendation cannot be given. These signatures can be used for risk classification especially in estrogen receptor (ER) positive patients. In contrast, signatures of the second generation use immune cell-related transcripts to assess prognosis better especially in ER negative or HER2 positive rapidly proliferating breast cancer.

Conclusion

Gene expression signatures with a high LoE can result in an improved assessment of prognosis in early breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  2. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  PubMed  CAS  Google Scholar 

  3. Peto R, Davies C, Godwin J et al (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379(9814):432–444

    Article  PubMed  CAS  Google Scholar 

  4. Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101(21):1446–1452

    Article  PubMed  Google Scholar 

  5. Febbo PG, Ladanyi M, Aldape KD et al (2011) NCCN Task force report: evaluating the clinical utility of tumor markers in oncology. J Natl Compr Canc Netw 9(Suppl 5):1–32

    Google Scholar 

  6. Parker JS, Mullins M, Cheang MCU et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  Google Scholar 

  7. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423

    Article  PubMed  CAS  Google Scholar 

  8. Mackay A, Weigelt B, Grigoriadis A et al (2011) Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst 103(8):662–673

    Article  PubMed  CAS  Google Scholar 

  9. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165

    Article  PubMed  CAS  Google Scholar 

  10. Haibe-Kains B, Desmedt C, Loi S et al (2012) A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst 104(4):311–325

    Article  PubMed  CAS  Google Scholar 

  11. Prat A, Parker JS, Fan C, Perou CM (2012) PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer. Breast Cancer Res Treat 135(1):301–306

    Article  PubMed  CAS  Google Scholar 

  12. Cheang MCU, Voduc KD, Tu D et al (2012) Responsiveness of intrinsic subtypes to adjuvant anthracycline substitution in the NCIC.CTG MA.5 randomized trial. Clin Cancer Res 18(8):2402–2412

    Article  PubMed  CAS  Google Scholar 

  13. Chia SK, Bramwell VH, Tu D et al (2012) A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res 18(16):4465–4472

    Article  PubMed  CAS  Google Scholar 

  14. Martín M, Prat A, Rodríguez-Lescure A et al (2013) PAM50 proliferation score as a predictor of weekly paclitaxel benefit in breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-013-2416-2

  15. Veer LJ van’t, Dai H, Vijver MJ van de et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  16. Vijver MJ van de, He YD, Veer LJ van’t et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  17. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  PubMed  CAS  Google Scholar 

  18. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734

    Article  PubMed  CAS  Google Scholar 

  19. Cronin M, Sangli C, Liu M et al (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53(6):1084–1091

    Article  PubMed  CAS  Google Scholar 

  20. Albain KS, Barlow WE, Shak S et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1):55–65

    Article  PubMed  CAS  Google Scholar 

  21. Denkert C, Kronenwett R, Schlake W et al (2012) Decentral gene expression analysis for ER+/Her2 − breast cancer: results of a proficiency testing program for the EndoPredict assay. Virchows Arch 460(3):251–259

    Article  PubMed  CAS  Google Scholar 

  22. Kronenwett R, Bohmann K, Prinzler J et al (2012) Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test. BMC Cancer 12(1):456

    Article  PubMed  CAS  Google Scholar 

  23. Filipits M, Rudas M, Jakesz R et al (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17(18):6012–6020

    Article  PubMed  CAS  Google Scholar 

  24. Dubsky P, Filipits M, Jakesz R et al (2012) EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. doi:10.1093/annonc/mds334

  25. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378(9805):1812–1823

    Article  PubMed  CAS  Google Scholar 

  26. Rody A, Holtrich U, Pusztai L et al (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 11(2):R15

    Article  PubMed  Google Scholar 

  27. Schmidt M, Böhm D, Törne C von et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt M, Hellwig B, Hammad SM et al (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin κ C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18(9):2695–2703

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt M, Hengstler JG, Törne C von et al (2009) Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69(7):2695–2698. doi:10.1158/0008-5472.CAN-08-4013

    Article  PubMed  CAS  Google Scholar 

  30. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: PD Dr.  Marcus Schmidt ist als Referent für die Firma Sividon tätig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M. Genexpressionssignaturen beim Mammakarzinom. Onkologe 19, 465–470 (2013). https://doi.org/10.1007/s00761-013-2447-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-013-2447-7

Schlüsselwörter

Keywords

Navigation