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Abstract Phosphoinositides (PIs) are minor, but essential
phospholipid constituents of eukaryotic membranes, and
are involved in the regulation of various physiological
processes. Recent genetic and cell biological advances
indicate that PIs play important roles in the control of polar
tip growth in plant cells. In root hairs and pollen tubes, PIs
control directional membrane trafficking required for the
delivery of cell wall material and membrane area to the
growing tip. So far, the exact mechanisms by which PIs
control polarity and tip growth are unresolved. However,
data gained from the analysis of plant, fungal and animal
systems implicate PIs in the control of cytoskeletal
dynamics, ion channel activity as well as vesicle trafficking.
The present review aims at giving an overview of PI roles
in eukaryotic cells with a special focus on functions
pertaining to the control of cell polarity. Comparative
screening of plant and fungal genomes suggests diversifi-
cation of the PI system with increasing organismic
complexity. The evolutionary conservation of the PI system
among eukaryotic cells suggests a role for PIs in tip
growing cells in models where PIs so far have not been a
focus of attention, such as fungal hyphae.
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Abbreviations
ABP Actin-binding protein
DAG Diacylglycerol
GAP GTPase-activating protein
GDI GDP-dissociation inhibitor
GEF Guanine nucleotide exchange factor
PI Phosphoinositide
PIS PI-synthase
PME Pectin methyl esterase
PtdIns Phosphatidylinositol
PtdIns3P PtdIns-3-phosphate
PtdIns4P PtdIns-4-phosphate
PtdIns5P PtdIns-5-phosphate
PtdIns(3,4)P2 PtdIns-3,4-bisphosphate
PtdIns(3,5)P2 PtdIns-3,5-bisphosphate
PtdIns(4,5)P2 PtdIns-4,5-bisphosphate

Introduction

Cell polarity is a prerequisite for the establishment of
particular cell shapes, for directional cell movement, and
consequently for cellular differentiation during organ
development. Therefore, much effort has been invested
into understanding the physiological processes leading to
the establishment of an axis of cell polarity and the ensuing
asymmetric cell divisions that underlie the development of
complex multicellular organisms. A number of model
systems that allow the analysis of cell polarity on the level
of single cells have been established that represent different
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organismal kingdoms, including animal, fungal, and plant
cells. Extreme examples of polar cell growth include
neurites, fungal hyphae, moss protonemata, and root hairs
and pollen tubes of higher plants. Despite the distant
phylogenetic relationships between these organisms, it is
becoming increasingly apparent that the molecular mecha-
nisms for establishing and maintaining cell polarity have
been conserved in evolution and can be dated back prior to
the separation of the common ancestors of animal, fungal,
and plant cells. While each phylum has developed its
particular adaptations to specific cellular requirements, the
molecular building blocks have remained recognizable over
time. A wide variety of studies has identified numerous
proteins as key players required for cell polarity and
directional tip growth. However, proteins only constitute
part of the machinery for polar growth, and it is important
to recognize the roles of other players, such as those of
regulatory phospholipids, which are the focus of this
review. In recent years, the involvement of phosphoinosi-
tides (PIs) in the control of polar tip growth of pollen tubes
and root hairs has been studied in some depth, and the
information gained from the scrutiny of these plant models
may aid the understanding of polar tip growth in other
eukaryotic systems.

Regulatory phospholipids: the PI system

Phospholipids account for the majority of lipids constitut-
ing most prokaryotic and eukaryotic membranes, with the
exception of plant thylakoids. While some phospholipids,
such as phosphatidylethanolamine or phosphatidylcholine
are highly abundant and have primarily structural roles, others
such as PIs occur to a much smaller extent. Phosphatidylino-
sitol (PtdIns), the precursor of all PIs, is generated by the
condensation of cytidine-diphosphodiacylglycerol (CDP-

DAG) and D-myo-inositol catalyzed by PtdIns synthases
(PIS) (Takenawa and Egawa 1977; Fischl and Carman 1983;
Parries and Hokin-Neaverson 1984; Justin et al. 1995;
Jackson et al. 2000). The first gene encoding a PIS was
identified in yeast (Nikawa et al. 1987), and later the
Arabidopsis thaliana homolog, PIS1, was described (Collin
et al. 1999; Justin et al. 2002). A. thaliana also contains a
second isoenzyme, PIS2, with high similarity to PIS1 (Löfke
et al. 2008). Both PISs from A. thaliana are localized in
the ER (Löfke et al. 2008), with their catalytic centers
likely oriented to the cytosolic face of the ER membrane.
PIs, which derive from PtdIns by phosphorylation of the
inositol headgroup, exhibit pronounced asymmetry between
membrane leaflets with the vast majority present in the
cytosolic leaflet (Gascard et al. 1991; Vidugiriene and Menon
1993, 1994).

The inositol ring of PtdIns can be phosphorylated at the
D-3, D-4, and D-5 position by specific lipid kinases that, so
far, have only been found in eukaryotes (Anderson et al.
1999; Drobak et al. 1999). The various phosphorylations
can be carried out in consecutive steps, giving rise to a total
of six structurally related PIs (Fig. 1). For instance,
phosphatidylinositol-4-phosphate (PtdIns4P) can be formed
from PtdIns by PI 4-kinases, or phosphatidylinositol-4,5-
bisphosphate (PtdIns(4,5)P2) from PtdIns4P by PI4P 5-
kinases. A seventh PI, PtdIns(3,4,5)P3, has so far only been
reported in animal cells. Phosphoinositide kinases, such as
PI 4-kinases or PI4P 5-kinases, can each be represented by
different subfamilies of enzymes, that can have non-redundant
functionality. For instance, in the yeast Saccharomyces
cerevisiae three PI 4-kinases with non-redundant functions
exist (Table 1) which represent two distinct enzyme classes
(Shelton et al. 2003; Demmel et al. 2008). In A. thaliana,
four ubiquitously expressed homologs of the yeast enzymes
Stt4p (staurosporine and temperature sensitive 4) and Pik1p
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Fig. 1 Structures of phosphoi-
nositides found in plants and
fungi. PtdIns3P
phosphatidylinositol-3-
phosphate, PtdIns4P
phosphatidylinositol-4-
phosphate, PtdIns5P
phosphatidylinositol-5-
phosphate, PtdIns(3,5)P2

phosphatidylinositol-3,5-
bisphosphate, PtdIns(4,5)P2

phosphatidylinositol-4,5-
bisphosphate, PtdIns(3,4)P2

phosphatidylinositol-3,4-
bisphosphate
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Table 1 For protein IDs refer to http://www.yeastgenome.org (S. cerevisiae), http://www.broadinstitute.org/annotation/genome/neurospora/Home.
html (N. crassa), http://www.A. thaliana.org (A. thaliana) and http://genome.jgi-psf.org/Phypa1_1/Phypa1_1.home.html (P. patens)

Enzyme S. cerevisiae N. crassaa P. patensb A. thalianac

PI3-kinases

Class III Vps34d NCU00656d,e (e-154) 182554f (0.0) AtVps34e,f (e-147)

PI4-kinases

Type II Lsb6d NCU04355d (e-50) 167250f (e-155/-169/-166/-97/-102) AtPI4Kγ5f (e-8)

118668f (e-152/-157/-153/-99/-101) AtPI4Kγ6f (e-8)

AtPI4Kγ7f (e-8)

AtPI4Kγ1 (e-7)

AtPI4Kγ8 (e-6)

212283f (e-159/-150/-99) AtPI4Kγ3f (e-5)

146744f (e-149/-147/-100) AtPI4Kγ4f (e-5)

AtPI4Kγ2 (e-5)

Type III Stt4d NCU09367d,e (0.0) 10058f (gene model uncertain; e-110/-110) AtPI4Kα1e,f (e-109)

213798f (gene model uncertain; e-109/-109) AtPI4Kα2f (e-78)

Pik1d NCU10397d,e (e-131) 147576f (0.0/0.0) AtPI4Kβ1e,f (e-60)

235037f (fragment; 0.0/e-177) AtPI4Kβ2e,f (e-59)

PI4P5-kinases

Group B Mss4d NCU02295d,e (e-110) 40660f (0.0 for all comparisons with group A proteins) AtPIP5K1e,f (e-56)

30361f (0.0 for all comparisons with group A proteins) AtPIP5K2e,f (e-56)

AtPIP5K3e,f (e-56)

AtPIP5K4e,f (e-56)

AtPIP5K5e,f (e-54)

AtPIP5K6e,f (e-55)

AtPIP5K7e,f (e-54)

AtPIP5K8e,f (e-54)

AtPIP5K9e,f (e-55)

Group A / / / AtPIPK10 (e-30)

AtPIPK11 (e-29)

PI3P5-kinases

Fab1d NCU02083d,e (e-114) 121474f (0.0 for all comparisons) AtFab1ae,f (e-67)

210788f (0.0 for all comparisons) AtFab1be,f (e-68)

40158f (fragment; e-126/-113/-106/-82) AtFab1ce,f (e-68)

121423f (fragment; e-95/-92/-89/-70) AtFab1df (e-55)

PI-phospholipase C

Type δ/z Plc1d NCU01266d (e-47) 154928 (e-69/-38/-67/-64/-34/-76/-38/-24-/22) AtPLC1 (e-15/-17/-10/-10)

NCU06245 (e-30) 202996 (e-82/-90/-81/-81/-81/-92/-87/-30/-28) AtPLC2 (e-15/-20/-11/-12)

NCU11415 (e-24) 221032 (e-83/-94/-81/-90/-86/-93/-94/-32/-31) AtPLC3 (e-14/-22/-19/-11)

NCU02175 (e-24) 216835 (e-65/-120/-116/-134/-127/-139/-113(-39/-37) AtPLC4 (e-15/-19/-10/-8)

30932 (e-114/-139/-115/-136/-131/-142/-133/-80/-69) AtPLC5 (e-16/-18/-9/-7)

131223 (e-75/-84/-75/-75/-72/-85/-84/-44/-20) AtPLC6 (e-23/-19/-11/-11)

133245 (e-114/-122/-111/-128/-126/-130/-122/-41/-39) AtPLC7 (e-28/-9/-11/-11)

/ AtPLC8 (e-8/-6/-5/-5)

AtPLC9 (e-6/-6/-4/-3)

PI phosphatases with Sac1 domain

Group A Sac1d NCU00896d,e (e-125) 182250f (e-167/-166/-161) AT5G66020e,f (e-76/-54)

NCU1330 (e-56) 196461f (e-159/-157/-153) AT3G51460f (e-69/-51)

154117 (e-149/-148/-146) AT3G51830 (e-65/-47)
113866 (e-130/-125/-122)

Group B Fig4d NCU08689d,e (e-189) 145180f (e-177/-179/0.0/-175/0.0) AT5G20840e,f (e-114)

188826f (e-178/0.0/0.0/-169/0.0) AT3G43220e,f (e-113)
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have been identified (Mueller-Roeber and Pical 2002) which
can be divided in the two PI 4-kinase subfamilies α and β
consisting of two members each (Table 1). The eight
members of a third A. thaliana PI 4-kinase subfamily γ

with similaritiy to the yeast PI 4-kinase, Lsb6p (Las17-
binding 6) (Han et al. 2002), and to mammalian class II
PI-kinases (Mueller-Roeber and Pical 2002) have not been
shown to harbor PI-kinase activity, but rather act as protein

Table 1 (continued)

Enzyme S. cerevisiae N. crassaa P. patensb A. thalianac

127285f (e-173/-180/0.0/-168/0.0) AT3G14205,f (e-104)

124571f (e-178/-178/0.0/-165/0.0) AT1G17340,f (e-94)

AT1G22630f (e-83)

Group C / / 137140f (0.0) AT3G59770f (e-17)

PI phosphatases with Sac1 and 5-PPase domain

Inp51d NCU03792d (e-35) / /
NCU01047 (e-9)

Inp52d, Inp53d NCU03298d (e-144) / /

PI phosphatases with 5-PPase domain

Inp54 NCU00684 (e-4) 146379f (0.0/0.0/0.0/0.0) AT1G65580f (e-10)

AT2G43900f (e-8)

AT1G05630f (e-10)

AT2G31830f (e-9)

114940f (e-94/-91/-84/-78/-76/-74/-64/-63/-63/-62) AT3G63240f (e-7)

55067f (e-92/-89/-84/-80/-79/-84/-82/-82/-68/-68) AT5G65090 (e-10)

119139f (e-99/-78/-72/-82/-81/-76/-85/-90/-67/-69) AT2G37440 (e-10)

147084f (e-95/-87/-69/-79/-79/-84/-88/-88/-65/-67) AT2G32010 (e-9)

42353f (e-99/-78/-73/-83/-83/-77/-75/-86/-67/-64) AT1G05470 (e-9)

61331f (e-93/-75/-71/-87/-77/-73/-92/-85/-65/-67) AT5G04980 (e-11)

AT4G18010 (e-9)

AT1G34120 (e-11)

AT1G71710 (e-9)

AT2G01900 (e-11)

33817 (fragment?) /
33819 (fragment?)

33820 (fragment?)

4897 (e-57) AT1G47510f (e-9)
160028 (e-42)

PI phosphatases with myotubularin domain

Ymr1d NCU11185d,e (e-78) 71628f (e-161/-141) AT3G10550e,f (e-40)

12645f (e-171/-152) AT5G04540e (e-41)

PI phosphatases with Tensin domain

14952f (e-168/-162/-41) AT3G19420f (e-7)

11763f (e-175/-169/-40) AT3G50110f (e-6)

173463 (e-104/-102/-32)

233117 (e-110/-105/-26)

Tep1d NCU06969d,e (e-14) / AT5G39400e (e-11)

a E-values in this column correspond to S. cerevisiae–N. crassa BLASTP comparison
b E-values in this column correspond to A. thaliana–P. patens BLASTP comparison
c E-values in this column correspond to N. crassa–A. thaliana BLASTP comparison
d Best bidirectional hit for N. crassa and S. cerevisiae candidate pairs
e Best bidirectional hits for N. crassa and A. thaliana candidate pairs
f Best bidirectional hits for A. thaliana and P. patens candidate pairs
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kinases (Galvao et al. 2008). In comparison to Mss4p
(multicopy suppressor of stt4) as the only PI4P 5-kinase in
yeast, the A. thaliana genome contains 11 genes encoding
PI4P 5-kinase isoforms (Mueller-Roeber and Pical 2002),
and for five of these catalytic activity has been experimen-
tally verified (Elge et al. 2001; Perera et al. 2005; Lee et al.
2007; Ischebeck et al. 2008; Kusano et al. 2008; Sousa et al.
2008; Stenzel et al. 2008). Two subgroups containing
AtPIP5K1–AtPIP5K9 and AtPIP5K10/AtPIP5K11 can be
differentiated (Table 1), but the functional significance of
this sequence diversification in plants is currently unknown.
Similar subfamilies can be found in different eukaryotic
organisms for enzymes catalyzing most of the reactions of
PI-biosynthesis or PI-breakdown. As will be discussed
below, it is possible that additional branches of the PI
signaling system have evolved as the complexity of
organisms has increased. Despite their low abundance
(Ferrell and Huestis 1984; Butikofer et al. 1989; König et
al. 2007), the complex network of PIs has important roles in
eukaryotic signaling cascades (Stevenson et al. 2000; Meijer
and Munnik 2003), including those controlling cell polarity
(Thole and Nielsen 2008; Heilmann 2009).

Different cellular functions of PIs may be controlled
by distinct PI pools

PIs can control many physiological functions in eukaryotic
cells. As will be discussed in more detail below, evidence
from a number of eukaryotic model systems indicates that
PIs affect metabolism by controlling ion transport across
membranes, guanine triphosphatase (GTPase) function or
localization, cytoskeletal structures, and membrane traffick-
ing. Diverse functionality of PIs in alternative contexts
might be achieved through discrete PI pools of different
metabolic origin and/or different spatiotemporal localiza-
tion (Doughman et al. 2003; Santarius et al. 2006; Johnson
et al. 2008) that control alternative cellular processes
(King et al. 1987; Heilmann et al. 1999; Kost et al. 1999;
Heilmann et al. 2001; Doughman et al. 2003; Santarius et
al. 2006; König et al. 2007). How independent PI pools are
generated and maintained is still unclear. Differences in
substrate preferences for CDP-DAG species containing
saturated or unsaturated acyl chains have been reported
for the PIS isoforms, PIS1 and PIS2 (Löfke et al. 2008).
Overexpression of PIS1 or of PIS2 in A. thaliana plants
indicates that the enhanced amounts of PtdIns produced by
each isoform were channeled into different metabolic routes
(Löfke et al. 2008), suggesting that different pools of PIs
may exist already at the level of PtdIns, possibly distin-
guished by their associated fatty acids. This view is
supported by animal PIP-kinases and PI phosphatases that
have preferences for PI-substrates with certain fatty acid
compositions (Carricaburu and Fournier 2001; Schmid et

al. 2004). It has also been shown that increased levels of
PtdIns4P and PtdIns(4,5)P2 detected in A. thaliana after
osmotic stress differ in their acyl-chain composition from
PtdIns4P and PtdIns(4,5)P2 present under non-stressed
conditions (König et al. 2007). In consequence, differences
in fatty acid composition may be one factor responsible for
the altered lateral mobility of PIs (Mukherjee et al. 1999;
Cho et al. 2006) that may lead to interactions with
alternative partner proteins (Heilmann 2008). The concept
of discrete PI pools is especially important in polar growing
cells, because PIs likely have multiple crucial roles in
establishing and maintaining polar cell growth, as will be
discussed further down.

PI-degradation

Since PIs are potent messenger molecules, organisms have
evolved mechanisms to turn off these signals by either
dephosphorylating the inositol polyphosphate headgroup or
by cleaving it from the diacylglycerol (DAG) backbone.
Especially PtdIns4P and PtdIns(4,5)P2 have been shown to
have high turnover rates in plant cells (Meijer et al. 1999;
Perera et al. 2002; Im et al. 2007b; Krinke et al. 2007). To
understand the complexity of PI biosynthesis and break-
down is therefore a prerequisite for the elucidation of PI
functions in polar tip growth.

The A. thaliana genome contains multiple genes coding
for putative PI phosphatases (Table 1). The suppressor of
actin (SAC) family contains nine proteins with similarity to
the yeast PI phosphatases Sac1p (Hughes et al. 2000; Foti
et al. 2001) and Fig4p (Rudge et al. 2004) that primarily
dephosphorylate PtdIns4P and PtdIns(3,5)P2, respectively.
SAC1–SAC5 have the highest similarity to Fig4p and at
least SAC1 catalyzes the same reaction as Fig4p (Zhong et
al. 2005). A. thaliana SAC6–SAC8 are more closely related
to yeast Sac1p, and SAC7 has been recently shown to
dephosphorylate mainly PtdIns4P with additional substan-
tial activity towards all other PIs (Thole et al. 2008). SAC9
is unique in its domain structure (Zhong et al. 2004), and
even though its enzyme activity has not been reliably
determined in in vitro tests. A. thaliana mutants deficient in
this protein have constitutively elevated PtdIns(4,5)P2
levels (Williams et al. 2005).

Three other phosphatases from A. thaliana show
sequence similarity to the family of phosphatase and tensin
homologue (PTEN) phosphatases known from the mam-
malian field to act on PtdIns(3,4,5)P3, as for example
PTEN1 (Gupta et al. 2002), while two proteins homologous
to mammalian myotubularin are present in the A. thaliana
genome. However, no enzymatic specificity or cellular
function has been assigned to any of these phosphatases.

Another large group of phosphatases with homology to
yeast Inp54p are present in plants that dephosphorylate
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inositol-polyphosphates at the D-5 position (Zhong et al.
2004; Zhong and Ye 2004). There are 15 genes with
unknown functions with similarity to Inp54p in the A.
thaliana genome (Table 1). While the PI phosphatases of
the SAC family dephosphorylate both lipid PIs and
soluble inositol polyphosphates and are therefore referred
to as type II inositol polyphosphate 5-phosphatases, these
enzymes are capable of dephosphorylating only soluble
inositol polyphosphates as for example InsP3 and repre-
sent type I inositol polyphosphate 5-phosphatases (Berdy
et al. 2001).

Phospholipases C (PLCs) cleave phospholipids between
the phosphate group and the DAG backbone. While some
PLCs are active towards structural phospholipids (non-
specific PLCs) (Nakamura et al. 2005), others only cleave
PIs (PI-PLCs), releasing DAG and the respective soluble
inositol polyphosphates (Mueller-Roeber and Pical 2002).
While in mammals, multiple gene families encoding PI-
PLCs are present, the A. thaliana genome contains only one
family of seven members with similarity to mammalian
PLCs of the ζ subfamily (formerly classified among the δ
subfamily) (Tasma et al. 2008). The activity of proteins of
this subfamily is regulated through Ca2+ levels (Mueller-
Roeber and Pical 2002), thus linking PI degradation and
DAG/inositol polyphosphate signaling to cellular Ca2+

levels.

Polar tip growth—a complex signaling network, membrane
transport, and the cytoskeleton

Polar growth of cells of any type requires the coordination
of fundamental functions involved in defining the site of
polar growth, delivering material to the growing apex and
incorporating this material at its destination (Nelson 2003).
The specification of the site of polar growth involves the
formation of specialized biological structures, which differ-
entiate the plasma membrane and the cytoplasm of the
growing apex from other regions of the cell. Such special-
izations are reflected in the formation of the “clear zone” of
pollen tubes and root hairs (Franklin-Tong 1999; Zonia and
Munnik 2009) or the “Spitzenkörper” of fungal hyphae
(Steinberg 2007). Long-distance transport of material
required for growth as well as factors that establish and
maintain polarity depend on the presence of cytoskeletal
elements. The final delivery of material to the site of
incorporation is achieved along actin fibres and involves
the interaction and directed transport of exocytotic vesicles
(Fischer et al. 2008). Since only a small proportion of
exocytosed membrane area remains in the plasma mem-
brane after vesicles have fused and released their contents,
endocytotic recycling of vesicles is an essential element of
cell expansion, which also depends on a functional actin
cytoskeleton (Samaj et al. 2006).

Control of membrane trafficking by PIs

Roles of PtdIns4P In yeast and animal cells, PIs are
important for secretory vesicle flow from the Golgi to the
plasma membrane. An important role in this process has
been attributed to PI 4-kinases. Activity of these enzymes
has been found in animals (Endemann et al. 1987; Pike
1992), yeast (S. cerevisiae (Flanagan et al. 1993)) but also
in plants, such as carrot (Daucus carota) (Okpodu et al.
1995), spinach (Spinacia oleracea (Westergren et al. 1999))
and A. thaliana (Xue et al. 1999). The yeast enzyme, Stt4p
(Yoshida et al. 1994), has been shown to localize at the
plasma membrane by binding Sfk1p (suppressor of four
kinase), a transmembrane spanning protein of unclear
function (Audhya and Emr 2002). The roles of the two
homologous PI 4-kinases of the A. thaliana α subfamily in
polar growth also remain unresolved to date.

More information is available on the two PI 4-kinases
representing the A. thaliana β subfamily (Xue et al. 1999).
Mutant analyses have demonstrated that A. thaliana
PI4Kβ1 has a function in the growth of root hairs and
pollen tubes (Preuss et al. 2006; Szumlanski and Nielsen
2009). PI 4-kinases of the β subfamily are localized at
trans-Golgi vesicles in A. thaliana root hairs (Preuss et al.
2006) and tobacco pollen tubes (Szumlanski and Nielsen
2009). Similar localizations have been observed for
homologues in yeast (Walch-Solimena and Novick 1999)
and mammals (Olsen et al. 2003). In A. thaliana, it has
been proposed that type β PI 4-kinases are recruited to
trans-Golgi vesicles by the action of the small G protein,
RabA4b (Ras associated binding protein A4b) and of
AtCBL1 (calcineurin B-like protein 1), a Ca2+-sensing
protein (Preuss et al. 2006). An interaction partner similar
to AtCBL1, frequenin, has previously been described in
yeast and animals (Hendricks et al. 1999; Strahl et al.
2003). The yeast PI 4-kinase Pik1p is essential for
membrane trafficking from the Golgi to the plasma
membrane. When Pik1p is eliminated, secretion is dimin-
ished (Uno et al. 1988; Hama et al. 1999; Walch-Solimena
and Novick 1999; Audhya et al. 2000) and abnormal
membranous structures called “Berkeley bodies” accumu-
late in the cytoplasm (Walch-Solimena and Novick 1999;
Audhya et al. 2000; Strahl et al. 2005). On the other hand,
when PtdIns4P levels are elevated in yeast cells over-
expressing Pik1p or in cells deficient in the PI phosphatase,
Sac1p, exocytosis of the chitin synthase Chs3p and most
likely also of other proteins is enhanced, leading to cell wall
defects (Schorr et al. 2001). Thus, the comparison of PI
4-kinase functions of the β subfamily in organisms from
different eukaryotic kingdoms allows the conclusion that
PtdIns4P appears to be universally required for controlling
trafficking of secretory vesicles between the Golgi apparatus
and the plasma membrane.
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Roles of PtdIns(4,5)P2 PtdIns(4,5)P2 is produced from
PtdIns4P by PI4P 5-kinases. PI4P 5-kinases have been
found to be associated with the plasma membrane of
animal, yeast, and also of A. thaliana and tobacco cells
using fluorescent reporters (Lee et al. 2007; Ischebeck et al.
2008; Kusano et al. 2008; Sousa et al. 2008; Stenzel et al.
2008). Enzyme activities have, however, been detected not
only in enriched plasma membrane preparations (Sommarin
and Sandelius 1988; Perera et al. 1999; Heilmann et al.
2001; Kobayashi et al. 2005; Santarius et al. 2006), but also
in other subcellular fractions such as the nucleus of
mammalian and yeast cells (Ciruela et al. 2000; Audhya
and Emr 2003; Santarius et al. 2006), the actin cytoskeleton
of yeast and plants (Desrivieres et al. 1998; Doughman et
al. 2003; Davis et al. 2007), and endomembranes of animal
and plant cells (Whatmore et al. 1996; Heilmann et al.
1999; Im et al. 2007a). The mechanism recruiting PI4P 5-
kinases to the plasma membrane in plants is unknown;
however sphingolipids have been shown to be involved in
plasma membrane localization of Mss4p, the only PI4P 5-
kinase present in yeast (Kobayashi et al. 2005). PtdIns(4,5)
P2 generated by Mss4p has been proposed to play a role in
the fusion of secretory vesicles with the plasma membrane
(Strahl and Thorner 2007), because overexpression of
Mss4p can rescue several temperature sensitive mutants
defective in proteins of the secretory machinery. Examples
are Sec8p (protein with a role in secretion), Sec10p and
Sec15p (TerBush et al. 1996; Guo et al. 1999; Hsu et al.
1999), which are all members of the multiprotein exocyst
complex, which is required for the tethering of exocytotic
vesicles to the plasma membrane. Other examples include
the syntaxin-binding protein Sec1p (Aalto et al. 1991;
Halachmi and Lev 1996; Carr et al. 1999) and the plasma
membrane target soluble N-ethylmaleimide sensitive factor
attachment receptor, Sec9p (Sollner et al. 1993; Brennwald
et al. 1994; Hay and Scheller 1997).

The involvement of PtdIns(4,5)P2 in exocytosis is also
conserved in animal cells, where PtdIns(4,5)P2 also targets
the exocyst complex to the plasma membrane (He et al.
2007; Liu et al. 2007). In neuronal cells both PtdIns4P and
PtdIns(4,5)P2 stimulate exocytosis by priming dense core
vesicles for fusion and by recruiting the protein CAPS
(calcium-activated protein for secretion) to the plasma
membrane, which is essential for vesicle fusion (Hay and
Martin 1993; Hay et al. 1995; Berwin et al. 1998). A similar
mechanism has been shown for the exocytosis of insulin-
containing vesicles in pancreatic β-cells (Olsen et al. 2003).
Animal PtdIns(4,5)P2 has also been shown to stimulate the
formation of SNARE complexes that are required for the
fusion of vesicles with their target membranes (Vicogne et
al. 2006). Furthermore, both CAPS and synaptotagmin have
roles in the SNARE-mediated fusion process and are
activated by PIs (Sugita 2008).

The A. thaliana genome contains a total of 35 genes
coding for putative exocyst subunits (Ehlert et al. 2006).
While the A. thaliana genome contains no genes with
obvious similarity to CAPS genes, three genes have been
found that encode putative synaptotagmin isoforms (Craxton
2004). Subunits of the plant exocyst complex, Sec3/Rth1
(roothairless1) in Zea mays (Wen et al. 2005) and Sec8 in A.
thaliana (Cole et al. 2005), have been found to be involved
in the formation of root hairs and pollen tubes, respectively,
highlighting their importance in polar tip growth. Even
though a putative interaction of these proteins with PtdIns
(4,5)P2 has not yet been investigated, PtdIns(4,5)P2 might be
involved in the targeting of the exocyst complex to the plant
plasma membrane in analogy to other eukaryotic models,
suggesting PtdIns(4,5)P2 as an important regulator of
exocytosis in tip growing plant cells. Increased pectin
secretion in pollen tubes overproducing PtdIns(4,5)P2 sup-
ports this notion (Ischebeck et al. 2008).

PtdIns(4,5)P2 is not only involved in exocytosis but also
plays a crucial role in endocytosis of the plasma membrane.
The temperature sensitive yeast mutant mss4ts, deficient
in its only PI4P 5-kinase, displays defects in endocytic
uptake (Desrivieres et al. 2002) when shifted to restrictive
temperature. Complementary results were obtained with
mammalian neuronal cells, where endocytosis is increased,
when PtdIns(4,5)P2 levels are enhanced (Cremona et al.
1999), and decreased, when PtdIns(4,5)P2 levels are
reduced (Di Paolo et al. 2004). A possible role of PtdIns
(4,5)P2 in endocytosis might relate to the fact that in yeast
and in mammalian cells many proteins of the endocytotic
machinery are recruited to the plasma membrane by PtdIns
(4,5)P2 (Jost et al. 1998; Gaidarov and Keen 1999; Takei et
al. 1999; Vallis et al. 1999; D’Hondt et al. 2000; Ford et al.
2001; Itoh et al. 2001; Friesen et al. 2006). Even though
association of PtdIns(4,5)P2 with clathrin-coated vesicles
during stress-induced endocytosis has recently been shown
for plant cells (König et al. 2008), much less is known about
membrane trafficking and the roles of PIs in endocytotic
processes in plants. In summary, the comparative analysis of
PtdIns(4,5)P2 functions in different eukaryotic models
suggests that this lipid has a conserved role in defining the
sites of vesicle fusion/fission during endo- and exocytosis,
most likely through its effects on components of the exocyst
complex and components of the membrane fusion machin-
ery. As will be described in more detail below, PtdIns(4,5)P2
is additionally a regulator of the actin cytoskeleton, which is
also of key importance for vesicle transport and membrane
trafficking.

Roles of 3-phosphorylated PIs PtdIns can also be phos-
phorylated at its D3-position by PI 3-kinases. PI 3-kinases
from mammals can be grouped in three different classes
according to their substrate specificity. Class I PI 3-kinases
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phosphorylate all PI species, including PtdIns, PtdIns4P
and PtdIns(4,5)P2 (Vanhaesebroeck et al. 2001). Even
though class I enzymes play important roles in animals,
there is no evidence for their occurence in plants or fungi
(Table 1). Class II PI 3-kinases only phosphorylate PtdIns
and PtdIns4P, while enzymes of class III accept only PtdIns
as a substrate. Class III PI 3-kinases are typifed by the yeast
protein Vps34p (vacuolar protein sorting 34; (Schu et al.
1993)) and are the only PI 3-kinases identified in plants and
fungi (Table 1). Mutations in the yeast Vps34 gene have
been shown to exhibit severe defects in vacuolar protein
sorting. In A. thaliana there is only one gene, AtVPS34,
present that encodes a PI 3-kinase (Welters et al. 1994).
A. thaliana PI 3-kinase has been implicated in membrane
trafficking events during adaptation to salt stress (Leshem
et al. 2007). Plant PI 3-kinase has also been reported in
the nucleus of carrot cells, specifically at sites of active
transcription (Bunney et al. 2000). It has recently been
shown that the production of PtdIns3P is important for root
hair growth (Lee et al. 2008a), however, the exact roles of
PtdIns3P in plant function to date remain unclear.

PI3P 5-kinases phosphorylate PtdIns3P in the D-5
position of the inositol ring (Meijer and Munnik 2003).
Data from yeast and animals suggest that 3-phosphorylated
PIs have roles in controlling retrograde vesicular trafficking
between plasma membrane or early endosomes and the
trans-Golgi network (Rutherford et al. 2006; Volpicelli-
Daley and De Camilli 2007; Dove et al. 2009). Reports of
stress-induced formation of PtdIns(3,5)P2 in yeast (Dove et
al. 1997; Bonangelino et al. 2002) and the unicellular green
alga, Chlamydomonas rheinhardtii (Meijer et al. 1999)
upon hyperosmotic challenge might be related to a role in
endocytotic trafficking that mediates increased membrane
turnover. The A. thaliana genome contains four genes
encoding putative PI3P 5-kinases (Table 1) (Gaullier et al.
1998). However, no experimental characterization has
been reported to date for these plant gene products. The
relevance of a recent report on the involvement of PI3P
5-kinases in pollen development of A. thaliana is difficult
to interpret, as no biochemical characterization of the
proteins was performed (Whitley et al. 2009). Thus, the
roles of 3-phosphorylated PIs in plants must remain largely
speculative at this point.

Control of the actin cytoskeleton by PtdIns(4,5)P2

Besides the roles of PIs in membrane trafficking, in
particular PtdIns(4,5)P2 has intensively been studied with
regard to effects on cytoskeletal structures. The dynamic
network of actin filaments of eukaryotic cells not only
mediates stability, but is also involved in protein and vesicle
movement, in cell shaping and cell division, and in sensing

and signaling (Wasteneys and Galway 2003). Even though
actin can polymerize spontaneously in the presence of ATP,
in vivo this polymerization process is regulated by actin-
binding proteins (ABPs) that can induce and promote or
inhibit polymerization, or can lead to branching or breaking
of actin strands. In animals, PtdIns(4,5)P2 can influence actin
dynamics by binding to ABPs, thus modulating their activity.
After the completion of the A. thaliana genome sequence
(Arabidopsis-Genome-Initiative 2000) it became apparent
that a number of non-plant ABPs have homologous counter-
parts in plants (Wasteneys and Yang 2004), whereas other
ABPs—for example talin, vitronectin and vinculin—appear
to be missing in plants (Wasteneys and Galway 2003). Thus,
it can be assumed that some aspects of the plant cytoskeleton
are regulated in a similar fashion as in animals, while others
may be profoundly different. Increases in PtdIns(4,5)P2
levels have been shown to have rigidifying effects on the
actin cytoskeleton in mammalian cell lines (Shibasaki et al.
1997; Rozelle et al. 2000; Yamamoto et al. 2001) and in
yeast (Ojala et al. 2001) that have been attributed to
misregulation of ABPs. Since actin depolymerising ABPs,
such as cofilin or gelsolin, are inhibited by PtdIns(4,5)P2
(Hepler et al. 2001; Hussey et al. 2002), an increase of
cellular PtdIns(4,5)P2-levels may hyperstabilize the actin
cytoskeleton and disrupt its dynamics also in plants.

In both animals and fungi, actin dynamics can be
controlled by a number of monomeric GTPases, which are
themselves subject to regulation by a number of accessory
proteins, including various GTPase activating proteins
(GAPs), guanidine nucleotide exchange factors (GEFs) or
GDP dissociation inhibitors (GDIs) (Faure and Dagher 2001).
The roles of Rho GTPases of the Rac-Rop subfamily, in
polar tip growth have been the focus of a number of studies
and have been reviewed in depth (de Curtis 2008; Kost
2008). Like other small GTPases, Rac-Rop GTPases are
monomers that are active when bound to GTP and inactive
in their GDP-bound form. Rac-Rop GTPases localize at the
apex of growing pollen tubes and root hairs, and it has been
hypothesized that they play a role in membrane trafficking
and the organization of the actin cytoskeleton (Kost et al.
1999; Li et al. 1999; Molendijk et al. 2001; Jones et al. 2002;
Lee et al. 2008b). It has been demonstrated that PIs exert
regulatory effects on GTPase signaling, for instance by
binding to and inactivating/sequestering GDIs (Faure et al.
1999; DerMardirossian and Bokoch 2005), leading to
increased activation of GTPases. Plants contain multiple
isoforms of small GTPases, GAPs, GEFs and GDIs (Kost
2008), and it has been shown that cytoskeletal structures are
profoundly affected in plants when components of the
GTPase signaling systems are impaired (Gu et al. 2003,
2005, 2006; Klahre et al. 2006; Klahre and Kost 2006). In
pollen tubes of petunia or tobacco an increase in PtdIns(4,5)
P2 levels induced by a reduction of PLC activity led to a
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disorganization of the actin cytoskeleton accompanied by
similar phenotypes as those observed with overproduction of
Rac-Rop GTPases (Fig. 2b) (Dowd et al. 2006; Helling et al.
2006). When the levels of PtdIns4P or PtdIns(4,5)P2 are
diminished, for example in yeast cells deficient in Stt4p or
Mss4p, respectively, the actin cytoskeleton behaves abnor-
mally and cell polarity is lost (Strahl and Thorner 2007). It
has been described for mammalian fibroblasts that lowering
the amount of free PtdIns(4,5)P2 decreases the adhesion of
the cytoskeleton with the plasma membrane, demonstrating
that PtdIns(4,5)P2 acts in the attachment of actin to the
plasma membrane (Raucher et al. 2000). A. thaliana lines
mutated in PIP5K3 (Kusano et al. 2008; Stenzel et al. 2008),
PIP5K4 (Lee et al. 2007; Ischebeck et al. 2008; Sousa et al.
2008), PIP5K5 (Ischebeck et al. 2008; Sousa et al. 2008)
or PIP5K9 (Lou et al. 2007) have been isolated, but
cytoskeletal dynamics in these plants have so far not been
investigated. Based on the available data it therefore appears
likely that PtdIns(4,5)P2 controls the actin cytoskeleton
through effects on GTPase signaling in plants in a similar
manner to that in fungi and animals. While effects of PtdIns
(4,5)P2 on actin dynamics by means of ABPs have been
demonstrated in plants (Drobak et al. 1994), the extent to
which regulation of GTPase signaling by PIs contributes to
the control of actin dynamics is currently not clear.

Control of ion channels by PtdIns(4,5)P2

Another important function of PIs in eukaryotic cells is
the control of ion channels. Transient and localized changes
in ion concentrations, especially of Ca2+, are essential for
various signal transduction pathways, and one important
ligand regulating ion channels is PtdIns(4,5)P2.

Unlike other proteins that are soluble and are recruited
from the cytoplasm to the plasma membrane by their
affinity to PtdIns(4,5)P2, ion channels are transmembrane
proteins (Lee 2004). It is presumed that ion channels bind
PtdIns(4,5)P2 located in close proximity at the inner leaflet
of the plasma membrane via N- and/or C-terminal binding
domains (Suh and Hille 2008). The examination of ion
channel regulation by PtdIns(4,5)P2 in living cells is
difficult due to the complex cellular responses to PtdIns
(4,5)P2 and because the methods and reagents currently
used are of limited specificity (Suh and Hille 2005). Human
inward-rectifier K+-channels were the first channels found
to be regulated by PtdIns(4,5)P2, and they are activated by
binding this lipid (Hilgemann and Ball 1996). Partial
structures are available for this type of channel (Nishida
and MacKinnon 2002; Pegan et al. 2005), and structural
data and mutagenesis studies have revealed that each of the
four subunits of the channel binds PtdIns(4,5)P2 via six
basic residues situated at the C-terminal cytosolic domain
(Haider et al. 2007). Neuronal voltage-gated K+-channels
are activated in a similar manner (Delmas and Brown 2005;
Li et al. 2005), and their PtdIns(4,5)P2 binding sites are
suspected to reside in the C-terminal cytosolic domain
(Zhang et al. 2003).

Transient receptor potential (TRP) channels are another
diverse group of mammalian cation channels that are
regulated in their activity by PtdIns(4,5)P2. This class of
ion-channels is particularly interesting because some
representatives, such as TRPV5 (Rohacs et al. 2005), are
activated while others like TRPL (Estacion et al. 2001) are
inhibited by PtdIns(4,5)P2. The regulatory mechanism
seems to be similar to that of K+ channels (Rohacs 2007).
All the channels described so far are of human or animal

A B C D

Fig. 2 Morphological alterations of tobacco pollen tubes perturbed in
polar signaling. a Unaltered growth of a tobacco pollen tube
transiently expressing cytosolic EYFP. b Apical tip swelling of a
tobacco pollen tube transiently expressing the small GTPase, RFP:Nt-
Rac5. c Apical plasma membrane invaginations during transient
expression of the A. thaliana type B PI4P 5-kinase, PIP5K5:EYFP,

at high levels. d Tip branching during transient expression of the A.
thaliana type B PI4P 5-kinase, PIP5K5:EYFP, at intermediate levels.
Bars 10 µm. RFP red fluorescent protein, EYFP enhanced yellow
fluorescent protein. Data according to (Klahre et al. 2006) (b) and
(Ischebeck et al. 2008) (c, d)
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origin and much less is known about ion channel regulation
by PtdIns(4,5)P2 in plants or fungi. It was reported that
some shaker-type K+-channels of plant origin are activated
in vitro by PtdIns(4,5)P2 (Liu et al. 2005). It has been
proposed that PtdIns(4,5)P2 plays a role in the inactivation
of slow anion channels in guard cells during stomatal
opening (Lee et al. 2007). The tobacco outward-rectifying
K+-channel has also been demonstrated to be regulated by
PtdIns(4,5)P2 (Ma et al. 2009). All channels that have been
reported to be regulated by PtdIns(4,5)P2 are localized at
the plasma membrane. Since no PtdIns(4,5)P2 is present in
the ER or in Golgi vesicles, one can assume that these
channels remain inactive during their trafficking from the
ER via the Golgi to the plasma membrane and are
inactivated in the recycling process after endocytosis
(Hilgemann et al. 2001). The control of ion channels by
PIs, thus, appears a common trait of eukaryotic cells, which
is, however, of unclear relevance for polar cell growth.

Effects on polar tip growth through perturbation
of the PI system

A. thaliana plants mutated in the PIP5K3 gene, which is
specifically expressed in root epidermal cells, have very
short root hairs (Kusano et al. 2008; Stenzel et al. 2008),
whereas overexpression of PIP5K3 leads to a loss of apical
polarity and aberrant root hair morphology (Kusano et al.
2008; Stenzel et al. 2008). Similarly, the regulation of
PtdIns4P levels is also important for normal root hair
growth, since plants mutated in type β PI 4-kinases or the
PtdIns4P-degrading phosphatase, RHD4, display aberrant
root hair morphology (Preuss et al. 2006; Thole et al.
2008). It has also been shown that strong expression of the
fluorescence-tagged pleckstrin homology-domain of the
human PLCδ1, which specifically binds PtdIns(4,5)P2,
resulted in a growth arrest of pollen tubes (Kost et al.
1999). Thus, severe and characteristic polarity defects have
been reported for pollen tubes upon perturbation of the PI
system or of Rac-Rop GTPase signaling (Fig. 2), and these
phenotypes might aid the elucidation of the mechanisms by
which PIs contribute to the control of polar tip growth. One
characteristic morphological effect observed in pollen tubes
that results from perturbing the complex interplay of
signaling factors is tip swelling (Fig. 2b). Loss of polarity
and apolar tip swelling has been reported after interfering
with the GTPase signaling network (Gu et al. 2003, 2005,
2006; Klahre et al. 2006; Klahre and Kost 2006) or by
overaccumulation of PtdIns(4,5)P2 after interfering with its
PLC-mediated breakdown (Dowd et al. 2006). It is still a
matter of debate as to what tip swelling can tell us about the
molecular basis of polar tip growth. Recently, it has been
proposed that tip swelling of pollen tubes is a result of an
expanded area of exocytosis and defective endocytosis

(Kost 2008). It must be noted, however, that a pollen tube
does not necessarily grow in the direction of exocytosis, but
rather in the direction where the plastic cell wall yields
most easily to the mechanical force of the internal turgor
pressure. In contrast, it has also been speculated that turgor
pressure (which can reach 0.2 MPa in pollen tubes) is the sole
force responsible for cell expansion (Benkert et al. 1997;
Bosch et al. 2005; Zonia et al. 2006; Kroeger et al. 2008).

The contribution of the actin cytoskeleton to the
mechanical force driving polar expansion of plant cells is
a matter of ongoing debate. In animal cells, actin filaments
and cables can clearly influence cell shape in a mechanical
manner (Pollard et al. 2000). Depolymerization of the actin
cytoskeleton of pollen tubes by the toxin latrunculin B
results in slower growth, a reduced ability to invade a
mechanical obstacle (Gossot and Geitmann 2007) and, at
higher concentrations of the drug, in growth arrest (Vidali
et al. 2001), leading Gossot and Geitmann to propose that
actin filaments do exert a mechanical force that drives pollen
tube elongation (Gossot and Geitmann 2007). In addition,
pollen tubes treated with the actin-stabilizing drugs jaspla-
kinolide or chondramide B also exhibited modest tip
swelling (Cardenas et al. 2008), which possibly resulted
from the force applied by the stabilized actin cytoskeleton
in all directions of the pollen tube tip (Fig. 3a–c). Thus,
normal and polar elongation of untreated pollen tubes may
be, at least in part, driven by actin dynamics directed
towards the pollen tube apex.

Considering the importance of the actin cytoskeleton for
tip polarity, a very interesting concept is that PIs might
inhibit GDIs by recruiting them to the plasma membrane
(Faure et al. 1999; DerMardirossian and Bokoch 2005),
leading to increased activation of Rac-type G-proteins,
perturbation of the actin cytoskeleton and ultimately tip
swelling. In consequence, it has been proposed that GDIs
are an important point of interdependency between G-proteins
and PI signaling in polar growing cells (Kost 2008).

So far, the mechanisms by which PIs control polar tip
growth are unclear, but they are clearly part of the complex
interplay of signaling factors required for cell polarity. This
is exemplified by a loss of polar growth and tip swelling in
pollen tubes after inhibition of PI-PLC-mediated PtdIns
(4,5)P2 degradation (Dowd et al. 2006; Helling et al. 2006).
This treatment is also accompanied by a distortion of the
cytoskeleton (Dowd et al. 2006) and increased intracellular
Ca2+-levels (Dowd et al. 2006).

While the actin cytoskeleton is a key factor determining
cell polarity and controlling of polar growth, the restriction
of cell expansion by the cell wall is another (Fig. 3d–f). In
pollen tubes the cell wall of the most apical 10–20 µm
consists primarily of pectin, and is kept flexible through the
activity of pectin methyl esterases (PMEs) (Bosch et al.
2005; Parre and Geitmann 2005; Tian et al. 2006). How
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PMEs—and other proteins modulating cell wall plasticity—
are targeted to their site of action in the pollen tube is still a
matter of debate (Rockel et al. 2008). Even though the
role of the actin fringe, a ring of longitudinal cortical actin
fibres found in pollen tubes, is not well understood (Lovy-
Wheeler et al. 2005), this fragile structure may be involved

in the vectorial transport of secretory vesicles containing
cell wall material and/or cell wall-modifying enzymes to
the plasma membrane (Fig. 3d) (Chen et al. 2007). If the
actin fringe is perturbed, the balance of rigid and flexible
regions in the apical cell wall could be altered, because
enzymes such as PMEs are no longer targeted to the exactly
required region (Rockel et al. 2008) and might now be
more randomly distributed (Fig. 3e). A possible conse-
quence is that the apical cell wall becomes uniformly
flexible and turgor pressure may expand the pollen tube in
this region evenly in all directions, ultimately leading to tip
swelling (Fig. 3f). A possible unifying explanation for tip
swelling is that perturbed PI metabolism not only modu-
lates the cytoskeleton but also turgor pressure. Evidence for
this hypothesis comes from the report that phospholipid
and PI signals can regulate the cell volume of pollen tubes
(Zonia et al. 2002, 2006). Thus, studying turgor and ion
fluxes of pollen tubes overaccumulating PtdIns(4,5)P2 may
lead to a better understanding of aberrant tip swelling.

Exocytosis of pectin at the pollen tube tip has to be
tightly regulated to preserve the plasticity of the apical cell
wall, which is crucial for pollen tube elongation. Tobacco
pollen tubes overexpressing type B PI4P 5-kinases demon-
strated characteristic morphological changes, such as pollen
tube branching or “protoplast trapping” (Fig. 2b, c), and
exhibited massive incorporation of pectin into the apical
cell wall (Ischebeck et al. 2008). Since type B PI4P 5-kinases
localize at the apical plasma membrane of pollen tubes
(Ischebeck et al. 2008; Sousa et al. 2008) and pectin is
secreted at the pollen tube tip (Bosch and Hepler 2005; Tian
et al. 2006), the increased abundance of PtdIns(4,5)P2 may
be the cause for the excessive exocytosis of pectin, and the
observed phenotypes might be explained by an increased
rate of exocytosis of pectin (Fig. 4). If secretion of pectin is
strongly increased, the apical cell wall becomes thicker and
less flexible (Fig. 4a–d). As a consequence, turgor pressure
and/or the actin cytoskeleton may no longer be strong
enough to expand the cell wall and pollen tube elongation
will cease. Since exocytosis is now uncoupled from tube
growth, vesicle fusion to the apical plasma membrane will
continue even after cell expansion has ceased. These fusion
events lead not only to cell wall deposition, but also to
increased apical deposition of membrane area. If the turgor
pressure-driven expansion of the protoplast within a rigidi-
fied cell wall is inhibited, excessive membrane area may
invaginate (Fig. 4d), resulting in a “trapped protoplast”
(Ischebeck et al. 2008). Tip branching may be the result of
ongoing tip growth, in which pectin deposition is not strong
enough to terminate growth, but only alters the plasticity of
the most apical cell wall, resulting in two zones of flexible
cell wall divided by a more rigid region (Fig. 4e–g). The
concept that increased pectin deposition in pollen tubes that
overproduce PtdIns(4,5)P2 is the result of increased exocy-

Fig. 3 Alternative models to explain tip swelling. a–c Model for
pollen tube tip swelling considering the actin cytoskeleton as a major
force in cell expansion. The cell wall is composed of pectin (blue) and
is additionally strengthened by callose and cellulose in the pollen tube
shank (green and yellow). Cellular expansion is driven by turgor
pressure (blue arrows) and a mechanical force (red arrows) deriving
from the cytoskeleton (red bars). a Normal pollen tube growth. The
actin cytoskeleton, especially the actin fringe (parallel subapical red
lines), drives cell expansion only in the direction of growth. b
Disorganisation of the actin cytoskeleton due to a perturbed PI
system. The force exerted now by the cytoskeleton acts equally in all
directions resulting in tip swelling (c). Tip swelling is restricted to the
apex, because the cell wall is inflexible in the shank due to cellulose
and callose. d–f Model for pollen tube tip swelling considering only
turgor pressure and cell wall plasticity, but no direct mechanical force
by the actin cytoskeleton as factors of polar growth. Cellular
expansion is driven by turgor pressure counteracted by the mechanical
force of the cell wall (black arrows). d Normal pollen tube growth.
Pectin occurring in its methylated form at the very tip (indicated by
yellow color) is flexible and the resistance against the turgor is smaller
(indicated by a small black arrow). PME is transported in exocytotic
vesicles (orange dots encircled in black) along the actin fringe and
secreted in the subapical region (orange dots), where it converts pectin
to its rigid, deesterified, Ca2+ bound form (indicated by blue color),
resulting in a stronger counteracting force of the cell wall (longer
black arrows). e After disturbance of the cytoskeleton PME
distribution is disorganized, resulting in a uniformly de-esterified
and flexible apical cell wall, indicated by smaller equally long arrows
for the counteracting force of the cell wall. f As a consequence, the
cell wall expands in all directions, resulting in tip swelling (f)
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tosis raises the question, whether PtdIns(4,5)P2 is also
responsible for regulating the secretion of other cell wall
components or extracellular matrix components in other
eukaryotes.

Polar growth of fungal hyphae: is it similar to polar growth
of plant cells?

Assuming that the basic mechanisms of polar tip growth are
shared, similar effects of PIs should be encountered if
organisms of different kingdoms are compared. Moving
along the phylogenetic tree away from higher plants, data
from related organisms confirm this concept. For instance,

the predominant protonemal expression of one PtdIns-
monophosphate kinase (Saavedra et al. 2009) suggests a
role for PI signaling in polar tip growth in the moss
Physcomitrella patens. With increasing phylogenetic dis-
tance to plants and mosses, polar growing cells reminiscent
in structure to plant root hairs, pollen tubes or moss
protonemata are the hyphae of filamentous fungi, such as
Neurospora crassa or Candida albicans. Functional evi-
dence for the involvement of PI signaling in these different
organisms comes from mutant studies, and it has been
reported that mutations in enzymes relevant for PI signaling
are impaired in hyphal growth, for instance in C. albicans
(Badrane et al. 2008). Importantly, extensive screening of
mutagenized N. crassa spores for strains deficient in hyphal
morphogenesis has yielded numerous hits for key enzymes
of PI signaling, including PI 4- and PI4P 5-kinases (Seiler
and Plamann 2003). An interesting example for the
development of new hypotheses based on a comparative
biological approach is the proposed function of the poorly
understood phospholipid PtdIns5P (Lecompte et al. 2008).
Lecompte and coworkers deduced a function for PtdIns5P
in membrane trafficking between late endosomal compart-
ments and the plasma membrane based on the comparison
of 39 eukaryotic genomes with regard to the occurrence of
genes corresponding to enzymes of PtdIns5P biosynthesis
or breakdown. Interestingly, these findings confirm a
general similarity between the PI systems of plants and
fungi (Lecompte et al. 2008). While the machineries for
defining the site of growth, the intracellular delivery of
material to this site and the fusion of cargo vesicles and release
at this destination might be similar between organisms of
different kingdoms, particular details may well be different.
For instance, the cell walls of pollen tubes and fungal hyphae
are composed of different building blocks which nonetheless
may be secreted by similar means.

Data available on the roles of PIs in polar growth
indicate that the PI system has been important for polar
growth already in the common ancestor of fungi, mosses
and higher land plants, dating back more than an estimated
400 million years (Rensing et al. 2008). Comparative
approaches will aid the understanding of the roles of PIs
in the control of cell polarity and polar tip growth. An
analysis of the published genomes of S. cerevisiae, N.
crassa, P. patens, and A. thaliana for key enzymes of PI
metabolism (Table 1) indicates that all players required for
the regulation of polar tip growth are present in these
relevant examples of the fungal and plant kingdoms.

From the phylogenetic distribution of PI signaling
enzymes a number of general conclusions can be drawn.
First, it is obvious that the formation of 3-phosphorylated
PIs, such as PtdIns3P or PtdIns(3,5)P2, is mediated by only
very few enzymes in fungi and plants, compared to a much
greater number of enzymes in mammals. Second, the

Fig. 4 Model for the pollen tube “trapped protoplast” and branching
phenotypes. a Normal pollen tube growth. Secretion of pectin-
containing exocytotic vesicles is tightly regulated to sustain cell wall
plasticity. The disk indicates a ring-shaped zone of flexible cell wall
(white). b If pectin secretion is increased due to strong overexpression
of type B PI4P 5-kinases, cellular expansion is inhibited due to the
thickening of the cell wall. The solid blue disk indicates the absence of
a zone of flexible cell wall. c Continuous exocytosis leads to
additional cell wall accumulation at the pollen tube apex. d The
plasma membrane of the “trapped protoplast” folds inwards. e When
secretion is increased due to type B PI4P 5-kinase overexpression,
pectin occasionally blocks apical expansion. The disk indicates zones
of flexible cell wall (white) alternating with zones of inflexible cell
wall (blue). f Pollen tube expansion in subapical regions with a cell
wall more flexible than that at the very apex leads to splitting of the
pollen tube tip. g Growth continues simultaneously at both tips,
resulting in the branched pollen tube phenotype
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formation of PtdIns(4,5)P2, is much more streamlined in
fungi and lower plants than in A. thaliana. While both
fungal genomes contain only one PI4P 5-kinase, generation
of PtdIns(4,5)P2 requires 11 PI4P 5-kinases of two distinct
subgroups in A. thaliana. However, the moss P. patens
has a repertoire of only two PI4P 5-kinases of the same
subgroup as the fungal ones, and is thus more similar to
fungi than higher plants. The situation for PI 4 kinases is
more complex in that the highly extended γ subfamily,
which is represented by eight A. thaliana and four P. patens
proteins, is most likely not a family of lipid, but protein
kinases in plants (Galvao et al. 2008). Nevertheless, the
number of fungal PI 4-kinases seems more streamlined in
having only two kinases of non-redundent function, while
four PI 4-kinases are present in both plants. Similarly, in
both plants three subgroups containing nine Sac domain-
containing phosphatases can be distinguished, while
corresponding sequences can be found in fungi only for
two subgroups (Table 1). The family of 5-phosphatase
domain-containing phosphatases is also greatly enlarged in
plants in comparison to the situation in fungi (Table 1).
However, phosphatases with Sac and 5-phosphatase domain
are present in fungi and animals, but absent in plants. It is
also becoming apparent that PLC isoforms in plants have
diversified by three potential gene duplications, but the
resulting sequences cannot be assigned to any particular
fungal counterpart. Third, when basic requirements for
polar tip growth are considered, the comparison between the
fungi S. cerevisiae and N. crassa suggests substantially more
complex PI regulation of hyphal versus budding growth.
Interestingly, the added complexity proposed for N. crassa is
not based on more complex patterns for PI biosynthesis, but
rather on an increased number of PLCs and PI phosphatases
(four versus one and nine versus seven, in N. crassa and S.
cerevisiae, respectively, counting the paralogous proteins
Imp52 and Imp53, which have overlapping functions in
yeast, as one phosphatase). This trend continues in lower
plants that have a number of kinases similar to the two fungi,
but a highly increased repertoire of phosphatases. Overall, it
appears that polar tip growth in N. crassa or in plants is
accompanied by increased complexity of PI signaling
compared to that found in yeast, which is achieved by
diversified means for PI biosynthesis and breakdown
(in plants) or by additional regulation of PI breakdown only
(in N. crassa). Similarly, between P. patens and A. thaliana
the number of PI 4-kinases and PI4P 5-kinases appears to
rise with increasing complexity of the organism.

Conclusions

The data summarized in this article suggest that PIs are
important for polar tip growth by regulating the machinery

establishing and maintaining a polarized cell. It is important
to emphasize that PIs do not perform one regulatory function,
but rather are linked inmultiple places to the complex network
of GTPases, Ca2+, other ion-fluxes and lipid and soluble
signals. Key aspects of PI regulation are clearly the control
of the dynamic actin cytoskeleton and that of localized
vesicle trafficking and fusion. Other aspects, such as ion
channels, have not been studied in detail in the context of
polar tip growth, but might prove to be very important.
Based on the available data, the authors favor the hypothesis
that different functions of PIs might be orchestrated by
spatiotemporal separation of functional PI pools. However,
to date it remains unclear how such pools may be physically
arranged. Recent evidence suggests that independent PI
pools might have their origin in PI-intermediates channeled
towards certain interaction partners within a membrane,
but this concept is not easily accessible to current experi-
mental tools. Advances in the visualization of specific lipids,
while prone to a number of known and inherent artifacts
(Heilmann 2009), have enabled the decoration of punctate
domains in the apical plasma membrane of polar growing
cells that are likely enriched in sterols (Skirpan et al. 2006;
Liu et al. 2009). Such microdomains have been shown to be
important for the function of the PI system (Fairn et al. 2007;
Johnson et al. 2008) and might provide microenvironments
with particular enzyme complements that control certain
aspects of polarity, whereas freely diffusible PIs might serve
other functions.

Overall, many questions regarding the roles of PIs in the
control of polar tip growth must remain unanswered at this
time. The physiological situations in a differentiated tissue
cell and in a polar growing cell are notably different, and
many ideas presented here must be subjected to experi-
mental verification. The evolutionary conservation of the
machinery for polar tip growth throughout eukaryotic
kingdoms can, however, serve as a basis for comparative
biology. Future experiments directed towards a comprehen-
sive elucidation of polar growth mechanisms should, thus,
take into consideration that different aspects of polar
growth have been studied in different model systems,
providing an impression of different aspects of the—at first
approximation—same machinery. While the complexity of
the relevant signaling networks is enormous, an interdisci-
plinary view might help to solve at least some of the
puzzles.
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