Skip to main content
Log in

Quantum mechanical origin of the conformational preferences of 4-thiaproline and its S-oxides

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The saturated ring and secondary amine of proline spawn equilibria between pyrrolidine ring puckers as well as peptide bond isomers. These conformational equilibria can be modulated by alterations to the chemical architecture of proline. For example, Cγ in the pyrrolidine ring can be replaced with sulfur, which can be oxidized either stereoselectively to yield diastereomeric S-oxides or completely to yield a sulfone. Here, the thiazolidine ring and peptide bond conformations of 4-thiaproline and its S-oxides were analyzed in an Ac–Xaa–OMe system using NMR spectroscopy, X-ray crystallography, and hybrid density functional theory. The results indicate that the ring pucker of the S-oxides is governed by the gauche effect, and the prolyl peptide bond conformation is determined by the strength of the n → π* interaction between the amide oxygen and the ester carbonyl group. These findings, which are consistent with those of isologous 4-hydroxyprolines and 4-fluoroprolines, substantiate the importance of electron delocalization in amino acid conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  • Aitken RA, Mesher STE, Ross FC, Ryan BM (1997) Effect of added benzoic acid on the phase-transfer catalysed permanganate oxidation of organosulfur compounds. Synthesis 7:787–791

    Article  Google Scholar 

  • Benzi C, Improta R, Scalmani G, Barone V (2002) Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution. J Comput Chem 23:341–350

    Article  PubMed  CAS  Google Scholar 

  • Choudhary A, Raines RT (2009) A donor–acceptor perspective on carbonyl–carbonyl interactions in proteins. In: Lebl M (ed) Breaking away: the proceedings of the twenty-first American peptide symposium. Prompt Scientific Publishing, San Diego, CA, pp 347–349

    Google Scholar 

  • Choudhary A, Gandla D, Krow GR, Raines RT (2009) Nature of amide carbonyl–carbonyl interactions in proteins. J Am Chem Soc 131:7244–7246

    Article  PubMed  CAS  Google Scholar 

  • DeRider ML, Wilkens SJ, Waddell MJ, Bretscher LE, Weinhold F, Raines RT, Markley JL (2002) Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J Am Chem Soc 124:2497–2505

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt ES, Panasik N Jr, Raines RT (1996) Inductive effects on the energetics of prolyl peptide bond isomerization: implications for collagen folding and stability. J Am Chem Soc 118:12261–12266

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (1906) Untersuchungen über Aminosaüren, Polypeptide und Proteine. Ber Deutsch Chem Ges 39:530–610

    Article  Google Scholar 

  • Fischer FR, Wood PA, Allen FH, Diederich F (2008) Orthogonal dipolar interactions between amide carbonyl groups. Proc Natl Acad Sci USA 105:17290–17294

    Article  PubMed  CAS  Google Scholar 

  • Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute. University of Wisconsin-Madison, Madison, WI

    Google Scholar 

  • Goodman M, Niu GC-C, Su K-c (1970a) Conformational aspects of polypeptide structure. XXXII. Helical poly[(S)-thiazolidine-4-carboxylic acid]. Theoretical results. J Am Chem Soc 92:5219–5220

  • Goodman M, Su K-c, Niu GC-C (1970b) Conformational aspects of polypeptide structure. XXXII. Helical poly[(S)-thiazolidine-4-carboxylic acid]. Experimental results. J Am Chem Soc 92:5220–5222

    Article  PubMed  CAS  Google Scholar 

  • Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45:106–124

    Google Scholar 

  • Gorres KL, Edupuganti R, Krow GR, Raines RT (2008) Conformational preferences of substrates for human prolyl 4-hydroxylase. Biochemistry 47:9447–9855

    Article  PubMed  CAS  Google Scholar 

  • Higashijima T, Tasumi M, Miyazawa T (1977) 1H Nuclear magnetic resonance studies of N-acetyl-l-proline N-methylamide. Molecular conformations, hydrogen bondings, and thermodynamic quantities in various solvents. Biopolymers 16:1259–1270

    Article  PubMed  CAS  Google Scholar 

  • Hinderaker MP, Raines RT (2003) An electronic effect on protein structure. Protein Sci 12:1188–1194

    Article  PubMed  CAS  Google Scholar 

  • Holmgren SK, Taylor KM, Bretscher LE, Raines RT (1998) Code for collagen’s stability deciphered. Nature 392:666–667

    Article  PubMed  CAS  Google Scholar 

  • Improta R, Benzi C, Barone V (2001) Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution. J Am Chem Soc 123:12568–12577

    Article  PubMed  CAS  Google Scholar 

  • Kern D, Schutkowski M, Drakenberg T (1997) Rotational barriers of cis/trans isomerization of proline analogues and their catalysis by cyclophilin. J Am Chem Soc 119:8403–8408

    Article  CAS  Google Scholar 

  • Lesarri A, Cocinero EJ, López JC, Alonso JL (2005) Shape of 4S- and 4R-hydroxyproline in gas phase. J Am Chem Soc 127:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Liang G-B, Rito CJ, Gellman SH (1992) Variations in the turn-forming characteristics of N-acyl proline units. Biopolymers 32:293–301

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki T, Iitaka Y (1971) The crystal structure of acetyl-l-proline-N-methylamide. Acta Crystallogr B27:507–516

    Google Scholar 

  • Melis C, Bussi G, Lummis SCR, Molteni C (2009) Transcis switching mechanisms in proline analogues and their relevance for the gating of the 5-HT3 receptor. J Phys Chem B 113:12148–12153

    Article  PubMed  CAS  Google Scholar 

  • Milner-White JE, Bell LH, Maccallum PH (1992) Pyrrolidine ring puckering in cis and trans-proline residues in proteins and polypeptides. J Mol Biol 228:725–734

    Article  PubMed  CAS  Google Scholar 

  • Nachtergaele WA, Anteunis MJO (1980) Ring conformational aspects of cis- and trans-N-acetyl-4-carbomethoxy-1,3-thiazolidine-1-oxide. Bull Soc Chim Belg 89:749–758

    Article  CAS  Google Scholar 

  • Panasik N Jr, Eberhardt ES, Edison AS, Powell DR, Raines RT (1994) Inductive effects on the structure of proline residues. Int J Pept Protein Res 44:262–269

    Article  PubMed  CAS  Google Scholar 

  • Paulini R, Müller K, Diederich F (2005) Orthogonal multipolar interactions in structural chemistry and biology. Angew Chem Int Ed 44:1788–1805

    Article  CAS  Google Scholar 

  • Prabhakar YS, Solomon VR, Gupta MK, Katti SB (2006) QSAR studies on thiazolidines: a biologically priviliged scaffold. Top Heterocycl Chem 4:161–249

    Article  CAS  Google Scholar 

  • Shoulders MD (2009) Ph.D. thesis, University of Wisconsin-Madison

  • Shoulders MD, Kamer KJ, Raines RT (2009) Origin of the stability conferred upon collagen by fluorination. Bioorg Med Chem Lett 19:3859–3962

    Article  PubMed  CAS  Google Scholar 

  • Tshuchishashi G-i, Mitamura S, Inoue S, Ogura K (1973) Asymmetric synthesis using α,β-unsaturated sulfoxides. A highly selective Michael reaction. Tetrahedron Lett 323-326

  • Ulshöfer R, Podlech J (2009) Stereoelectronic effects in vinyl sulfoxides. J Am Chem Soc 131:16618–16619

    Article  PubMed  Google Scholar 

  • Weinhold F (1998) Natural bond orbital methods. In: PvR Schleyer, Allinger NL, Clark T, Gasteiger J, Kollman PA, Shaefer HF III et al (eds) Encyclopedia of computational chemistry, vol 3. John Wiley & Sons, Chichester, UK, pp 1792–1811

    Google Scholar 

  • Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Wendt M, Weinhold F (2001) NBOView 1.1. Theoretical Chemistry Institute. University of Wisconsin-Madison, Madison WI

    Google Scholar 

  • Wittelsberger A, Keller M, Scarpellino L, Patiny L, Orbea-Acha H, Mutter M (2000) Pseudoprolines:targeting a cis conformation in a mimetic of the gp120 V3 loop of HIV-1. Angew Chem Int Ed 39:1111–1115

    Article  CAS  Google Scholar 

  • Zhu W, Gincherman Y, Docherty P, Spilling CD, Becker DF (2002) Effects of proline analog binding on the spectroscopic and redox properties of PutA. Arch Biochem Biophys 408:131–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. N. Bradford, B. R. Caes, G. A. Ellis, and K. L. Gorres for contributive discussions. This work was supported by grant R01 AR044276 (NIH). K.H.P. was supported by a Mary Shine Peterson award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Raines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, A., Pua, K.H. & Raines, R.T. Quantum mechanical origin of the conformational preferences of 4-thiaproline and its S-oxides. Amino Acids 41, 181–186 (2011). https://doi.org/10.1007/s00726-010-0504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0504-8

Keywords

Navigation