ORIGINAL PAPER


On the rearrangement of *N*-aryl-*N*-Boc-phosphoramidates to *N*-Boc-protected *o*-aminoarylphosphonates

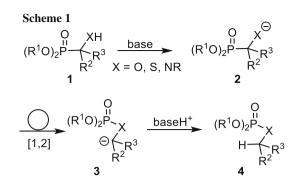
Edyta Kuliszewska¹ · Friedrich Hammerschmidt¹

Received: 7 August 2017/Accepted: 4 September 2017/Published online: 1 December 2017 © The Author(s) 2017. This article is an open access publication

Abstract Various arylamines were converted in two steps to N-Boc-N-arylphosphoramidates. LiTMP and LDA induced directed ortho-metalation at temperatures from -78 to 0 °C. The ensuing [1,3]-migration of the phosphorus atom with its substituents from the nitrogen to the ortho-carbanionic carbon atom gave N-Boc-protected oaminoarylphosphonates. The nature of the substituent of 3-substituted phenylphosphoramidates strongly influenced the regioselectivity of phosphonate formation. A crossover experiment with a deuterated phosphoramidate proved the intramolecular course of the rearrangement. Three representative N-Boc-o-aminoarylphosphonates were deprotected to access the corresponding o-aminoarylphosphonic acids.

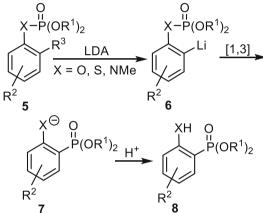
Graphical Abstract

Keywords Phosphorus compounds · Rearrangements · Amines · Carbanions · Arenes


Friedrich Hammerschmidt friedrich.hammerschmidt@univie.ac.at

Introduction

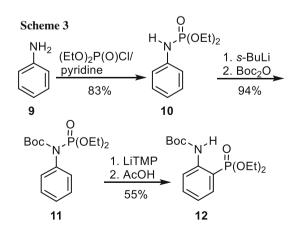
Phosphorus atoms in phosphonic and phosphoric acid derivatives can be induced to migrate with their substituents within molecules. The most important isomerization reactions are [1,2]- and [1,3]-rearrangements. Pudovik and Konovalova discovered that α hydroxyphosphonates with certain structural requirements isomerize to phosphates under basic conditions and they named this reaction phosphonate-phosphate rearrangement [1-3] (Scheme 1). They and others extended it to α -mercapto- and α -aminophosphonates (X = S, NR) [1]. These isomerizations are reminiscent of the 1,2-Wittig [4] and 1,2-Brook rearrangement [5, 6]. When strong bases such as LDA, LiTMP, n-BuLi, or s-BuLi are used to deprotonate 4 to give 3, the reverse process is induced. Then, the phosphorus atom migrates from the hetero- to the carbanionic carbon atom in 3, a [1,2]-rearrangement as found by Sturtz and Corbel [7] and preparatively and mechanistically extensively studied by the group of Hammerschmidt [8-10].

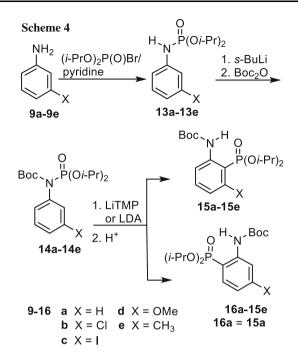

Aryl phosphates **5** (X = O) can be isomerized to *o*-hydroxyarylphosphonates **8** with strong bases [11–15] (Scheme 2). As the phosphate group effects directed *ortho*metalation [16, 17], aryl lithiums **6** are formed, which undergo migration of the phosphorus atom from the oxygen to the carbanionic carbon atom to give phosphonates **7** and on workup **8**. The driving force for the rearrangement is the formation of the strong O–Li bond. A large variety of dialkyl aryl phosphates and derivatives thereof were rearranged. In analogy to the Fries-rearrangement this reaction was named anionic phospho-Fries rearrangement [11]. We prefer the more general term [1,3]-phosphate–hydroxyphosphonate rearrangement. The isomerization was applied to *S*-aryl thiophosphates and their derivatives

¹ Institute of Organic Chemistry, University of Vienna, Vienna, Austria

Scheme 1 .

Scheme 2




[18–20]. Analogously, this isomerizations might be dubbed [1,3]-thiophosphate–sulfanylphosphonate rearrangement. one example for a [1,3]-phosphoramidate-Only aminophosphonate rearrangement (X = NMe) has been reported by Modro et al. [21]. Interestingly, they also found, that diphenyl N-methyl-N-phenylphosphoramidate underwent the first migration of phosphorus from the oxygen to the carbon atom when treated with 1 equiv of LDA, two migrations from O to C, when treated with 4 equiv of LDA and a third one from N to C with 8 equiv of LDA. We reasoned that N-arylphosphoramidates with an additional electron-withdrawing group on the nitrogen atom could first facilitate o-metalation of the phenyl ring and migration of the phosphorus atom from N to C and second expand the scope of the P to O to the P to N rearrangement.

Results and discussion

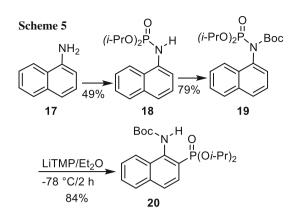
We found recently that dialkyl *N*-benzylphosphoramidates underwent a base-catalyzed [1,2]-phosphoramidate- α aminophosphonate rearrangement when the secondary nitrogen atom was protected with a Boc or dialkoxyphosphoryl group [22, 23]. Importantly, both Boc and $(RO)_2P(O)$ at the nitrogen atom favor directed *o*-metalation [16, 17] with lithium bases. In order to test this idea, aniline was phosphorylated with diethyl chlorophosphate/pyridine to give N-phenylphosphoramidate 10 in 83% yield (Scheme 3). N-Boc protection was effected by deprotonation of 10 at the nitrogen atom with s-BuLi at -78 °C. followed by addition of Boc₂O and allowing the reaction mixture to slowly warm to room temperature. Bases n-BuLi or s-BuLi were not used for metalation because of possible attack at the carbonyl group of the Boc group, which would regenerate phosphoramidate 10. Therefore, we opted for strong encumbered amide bases such as lithium 2,2,6,6-tetramethylpiperidide (LiTMP) and LDA. When LiTMP was reacted with 11 in THF for 2 h at -78 °C, phosphonate 12 was obtained in 55% yield by flash chromatography. Surprisingly, even LiTMP removed the Boc group from part of 11 so that phosphoramidate 10 was isolated in 30% yield as well. LDA as alternative base in Et₂O in combination with slowly warming the reaction mixture for 18 h furnished the same phosphonate in 62% yield and 10 as side product, too. These two experiments demonstrate that N-Boc-protected N-phenylphosphoramidate 11 can be rearranged by [1,3]-migration of phosphorus from the nitrogen to the carbon atom induced by strong lithium amide bases. Migration of the Boc group was not detected. We tested also 14a, the isopropyl analog of 10, as substrate for the rearrangement to optimize the reaction conditions (Scheme 4). It was prepared from aniline and diisopropyl bromophosphate [24] in 95% yield and then Boc-protected as before (92% yield). The rearrangement was performed in THF with three bases, s-BuLi/TMEDA, LDA, and LiTMP at -78 °C. The combination of s-BuLi with TMEDA delivered a mixture of recovered starting material 14a and Boc-deprotected 13a as crude product, which did not contain phosphonate 15a unexpectedly. The

Scheme 3 .

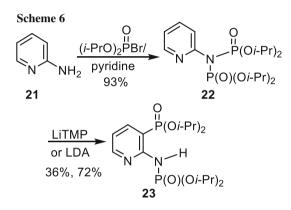
other two bases gave the desired phosphonate **15a** in 25 and 79% yield, respectively. In summary, these results demonstrated that *N*-Boc-protected *N*-arylphosphoramidates can be isomerized to *N*-Boc-protected *o*aminoarylphosphonates. As isopropyl protecting groups at the phosphorus atom seemed to shield it better than the ethyl groups and to give higher yields, all further experiments were performed with diisopropyl phosphoramidates.

In order to address the regioselectivity of metalation and expand the scope of the rearrangement, meta-substituted anilines 9b-9e were transformed into N-Boc-protected phosphoramidates 14b-14e by the previous methods in combined unoptimized yields ranging from 58 to 90% vield. All rearrangements were performed in THF with LiTMP as well as LDA, normally at -78 °C, sometimes for comparison reasons also at 0 °C, for 1 h in the majority of experiments (Table 1). Yields could possibly be increased by longer reaction times for certain substrates. Varying amounts of starting material 14 and the corresponding phosphoramidate 13 formed by base-catalyzed removal of Boc from 14 were present (TLC) in the crude reaction products, but were not isolated. In the case of the N-Boc-N-(m-chlorophenyl)phosphoramidate 14b the two phosphonates 15b and 16b were formed in yields of 55 and 35% for LiTMP as base at -78 °C and 55 and 32% for the same base at 0 °C, respectively. LDA delivered exclusively 15b in 96% yield, surprisingly. The preferred deprotonation ortho to both substituents might be explained by their additive acidifying and o-directing effect, although the bases were very encumbered. Consequently, the preferred

Table 1 [1,3]-Rearrangement of N-Boc-N-arylphosphoramidates14b-14e to N-Boc-protected o-aminoarylphosphonates15b-15e and16b-16e^a

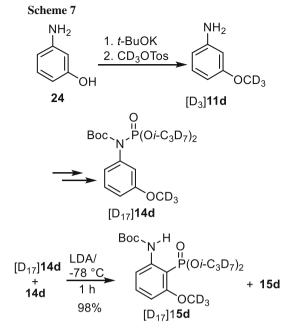

14	Base	<i>T</i> / °C	<i>t/</i> h	Yield/ % 15/16
b	LiTMP	-78	1	55/35
b	LiTMP	0	1	55/32
b	LDA	-78	1	96/0
c	LiTMP	-78	1	19/60
c	LiTMP	0	1	23/66
c	LDA	-78	1	4/78
d	LiTMP	-78	1	40/0
d	LDA	-78	1	67/0
e	LiTMP	-78	20	0/5
e	LiTMP ^b	-78	1	0/6

^a All reactions were performed in THF


^b Two equiv of TMEDA were present as well

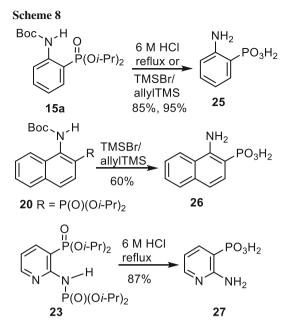
formation of phosphonates 15b is predetermined. When chloride as substituent was replaced by iodide being larger in size and lower in electronegativity compared to chloride, the quantity of phosphonate 16c (60 and 66%, see Table 1) outweighed those of 15c (19 and 23%) for LiTMP, independent of the reaction temperature. Remarkably, LDA delivered a yield of only 4% for 15c but 78% for 16c. The next two N-Boc-protected phosphoramidates, 14d and 14e, followed the expectations. The methoxy group with its strong ortho directing metalation effect in combination with the P=O group directed deprotonation exclusively to carbon atom 2, leading to the exclusive formation of phosphonate 15d. However, the methyl group which reduces the acidity of the hydrogen atoms in the phenyl ring and is additionally of significant size effected that the rearrangement of 14e furnished low yields of 16e (5 and 6%), despite a reaction time of 20 h with slow warming to room temperature. The main components of the crude product were starting material 14e and its precursor 13e formed by base-catalyzed removal of Boc.

Two more amines were transformed into *N*-protected phosphoramidates. 1-Naphthylamine was phosphorylated and *N*-Boc protected in the usual way to give compound **19**, which was smoothly subjected to the [1,3]-phosphoramidate–aminophosphonate rearrangement with LiTMP in Et₂O at -78 °C for 2 h (Scheme 5). The 2-napthylphosphonate **20** was isolated in 84% yield. The second amine was 2-aminopyridine (**21**), which was converted to diphosphoramidate **22** with 2 equiv of diisopropyl bromophosphate/excess pyridine in 72% yield in one step (Scheme 6). We found previously that two diethylphosphoryl groups at the nitrogen atom of benzyl amine allowed to perform a [1,2]-phosphoramidate- α -aminophosphonate rearrangement [22]. Here, LiTMP and LDA mediated a [1,3]-phosphoramidate-


Scheme 5 .

Scheme 6 .

aminophosphonate rearrangement of diphosphoramidate **22** to phosphonate **23** in yields of 36 and 72%, respectively.


When we started this project we surmised that the migration of phosphorus from the nitrogen to the carbon atom is an intramolecular process proceeding via a cyclic four-membered transition state. As it is unfavorable, we reasoned that the formal [1,3]-migration could also be exclusively or in part an intermolecular process with phenyllithium attacking at the electrophilic phosphorus atom of a second molecule. We conceived a crossover experiment with an equimolar mixture of deuterated and nondeuterated N-Boc-N-(3-methoxyphenyl)phosphoramidate, $[D_{17}]$ **14d** and **14d** (Scheme 7). The latter was synthesized from [D₃]methyl tosylate [25] and tris(heptadeuterioisopropyl) phosphite [24] by the methods used for the unlabeled species. The rearrangement of the 1:1 mixture furnished a 1:1 mixture of phosphonates 15d and $[D_{17}]$ **15d** in 98% yield. No phosphonates containing 3 or 14 deuterium atoms could be detected by EI-MS, indicative of an intermolecular transfer of the phosphorus atom with its labeled substituents. Therefore, the migration of the phosphorus atom from the nitrogen to the ortho-carbon atom in N-Boc-N-arylphosphoramidates proceeds exclusively intramolecularly and represents a [1,3]-sigmatropic

rearrangement. A modified crossover experiment was carried out by Heinicke et al. [26] demonstrating that aryl dialkyl phosphates isomerize to *o*-hydroxyphenylphosphonates intramolecularly.

o-Aminophenylphosphonic acid was tested for its anticholesterinase activity [27] and 2-amino-4methylphenylphosphonic acid for removing formaldehyde adducts [28] from RNA and DNA bases. The protected oaminoarylphosphonates prepared by [1,3]-migration of phosphorus can be deprotected to give o-aminoarylphosphonic acids as shown for three examples (Scheme 8). N-Boc-o-aminophenylphosphonate 15a was deprotected by refluxing with 6 M HCl or with TMSBr/allylTMS [29] in CH₂Cl₂ under milder conditions, resulting in a higher yield. The o-aminophenylphosphonic acid (25) was purified by cation exchange chromatography (Dowex 50 W \times 8, H⁺) and crystallization from water. 2-Naphthylphosphonate 20 had to be deprotected with TMSBr/allyITMS and crystallized from methanol because of its lability in hot water, where it decomposed to 1-naphthylamine (detected by TLC) and H₃PO₄ (detected by ³¹P NMR). Pyridin-3ylphosphonate 23 was converted to 2-amino-3-pyridin-3ylphosphonic acid (27) using refluxing 6 M HCl, followed by purification as for 25. Selective removal of the Boc group with CF₃CO₂H would give dialkyl *o*-aminophosphonates. As the amino group in aromatic compounds can be replaced by a variety of substituents, the globally or partially deprotected N-Boc-o-aminophoshonates prepared here are useful starting materials for other o-substituted phosphonic acid derivatives.

Conclusion

In summary, we have shown that arylamines can be easily converted to *N*-Boc-*N*-arylphosphoramides. Treatment with LiTMP or LDA mediated [1,3]-phosphoramidateaminophosphonate rearrangements. Three phosphonates were globally deprotected. This approach extends the scope for the synthesis of 2-amino-substituted phosphonic acids derived from aromatic and heteroaromatic amines. Additionally, selective removal of the Boc-protecting group will give a free amino group amenable to fuctional group manipulation and incorporation of the 2-aminophosphonates into peptides.

Experimental

NMR pectra (¹H, ¹³C, and ³¹P) were recorded in CDCl₃ or D₂O on a Bruker DRX 400 (¹H: 400.13 MHz, ¹³C: 100.61 MHz, ³¹P: 161.98 MHz), spectrometer at 25 °C, respectively. Chemical shifts δ (ppm) were referenced to residual CHCl₃ ($\delta_{\rm H} = 7.24$), CDCl₃ ($\delta_{\rm C} = 77.00$), HDO ($\delta_{\rm H} = 4.67$), and external H₃PO₄ (85%; $\delta_{\rm P} = 0.00$). IR spectra of compounds soluble in CDCl₃ or CH₂Cl₂ were recorded on a Perkin-Elmer FT 1600 IR Spectrometer. The solution was applied to a silicon disc [30] and the solvent was allowed to evaporate before the measurement. IR spectra of the aminophosphonic acids were recorded on a Perkin-Elmer Spectrum 2000 IR spectrometer in ATR mode. Melting points were determined on a Reichert Thermovar instrument. New compounds were checked for purity by means of appropriate combustion analysis results. Flash (column) chromatography was performed with Merck silica gel 60 (230–400 mesh). Thin layer chromatography (TLC) was carried out on 0.25 mm thick Merck plates, silica gel 60 F_{254} . Spots were visualized by UV and/or dipping the plate into a solution of (NH₄)₆. Mo₇O₂₄·4H₂O (24.0 g) and Ce(SO₄)₂·4H₂O (1.0 g) in 10% aqueous H₂SO₄ (500 cm³), followed by heating with a heat gun. Pyridine was dried by refluxing over powdered CaH₂, then distilled and stored over molecular sieves (4 Å). Dichloromethane was dried by storage over molecular sieves (3 Å). All other chemicals and solvents were of the highest purity available and used as received.

General procedure A—N-phosphorylation of aromatic amines with diisopropyl bromophosphate

A solution of bromine $(18 \text{ cm}^3, 18 \text{ mmol}, 1 \text{ M} \text{ in dry} \text{CH}_2\text{Cl}_2)$ was added dropwise to a stirred solution of 4.44 cm³ (*i*-PrO)₃P (3.75 g, 18 mmol) in 10 cm³ dry CH₂Cl₂ under Ar at -50 °C [24]. Stirring was continued for 30 min at 0 °C. After cooling again to -50 °C, a solution of aromatic amine (15 mmol) in 2 cm³ dry CH₂Cl₂ and 4.18 cm³ Et₃N (3.04 g, 30 mmol) was added. The reaction mixture was allowed to warm to RT (18 h). HCl (12 cm³, 2 M) and 20 cm³ water were added. The organic layer was separated and the aqueous one was extracted twice with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography and/or crystallization.

General procedure B—conversion of N-arylphosphoramidates to N-Boc-N-arylphosphoramidates

s-BuLi (5.14 cm³, 7.2 mmol, 1.4 M in cyclohexane) was added to a stirred solution of phosphoramidate (6 mmol) in 10 cm³ dry THF (or Et₂O) under Ar at -78 °C. After 15 min a solution of 1.44 g Boc₂O (6.6 mmol) in 5 cm³ dry THF (or Et₂O) was added. The reaction mixture was allowed to slowly warm to RT in the cooling bath (18 h). After the addition of 3 cm³ solution of AcOH in Et₂O (2 M) and 10 cm³ H₂O the organic phase was separated and the aqueous one extracted with CH₂Cl₂ (3 × 10 cm³). The combined organic layers were washed with a saturated aqueous solution of NaHCO₃, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography.

General procedure C—rearrangement of N-Boc-Narylphosphoramidates with lithium tetramethylpiperidide (LiTMP)

n-BuLi (0.94 cm³, 1.50 mmol, 1.6 M in hexane) was added to a stirred solution of 0.25 cm³ 2,2,6,6-tetramethylpiperidine (0.212 g, 1.5 mmol) in 8 cm³ dry THF (or Et₂O) at 0 °C under Ar. Stirring was continued for 30 min at 0 °C. Subsequently, the mixture was cooled at -78 °C and a solution of *N*-Boc-*N*-arylphosphoramidate (1 mmol) dissolved in 2 cm³ dry THF (or Et₂O) was added. After stirring for 2 h at -78 °C the reaction was quenched with 1 cm³ AcOH (2 M in Et₂O) and 5 cm³ H₂O. The organic layer was separated and the aqueous one was extracted twice with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography.

General procedure D—rearrangement of N-Boc-Narylphosphoramidates with LDA

s-BuLi (1.07 cm³, 1.5 mmol, 1.4 M in hexane) was added to a stirred solution of 0.21 cm³ diisopropylamine (0.152 g, 1.5 mmol) in 5 cm³ dry Et₂O (or THF) at -20 °C under Ar. Stirring was continued for 20 min. Subsequently, a solution of *N*-Boc-*N*-arylphosphoramidate (1 mmol) dissolved in 2 cm³ dry Et₂O was added. The stirred solution was allowed to slowly warm to RT (20 h) and then the reaction was quenched with 2 cm³ AcOH (2 M in Et₂O) and 5 cm³ H₂O. The organic layer was separated and the aqueous one was extracted twice with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography.

Diethyl N-phenylphosphoramidate (10)

Diethyl chlorophosphate (3.451 g, 2.89 cm³, 20 mmol) was added to a stirred solution of 1.83 cm³ aniline (1.862 g, 20 mmol) and 3.35 cm³ Et₃N (2.429 g, 24 mmol) in 36 cm³ dry CH₂Cl₂ under Ar at RT. After stirring for 19 h at RT the reaction was quenched with 20 cm³ H₂O. The organic layer was separated and the aqueous one was extracted twice with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by crystallization from hexanes to give 3.79 g phosphoaramidate **10** (83%) as colorless crystals. M.p.: 93–94 °C (Ref. [31] 94–95 °C).

Diethyl *N*-phenylphosphoramidate (10, 1.15 g, 5 mmol) was converted to the N-Boc derivative in THF and purified by flash chromatography (hexanes/EtOAc = 1/2, $R_f = 0.45$) to give 1.55 g N-Boc-phosphoramidate 11 (94%) as a colorless oil. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.253$ (dt, J = 1.0, 7.1 Hz, 3H), 1.251 (dt, J = 1.0, 7.1 Hz, 3H), 1.47 (br. s, 9H), 4.07 (m, 2H), 4.17 (m, 2H), 7.23 (m, 2H), 7.29 (m, 1H), 7.36 (m, 2H) ppm; ¹³C NMR $(100.61 \text{ MHz}, \text{CDCl}_3)$: $\delta = 15.8 \text{ (d, } J = 7.7 \text{ Hz}, 2\text{C}), 27.8$ (3C), 63.7 (d, J = 6.1 Hz, 2C), 82.6, 127.5 (d, J = 1.5 Hz), 128.7 (2C), 128.8 (d, J = 2.3 Hz, 2C), 138.1, 153.2 (d, J = 8.4 Hz) ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 0.2$ ppm; IR (Si, CDCl₃):

 $\bar{V} = 2982, 1728, 1492, 1369, 1302, 1160, 1099, 1028, 983 \text{ cm}^{-1}.$

Diethyl 2-(t-butoxycarbonylamino)phenylphosphonate (**12**, C₁₅H₂₄NO₅P)

Diethyl N-Boc-N-phenylphosphoramidate (11, 0.329 g, 1 mmol) was rearranged according to general procedure C in THF and flash chromatogaphed (hexanes/EtOAc = 3/1, $R_f = 0.45$) to give 0.182 g 2-(N-Boc-amino)phenylphosphonate 12 (55%) as a colorless oil and 0.078 g phosphoramidate 10 (30%). When 11 (0.329 g, 1 mmol) was rearranged according to general procedure D in Et₂O and flash chromatographed (hexanes/EtOAc = 3/1), the vield of phosphonate 12 was 0.203 g (62%). ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.30$ (t, J = 7.1 Hz, 6H), 1.49 (s, 9H), 4.03 (m, 2H), 4.12 (m, 2H), 7.01 (ddt, J = 1.0, 3.0,7.7 Hz, 1H), 7.47 (ddt, J = 1.5, 7.3, 7.7 Hz, 1H), 7.52 (ddd, J = 1.5, 7.7, 14.4 Hz, 1H), 8.32 (ddd, J = 1.0, 7.3)7.8 Hz, 1H), 9.61 (br. s, 1H) ppm; ¹³C NMR (100.61 MHz, $CDCl_3$): $\delta = 16.2$ (d, J = 6.9 Hz, 2C), 28.3 (3C), 63.2 (d, J = 5.5 Hz, 2C), 80.4, 112.9 (d, J = 179.7 Hz), 119.2 (d, J = 11.5 Hz), 121.7 (d, J = 13.8 Hz), 132.6 (d. 133.9 (d, J = 2.2 Hz), J = 6.1 Hz), 143.4 (d, J = 7.7 Hz), 153.0 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 34.1$ ppm; IR (Si, CDCl₃): $\bar{V} = 3247$, 3117, 2981, 1732, 1587, 1538, 1443, 1305, 1243, 1160, 1094, 1044, $1022, 972 \text{ cm}^{-1}.$

Diisopropyl N-phenylphosphoramidate

(13a, C₁₂H₂₀NO₃P)

Aniline (1.40 g, 1.37 cm³, 15 mmol) was phosphorylated according to general procedure A and flash chromatographed (hexanes/EtOAc = 1/1, $R_f = 0.68$) to yield 3.65 g phosphoramidate **13a** (95%) as colorless crystals. M.p.: 120–121 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.19$ (d, J = 6.3 Hz, 6H), 1.36 (d, J = 6.3 Hz, 6H), 4.66 (dsept, J = 6.3, 7.6 Hz, 2H), 6.22 (br. s, 1H), 6.90 (tt, J = 1.0, 7.6 Hz, 1H), 6.97 (m, 2H), 7.20 (br. t, J = 7.6 Hz, 2H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.5$ (d, J = 5.4 Hz, 2C), 23.9 (d, J = 4.6 Hz, 2C), 71.6 (d, J = 5.4 Hz, 2C), 117.4 (d, J = 7.7 Hz, 2C), 121.2, 129.0 (2C), 140.2 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 1.3$ ppm; IR (Si): $\bar{V} = 3161$, 2981, 2919, 1604, 1504, 1426, 998, 963 cm⁻¹.

Diisopropyl N-(t-butoxycarbonyl)-N-phenylphosphoramidate (**14a**, C₁₇H₂₈NO₅P)

Diisopropyl *N*-(phenyl)phosphoramidate (**13a**, 2.01 g, 7.81 mmol) was converted to the *N*-Boc derivative in 15 cm³ dry Et₂O according to general procedure B. The crude product was purified by flash chromatography (CH₂Cl₂/EtOAc = 7/1, R_f = 0.40) to give 2.57 g *N*-Boc-*N*-phenylphosphoramidate **14a** (92%) as a colorless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.16 (d, *J* = 6.3 Hz, 6H),

1.31 (d, J = 6.3 Hz, 6H), 1.45 (s, 9H), 4.70 (dsept, J = 6.3, 7.3 Hz, 2H), 7.19 (m, 2H), 7.27 (m, 1H), 7.33 phoramide (m, 2H) ppm; ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 23.3$ (d, Diisoprop J = 6.1 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 28.0 (3C), 72.8 1.46 g, 5

(iii, 21) ppin, C NMR (100.6 MHz, CDCl₃). $\delta = 23.3$ (d, J = 6.1 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 28.0 (3C), 72.8 (d, J = 6.1 Hz, 2C), 82.7, 127.5 (d, J = 1.5 Hz, 2C), 128.8, 129.1 (d, J = 2.3 Hz, 2C), 138.8, 153.6 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 11.6$ ppm; IR (Si, CDCl₃): $\bar{V} = 2981$, 1729, 1492, 1386, 1370, 1299, 1259, 1161, 1097, 1002 cm⁻¹.

Diisopropyl 2-(t-butoxycarbonylamino)phenylphosphonate (**15a**, C₁₇H₂₈NO₅P)

Diisopropyl N-(t-butoxycarbonyl)-N-phenylphosphoramidate (14a, 0.514 g, 1.44 mmol) was converted to phenylphosphonate 15a by general procedure C in THF. The crude product was purified by flash chromatography (hexanes/EtOAc = 5/1, $R_f = 0.64$) to give 0.404 g phosphonate 15a (79%) as a colorless oil. Rearrangement of 0.514 g phosphoramidate 14a (1.44 mmol) according to general procedure D in THF and flash chromatography (hexanes/EtOAc = 3/1, $R_f = 0.60$) of the crude product furnished 0.128 g phosphonate 15a (25%). ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.20$ (d, J = 6.3 Hz, 6H), 1.36 (d, J = 6.3 Hz, 6H), 1.49 (s, 9H), 4.64 (dsept, J = 6.3, 7.6 Hz, 2H), 7.00 (ddt, J = 1.0, 3.0, 7.7, 1H), 7.45 (ddt, J = 1.5, 7.3, 7.7 Hz, 1H), 7.55 (ddt, J = 1.5, 7.7, 14.6 Hz, 1H), 8.28 (ddd, J = 1.0, 7.3, 7.5 Hz, 1H), 9.56 (br. s, 1H) ppm; ¹³C NMR (100.63 MHz, CDCl₃): $\delta = 23.7$ (d, J = 4.6 Hz, 2C), 24.0 (d, J = 3.8 Hz, 2C), 28.3 (3C), 71.4 (d, J = 5.4 Hz, 2C), 80.3, 114.8 (d, J = 181.3 Hz), 119.2(d, J = 11.5 Hz), 121.6 (d, J = 13.8 Hz), 132.8 (d, J = 6.1 Hz), 133.6 (d, J = 2.3 Hz), 142.8 (d, J = 6.9 Hz), 153.0 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 31.9$ ppm; IR (Si, CDCl₃): $\overline{V} = 3247$, 1732, 1587, 1305, 1243, 1160, 985 cm^{-1} .

Diisopropyl N-(3-chlorophenyl)phosphoramidate (**13b**, C₁₂H₁₉ClNO₃P)

3-Chloroaniline (1.021 g, 0.84 cm³, 8 mmol) was converted to (3-chlorophenyl)phosphoramidate 13b according to general procedure A. The crude product was purified by flash chromatography (hexanes/EtOAc = 2/1, $R_f = 0.18$) to give 2.22 g phosphoramidate 13b (95%) as colorless crystals. M.p.: 121–122 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.21$ (d, J = 6.3 Hz, 6H), 1.37 (d, J = 6.3 Hz, 6H), 4.66 (dsept, J = 6.3, 7.6 Hz, 2H), 6.87 (m, 2H), 6.90 (br. s, 1H), 7.01 (t, J = 2.0 Hz, 1H), 7.11 (t, J = 8.1 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.5$ (d, J = 5.4 Hz, 2C), 23.8 (d, J = 4.6 Hz, 2C), 71.9 (d, J = 5.4 Hz, 2C), 115.5 (d, J = 7.6 Hz), 117.4 (d, J = 7.6 Hz), 121.2, 130.0, 134.7, 141.7 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 0.8$ ppm; IR (Si): $\bar{V} = 3153$, 2980, 1599, 1498, 1481, 1388, 1225, 995 cm⁻¹.

Diisopropyl N-(t-butoxycarbonyl)-N-(3-chlorophenyl)phosphoramidate (**14b**, C₁₇H₂₇ClNO₅P)

Diisopropyl N-(3-chlorophenyl)phosphoramidate (13b, 1.46 g, 5 mmol) was converted to N-Boc derivative 14b in Et₂O, using general procedure B. The crude product was purified by flash chromatography (hexanes/EtOAc = 1/1, $R_f = 0.48$) to give 1.36 g N-Boc-phosphormadiate 14b (69%) as colorless crystals. M.p.: 80 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.21$ (d, J = 6.3 Hz, 6H), 1.33 (d, J = 6.3 Hz, 6H), 1.45 (s, 9H), 4.71 (dsept, J = 6.3, 7.1 Hz, 2H), 7.11 (m, 1H), 7.21 (m, 1H), 7.26 (m, 2H) ppm; ¹³C NMR (100.65 MHz, CDCl₃): $\delta = 23.4$ (d, J = 5.4 Hz, 2C), 23.9 (d, J = 4.6 Hz, 2C), 28.0 (3C), 73.0 (d, J = 6.1 Hz, 2C), 83.1, 127.5 (d, J = 2.3 Hz), 127.8, 129.5 (d, J = 2.3 Hz), 129.7, 134.1, 139.9, 153.2 (d, J = 7.7 Hz) ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = -2.4$ ppm; IR (Si, CDCl₃): $\bar{V} = 2981$, 1729, 1302, 1267, 1159, 1000 cm^{-1} .

Diisopropyl (2-t-butoxycarbonylamino-6-chlorophenyl)phos phonate and diisopropyl (2-t-butoxycarbonylamino-4chlorophenyl)phosphonate (15b and 16b, C₁₇H₂₇ClNO₅P) N-(t-Butoxycarbonyl)-N-(3-chlorophenyl)phosphoramidate (14b, 0.392 g, 1 mmol) was rearranged in THF according to general procedure C for 1 h at -78 °C. The crude product was purified by flash chromatography (hexanes/ EtOAc = 5/1, **15b**: $R_f = 0.70$, **16b**: $R_f = 0.60$) to give 0.216 g phosphonate 15b (55%) as colorless crystals, m.p.: 70-75 °C (hexanes), and 0.137 g phosphonate 16b (35%) as colorless oil. When the same experiment was performed according to general procedure C for 1 h at 0 °C, 0.215 g 15b (55%) and 0.125 g 16b (32%) were obtained. When 392 mg N-(t-butoxycarbonyl)-N-(3-chlorophenyl)phosphoramidate (14b, 1 mmol) was rearranged according to general procdure D in THF for 1 h at -78 °C, 0.377 g phosphonate 15b (96%) was obtained.

15b: ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.23$ (d, J = 6.3 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H), 1.50 (s, 9H), 4.68 (dsept, J = 6.3, 7.8 Hz, 2H), 7.01 (ddd, J = 1.0, 4.3, 7.8 Hz, 1H), 7.33 (br. t, J = 8.3 Hz, 1H), 8.41 (ddd, J = 1.0, 5.6, 8.6 Hz, 1H), 11.11 (s, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.5$ (d, J = 4.6 Hz, 2C), 23.9 (d, J = 4.6 Hz, 2C), 28.3 (3C), 72.2 (d, J = 6.1 Hz, 2C), 80.4, 112.1 (d, J = 179.7 Hz), 117.2 (d, J = 10.7 Hz), 124.0 (d, J = 9.9 Hz), 133.7 (d, J = 1.5 Hz), 137.9, 146.3 (d, J = 6.1 Hz), 153.2 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 15.4$ ppm; IR (Si, CDCl₃): $\bar{V} = 2981$, 1732, 1582, 1444, 1397, 1298, 1269, 1239, 1160, 1124, 1061, 995 cm⁻¹.

16b: ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.18$ (d, J = 6.1 Hz, 6H), 1.33 (d, J = 6.1 Hz, 6H), 1.47 (s, 9H), 4.61 (dsept, J = 6.1, 7.8 Hz, 2H), 6.96 (dt, J = 1.8, 8.3 Hz, 1H), 7.43 (dd, J = 8.3, 14.4 Hz, 1H), 8.40 (dd,

J = 1.8, 5.8 Hz, 1H), 9.71 (br.s, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.6$ (d, J = 5.4 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 28.2 (3C), 71.6 (d, J = 5.4 Hz, 2C), 80.8, 112.8 (d, J = 183.6 Hz), 118.9 (d, J = 11.5 Hz), 121.8 (d, J = 14.5 Hz), 133.8 (d, J = 6.9 Hz), 139.9 (d, J = 3.8 Hz), 143.9 (d, J = 8.4 Hz), 152.6 ppm; ³¹P NMR (162.0 MHz, CDCl₃): $\delta = 17.7$ ppm; IR (Si, CDCl₃): $\bar{V} = 3233, 2981, 1732, 1599, 1577, 1520, 1411, 1275, 1240, 1160, 1077, 987 cm⁻¹.$

Diisopropyl N-(3-iodophenyl)phosphoramidate (**13c**, C₁₂H₁₉INO₃P)

Iodoaniline (1.752 g, 0.95 cm³, 8 mmol) was converted to N-(2-iodophenyl)phosphoramidate **13c**. The crude product was purified by flash chromatography (hexanes/ EtOAc = 1/1, $R_f = 0.51$) to give 2.60 g phosphoramidate 13c (85%) as colorless crystals. M.p.: 136-137 °C (hexanes): ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.22$ (d, J = 6.3 Hz, 6H), 1.37 (d, J = 6.3 Hz, 6H), 4.67 (dsept, J = 6.3, 7.6 Hz, 2H), 6.24 (br. d, J = 8.8 Hz, 1H), 6.90 (dt, J = 1.8, 7.8 Hz, 1H), 7.03 (dt, J = 1.8, 7.8 Hz, 1H),7.06 (t, J = 7.8 Hz, 1H), 7.14 (t, J = 1.8 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.6$ (d, J = 5.4 Hz, 2C), 23.8 (d, J = 4.6 Hz, 2C), 72.0 (d, J = 4.6 Hz, 2C), 116.0 (d, J = 7.7 Hz), 120.3 (d, J = 7.7 Hz), 122.8, 124.3, 130.4, 141.6 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 0.4$ ppm; IR (Si): $\bar{V} = 3148$, 2979, 1581, 1480, $1220, 994, 974 \text{ cm}^{-1}.$

n-BuLi (1.63 cm³, 2.6 mmol, 1.6 M in hexane) was added to a stirred solution of 0.44 cm³ TMP (0.367 g, 2.6 mmol) in 4.5 cm³ dry THF at 0 °C under argon. After stirring for 15 min at 0 °C a solution of 0.39 cm³ TMEDA (0.302 g, 2.6 mmol) was added and stirring was continued for 15 min. Then, the mixture was cooled at -78 °C and a solution of 0.990 g N-(3-iodophenyl)phosphoramidate 13c (2.6 mmol) dissolved in 2 cm^3 dry THF was added, followed 15 min later by 0.567 g Boc₂O (2.6 mmol) dissolved in 2 cm³ dry THF. The stirred solution was allowed to warm to RT (20 h) and then the reaction was quenched with 1.5 cm³ AcOH (2 M in dry Et₂O) and $5 \text{ cm}^3 \text{ H}_2\text{O}$. The organic layer was separated and the aqueous one was extracted twice with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography ($CH_2Cl_2/EtOAc = 7/1$, $R_f = 0.31$) to give 0.850 g N-Boc-phospharamidate 14c (68%) as colorless crystals. M.p.: 75–77 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.20$ (d, J = 6.3 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H), 1.45 (s, 9H), 4.71 (dsept, J = 6.3, 7.1 Hz, 2H), 7.06 (t, J = 7.8 Hz, 1H), 7.18 (ddt,

 $J = 1.0, 1.7, 7.8 \text{ Hz}, 1\text{H}), 7.55 \text{ (dt, } J = 1.0, 1.7 \text{ Hz}, 1\text{H}), 7.61(\text{dq}, J = 1.0, 7.8 \text{ Hz}, 1\text{H}) \text{ ppm;} ^{13}\text{C} \text{ NMR} (100.61 \text{ MHz}, \text{ CDCl}_3): \delta = 23.4 \text{ (d, } J = 6.1 \text{ Hz}, 2\text{C}), 23.9 \text{ (d, } J = 3.8 \text{ Hz}, 2\text{C}), 28.0 \text{ (3C)}, 73.1 \text{ (d, } J = 6.1 \text{ Hz}, 2\text{C}), 83.1, 93.3, 128.6 \text{ (d, } J = 2.3 \text{ Hz}), 130.2, 136.6, 138.1 \text{ (d, } J = 2.3 \text{ Hz}), 139.9, 153.2 \text{ (d, } J = 7.6 \text{ Hz}) \text{ ppm;} ^{31}\text{P} \text{NMR} (161.98 \text{ MHz}, \text{ CDCl}_3): \delta = -2.4 \text{ ppm;} \text{ IR} \text{ (Si):} \bar{V} = 2980, 2930, 1727, 1300, 1159, 1098, 1002 \text{ cm}^{-1}.$

Diisopropyl (2-t-butoxycarbonylamino-6-iodophenyl)- and diisopropyl (2-t-butoxycarbonylamino-4-iodophenyl)phosphonate (**15c** and **16c**, $C_{17}H_{27}INO_5P$)

N-(*t*-Butoxycarbonyl)-*N*-(3-iodophenyl)phosphoramidate (**14c**, 0.483 g, 1.0 mmol) was rearranged according to general procedure C in THF at -78 °C for 1 h. The crude product was purified by flash chromatography (hexanes/ EtOAc = 5/1, **15c**: $R_f = 0.62$, **16c**: $R_f = 0.53$) to give 0.093 g **15c** (19%) as colorless crystals, m.p.: 75–77 °C (hexanes), and 0.288 g **16c** (60%) as a colorless oil. When this experiment was repeated except that the rearrangement was perfomed at 0 °C for 1 h, 0.112 g **15c** (23%) and 0.319 g **16c** (66%) were obtained. When 0.483 g *N*-Bocphosphoramidate **14c** (1 mmol) was rearranged according to general procedure D in THF at -78 °C for 1 h, 0.019 g **15c** (4%) and 0.376 g **16c** (78%) were obtained.

15c: ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.28$ (d, J = 6.3 Hz, 6H), 1.41 (d, J = 6.3 Hz, 6H), 1.49 (s, 9H), 4.71 (dsept, J = 6.3, 7.3 Hz, 2H), 7.01 (dd = \sim t, J = 7.8, 8.6 Hz, 1H), 7.66 (ddd, J = 1.0, 3.4, 7.8 Hz, 1H), 8.48 (ddd, J = 1.0, 5.6, 8.6 Hz, 1H), 11.16 (br. s, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.7$ (d, J = 4.6 Hz, 2C), 24.0 (d, J = 4.6 Hz, 2C), 28.4 (3C), 72.5 (d, J = 4.4 Hz, 2C), 80.4, 99.1 (d, J = 1.5 Hz), 116.8 (d, J = 182.8 Hz), 118.8 (d, J = 10.7), 133.8 (d, J = 2.3 Hz), 135.9 (d, J = 11.5 Hz), 146.4 (d, J = 7.7 Hz), 153.2 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 15.1$ ppm; IR (Si, CDCl₃): $\bar{V} = 2980, 1731, 1577, 1437, 1388, 1252, 1160, 1116, 1059, 993 cm⁻¹.$

16c: ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.19$ (d, J = 6.3 Hz, 6H), 1.35 (d, J = 6.3 Hz, 6H), 1.49 (s, 9H), 4.62 (dsept, J = 6.3, 7.8 Hz, 2H), 7.13 (~dt, J = 2.0, 8.3, 1H), 7.37 (dd, J = 8.3, 14.4, 1H), 8.57 (dd, J = 1.5, 5.8, 1H), 9.70 (bs, 1H, NH) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 24.1$ (d, J = 5.4 Hz, 2C), 24.4 (d, J = 3.8 Hz, 2C), 28.7 (3C), 71.7 (d, J = 5.4 Hz, 2C), 80.8, 113.3 (d, J = 183.6 Hz), 121.8 (d, J = 11.5 Hz), 124.7 (d, J = 14.5 Hz), 128.5 (d, J = 3.8 Hz), 133.8 (d, J = 6.9 Hz), 143.8 (d, J = 7.7 Hz), 152.7 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 17.8$ ppm; IR (Si, CDCl₃): $\bar{V} = 3233$, 2980, 1731, 1594, 1575, 1408, 1274, 1238, 1160, 1073, 987 cm⁻¹.

$\label{eq:listopropyl} \begin{array}{l} \textit{N-(3-methoxyphenyl)phosphoramidate} \\ \textbf{(13d, } C_{13}H_{22}NO_4P) \end{array}$

3-Methoxyaniline (0.985 g, 0.90 cm³, 8 mmol) was converted to phosphoramidate 13d according to general procedure A. The crude product was purified by flash chromatography (CH₂Cl₂/EtOAc = 10/1, $R_f = 0.08$) to give 2.21 g 13d (96%) as colorless crystals. M.p.: 139-141 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.22$ (d, J = 6.3 Hz, 6H), 1.36 (d, J = 6.3 Hz, 6H), 3.75 (s, 3H), 4.66 (dsept, J = 6.3, 7.6 Hz, 2H), 5.55 (br. d, J = 9.1 Hz, 1H), 6.47 (ddd, J = 1.0, 2.0, 8.0 Hz, 1H), 6.53 (m, 2H), 7.10 (t, J = 8.1 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.6$ (d, J = 5.4 Hz, 2C), 23.9 (d, J = 4.6 Hz, 2C), 55.2, 71.8 (d, J = 4.6 Hz, 2C), 103.4 (d, J = 7.7 Hz), 106.9, 110.0 (d, J = 7.7 Hz), 129.9, 141.2, 160.4 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 0.7$ ppm; IR (Si): $\overline{V} = 3169$, 2979, 1608, 1488, 1408, 1277, 1233, 1161, 1054, 982 cm^{-1} .

Diisopropyl N-(t-butoxycarbonyl)-N-(3-methoxyphenyl)phosphoramidate (14d, C₁₈H₃₀NO₆P)

Diisopropyl N-(3-methoxyphenyl)phosphoramidate (13d, 1.436 g, 5 mmol) was converted to N-Boc derivative 14d by general procedure B in Et₂O at -78 °C. The crude product was flash chromatographed (EtOAc, $R_f = 0.60$) to give 1.78 g 14d (92%) as a colorless oil. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.17$ (d, J = 6.3 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H), 1.46 (s, 9H), 3.77 (s, 3H), 4.70 (dsept, 3.77 (s, 3)))J = 6.3, 7.6 Hz, 2H), 6.75 (m, 1H), 6.81 (m, 2H), 7.23 (t, J = 8.1 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.3$ (d, J = 6.1 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 28.0 (3C), 55.3, 72.9 (d, J = 6.1 Hz, 2C), 82.8, 113.3, 115.1 (d, J = 2.3 Hz), 121.5 (d, J = 1.5 Hz), 129.4, 139.7 (d, J = 2.3 Hz), 153.5 (d, J = 8.4 Hz), 159.9 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = -1.9$ ppm; IR (Si, $CDCl_3$): $\bar{V} = 2981, 1729, 1605, 1492, 1370, 1302, 1257,$ 1163, 1097, 1008 $\rm cm^{-1}$.

Diisopropyl (2-t-butoxycarbonylamino-6-methoxyphenyl)phosphonate (**15d**, C₁₈H₃₀NO₆P)

N-(t-Butoxycarbonyl)-N-(3-methoxyphenyl)phosphoramidate (14d, 0.387 g, 1 mmol) was rearranged by general procedure C in THF at -78 °C for 1 h. The crude product was flash chromatographed (hexanes/EtOAc = 5/1, $R_f = 0.61$) to give 0.156 g **15d** (40%) as colorless crystals, m.p.: 85-87 °C (hexanes). When 0.387 g 14d (1 mmol) was rearranged by general procedure D in THF at -78 °C for 1 h 0.260 g phosphonate **15d** (67%) was obtained. 1 H NMR (400.13 MHz, CDCl₃): $\delta = 1.15$ (d, J = 6.1 Hz, 6H), 1.34 (d, J = 6.1 Hz, 6H), 1.49 (s, 9H), 3.80 (s, 3H), 4.59 (dsept, J = 6.1, 8.3 Hz, 2H), 6.50 (ddd, J = 0.8, 5.3,8.4 Hz, 1H), 7.38 (t, J = 8.4 Hz, 1H), 8.06 (ddd, J = 0.8, 5.8, 8.4 Hz, 1H), 11.00 (s, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.5$ (d, J = 4.6 Hz, 2C),

24.0 (d, J = 4.6 Hz, 2C), 28.4 (3C), 55.5, 71.0 (d, J = 5.4 Hz), 79.9, 101.8 (d, J = 175.2 Hz), 104.1(d, J = 8.4 Hz), 111.3 (d, J = 11.5 Hz), 134.6, 145.7 (d, J = 5.4 Hz), 153.3, 162.2 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 17.9$ ppm; IR (Si, CDCl₃): $\bar{V} = 3172$, 3085, 2980, 1729, 1603, 1586, 1469, 1413, 1268, 1241, 1204, 1161, 1046, 995 cm⁻¹.

Diisopropyl N-(3-methylphenyl)phosphoramidate (**13e**, C₁₃H₂₂NO₃P)

m-Toluidine (0.857 g, 0.86 cm³, 8 mmol) was converted to phosphoramidate 13e by general procedure A. The crude product was flash chromatographed ($CH_2Cl_2/EtOAc = 1/$ 1, $R_f = 0.56$) and gave 1.98 g **13e** (91%) as colorless M.p.: 90-93 °C (hexanes); $^{1}\mathrm{H}$ NMR crystals. (400.13 MHz, CDCl₃): $\delta = 1.20$ (d, J = 6.3 Hz, 6H), 1.36 (d, J = 6.3 Hz, 6H), 2.27 (s, 3H), 4.65 (dsept, J = 6.3, 7.8 Hz, 2H), 5.68 (br. d, J = 9.1 Hz, 1H), 6.73 (d, J = 7.3 Hz, 1H), 6.76 (s, 1H), 6.77 (d, J = 7.3 Hz, 1H), 7.09 (t, J = 7.3 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 21.5$, 23.6 (d, J = 5.4 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 71.6 (d, J = 4.6 Hz, 2C), 114.4 (d, J = 6.9 Hz), 118.1 (d, J = 7.4 Hz), 122.2, 128.9, 139.0, 139.9 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 1.2$ ppm; IR (Si): $\bar{V} = 3172$, 2980, 1610, 1595, 1487, 1387, 1231, 1176, 990 cm^{-1} .

Diisopropyl-N-(t-butoxycarbonyl)-N-(3-methylphenyl)phos-phoramidate (14e, $C_{18}H_{30}NO_5P$)

Diisopropyl *N*-(3-methylphenyl)phosphoramidate (13e, 1.36 g, 5 mmol) was converted to N-Boc phosphoramdiate 14e by general procedure B in Et₂O. The crude product was flash chromatographed (hexanes/EtOAc = 1/1, $R_f = 0.55$) and delivered 1.69 g 14e (91%) as colorless crystals. M.p.: 54–55 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.17$ (d, J = 6.3 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H), 1.46 (s, 9H), 2.32 (s, 3H), 4.69 (dsept, J = 6.3, 7.1 Hz, 2H), 6.99 (br. d, J = 7.6 Hz, 1H), 7.00 (br. s, 1H), 7.07 (br. d, J = 7.6 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 21.2$, 23.3 (d, J = 6.1 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 28.1 (3C), 72.7 (d, J = 5.4 Hz, 2C), 82.6, 126.0 (d, J = 1.5 Hz), 128.4, 128.6, 129.7 (d, J = 2.3 Hz), 138.6 (d, J = 2.3 Hz), 138.7, 153.7 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = -1.7$ ppm; IR (Si, CDCl₃): $\bar{V} = 2981$, 1729, 1386, 1369, 1300, 1256, 1160, 1098, 1001 cm^{-1} .

Diisopropyl (2-t-butoxycarbonylamino-4-methylphenyl)phosphonate (**16e**, C₁₈H₃₀NO₅P)

Diisopropyl N-(*t*-butoxycarbonyl)-N-(3-methylphenyl)phosphoramidate (**14e**, 0.743 g, 2 mmol) was rearranged to N-Boc phosphonate **16e** according to general procedure C in THF for 5 h. The crude product, which contained a large amount of starting material, was flash chromatographed

(hexanes/EtOAc = 7/1, $R_f = 0.27$) and furnished 0.038 g 16e (5%) as a colorless oil. When this experiment (1 mmol) was repeated, except that 0.3 cm³ TMEDA (2 mmol) was added before cooling to -78 °C and that the reaction mixture was allowed to warm to RT within 5 h, 0.024 g N-Boc phosphonate **16e** (6%) was obtained as colorless oil. ¹H NMR $(400.13 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.18 (d, J = 6.3 \text{ Hz}, 6\text{H}), 1.34 (d, J = 6.3 \text{ Hz}, 6\text{H})$ J = 6.3 Hz, 6H), 1.49 (s, 9H), 2.33 (s, 3H), 4.60 (dsept, J = 6.3, 7.8 Hz, 2H), 6.81 (br. d, J = 7.8 Hz, 1H), 7.42 (dd, J = 7.8 Hz, 1H), 8.12 (d, J = 6.3 Hz, 1H), 9.55 (s, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 22.0$, 23.6 (d, J = 5.4 Hz, 2C), 24.0 (d, J = 3.8 Hz, 2C), 28.3 (3C), 71.2 (d, J = 5.4 Hz, 2C), 80.2, 111.6 (d, J = 184.3 Hz), 120.9 (d, JJ = 11.5 Hz), 122.6 (d, J = 14.5 Hz), 132.7 (d, J = 6.9 Hz), 142.7 (d, J = 7.6 Hz), 144.5 (d, J = 2.3 Hz), 153.0 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 19.1$ ppm; IR (Si, CDCl₃): $\bar{V} = 3247, 2980, 1731, 1580, 1244, 1162, 1089, 985 \text{ cm}^{-1}.$

Diisopropyl N-(1-naphthyl)phosphoramidate (**18**, C₁₆H₂₂NO₃P)

1-Naphthylamine (1.146 g, 8.0 mmol) was converted to phosphoramdiate **18** by general procedure A. The crude product was purified by flash chromatography (hexanes/ EtOAc = 2/1, $R_f = 0.30$) and delivered 1.21 g **18** (49%) as colorless crystals. M.p.: 149 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.18$ (d, J = 6.1 Hz, 6H), 1.38 (d, J = 6.1 Hz, 6H), 4.71 (dsept, J = 6.1, 7.6 Hz, 2H), 5.71 (d, J = 7.8 Hz, 1H), 7.36 (m, 2H), 7.49 (m, 3H), 7.82 (m, 1H), 7.90 (m, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.6$ (d, J = 5.4 Hz, 2C), 23.9 (d, J = 3.8 Hz, 2C), 71.9 (d, J = 5.4 Hz, 2C), 114.0 (d, J = 2.3 Hz), 120.0, 122.3, 125.1 (d, J = 9.9 Hz), 125.9, 125.9, 126.0, 128.8, 134.3, 135.0 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 1.5$ ppm; IR (Si): $\bar{V} = 2979$, 1470, 1244, 991 cm⁻¹.

Diisopropyl N-(t-butoxycarbonyl)-N-(1-naphthyl)phosphoramidate (**19**, C₂₁H₃₀NO₅P)

Diisopropyl N-(1-naphthyl)phosphoramidate (18, 0.922 g, 3.0 mmol) was converted to Boc derivative 19 by general procedure B in Et₂O. The crude product was purified by flash chromatography (CH₂Cl₂/EtOAc = 10/1, $R_f = 0.35$) and gave 0.960 g 19 (79%) as brownish oil. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 0.89$ (d, J = 6.1 Hz, 3H), 1.11 (d, J = 6.1 Hz, 3H), 1.25 (d, J = 6.1 Hz, 3H), 1.28 (d, J = 6.1 Hz, 3H), 1.40 (s, 9H), 4.62 (dsept, J = 6.1, 7.1 Hz, 1H), 4.72 (dsept, J = 6.1, 7.1 Hz, 1H), 7.38 (td, J = 7.3, 1.5 Hz, 1H), 7.44 (dd, J = 7.7, 7.3 Hz, 1H), 7.46 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.52 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H)1.5 Hz, 1H), 7.79 (br. d, J = 8.3 Hz, 1H), 7.82 (br. d, J = 7.7 Hz, 1H), 8.02 (br. d, J = 8.6 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 22.9$ (d, J = 6.9 Hz), 23.3 (d, J = 6.9 Hz), 23.8 (d, J = 3.1 Hz), 24.0 (d, J = 3.1 Hz), 27.9 (3C), 73.0 (d, J = 6.1 Hz), 73.1 (d,

J = 6.1 Hz), 82.6, 123.0, 125.4, 126.0, 126.6 (d, J = 3.1 Hz), 126.7, 128.1, 128.3 (d, J = 1.5 Hz), 131.7, 134.3, 135.4, 153.6 (d, J = 9.2 Hz) ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = -1.5$ ppm; IR (Si, CDCl₃): $\bar{V} = 2980$, 1727, 1301, 1159, 1002 cm⁻¹.

Diisopropyl (1-t-butoxycarbonylamino-2-naphthyl)phosphonate (**20**, C₂₁H₃₀NO₅P)

Diisopropyl N-(t-butoxycarbonyl)-N-(1-naphthyl)phosphoramidate (19, 0.469 g, 1.15 mmol) was rearranged to N-Boc phosphonate 20 according to general procedure C in Et₂O at -78 °C for 2 h. The crude product was flash chromatographed (hexanes/EtOAc = 2/1, $R_f = 0.54$) and gave 0.393 g 20 (84%) as a colorless oil. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.21$ (d, J = 6.1 Hz, 6H), 1.38 (d, J = 6.1 Hz, 6H), 1.50 (s, 9H), 4.72 (dsept, J = 6.1, 8.1 Hz, 2H), 7.53 (m, 2H), 7.76 (m, 3H), 8.0 (m, 1H), 8.17 (br. s, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.8$ (d, J = 4.6 Hz, 2C), 24.0 (d, J = 3.8 Hz, 2C), 28.3 (s, 3C), 71.4 (d, J = 5.4 Hz, 2C), 80.4, 119.7 (d, J = 183.6 Hz), 125.8, 126.0, 126.3, 127.1 (d, J = 7.7 Hz), 127.8, 128.1, 129.3 (d, J = 13.0 Hz), 136.3, 139.2 (d, J = 5.4 Hz), 154.0 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 17.0$ ppm; IR (Si, CDCl₃): $\bar{V} = 3401$, 3271, 2979, 2930, 1733, 1243, 1161, 986 cm⁻¹.

Tetraisopropyl N-(pyridin-2-yl)diphosphoramidate (**22**, C₁₇H₃₂N₂O₆P₂)

2-Aminopyridine (0.753 g, 8 mmol) was converted to diphosphoramidate 22 by general procedure A except that 19.2 mmol bromine and 19.2 mmol (*i*-PrO)₃P, 32 mmol Et₃N and 3 cm³ 2 N HCl were used. The crude product was purified by flash chromatography (EtOAc/EtOH = 10/1, $R_f = 0.55$) to give 3.13 g 22 (93%) as a colorless oil. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.23$ (d, J = 6.3 Hz, 12H), 1.30 (d, J = 6.3 Hz, 12H), 4.83 (m, 4H), 7.16 (m, 1H), 7.32 (br. d, J = 7.8 Hz, 1H), 7.66 (dt, J = 1.8, 7.8 Hz, 1H), 8.46 (dd, J = 1.8, 4.8 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.4$ (d, J = 3.2 Hz, 2C), 23.4 (d, J = 3.1 Hz, 2C), 23.8 (dd, J = 2.3 Hz, 2C), 23.8 (d, J = 1.5 Hz, 2C), 72.8 (d, J = 3.2 Hz, 2C), 72.8 (dd, J = 3.1 Hz, 2C), 122.2, 123.2 (t, J = 2.7 Hz), 138.0,148.9, 152.3 ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = -1.5$ ppm; IR (Si): $\bar{V} = 2980, 2936, 1589, 1467,$ 1433, 1386, 1375, 1279, 1179, 1143, 1109, 1000 cm⁻¹.

Diisopropyl (2-(diisopropylphosphorylamino)pyridin-3yl)phosphonate (**23**, C₁₇H₃₂N₂O₆P₂)

Tetraisopropyl *N*-(pyridin-2-yl)diphosphoramidate (**22**, 1.27 g, 3 mmol) was rearranged to pyridin-3-ylphosphonate **23** by general procedure D in THF for 20 h. The crude product was flash chromatographed (CH₂Cl₂/EtOH = 20/ 1, $R_f = 0.38$) to give 0.920 g **23** (72%) as an oil. When this experiment was repeated with LiTMP according to general

procedure C, 0.460 g 23 (36%) was obtained. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.20$ (d, J = 6.1 Hz, 6H), 1.30 (d, J = 6.1 Hz, 6H), 1.34 (d, J = 6.1 Hz, 6H), 1.36 (d, J = 6.1 Hz, 6H), 4.65 (dsept, J = 6.1 Hz, 7.8 Hz, 2H), 4.83 (dsept, J = 6.1, 7.8 Hz, 2H), 6.83 (ddd, J = 2.0, 4.8, 7.3 Hz, 1H), 7.76 (ddt, J = 2.0, 7.3, 14.9 Hz, 1H), 8.40 (dt, J = 2.0, 4.8 Hz, 1H), 8.56 (br. d, J = 10.9 Hz, 1H) ppm; ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 23.6$ (d, J = 5.4 Hz, 2C), 23.7 (d, J = 4.6 Hz, 2C), 23.9 (d, J = 4.6 Hz, 2C), 24.0 (d, J = 4.6 Hz, 2C), 71.7 (d, J = 5.4 Hz, 2C), 72.1 (d, J = 6.1 Hz, 2C), 108.8 (dd, J = 10.3, 185.9 Hz), 115.8(d, J = 9.9 Hz), 142.1 (d, J = 6.9 Hz), 152.4, 156.1 (d, J = 10.7 Hz) ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = -1.1$ (d, J = 2.0 Hz), 16.9 (d, J = 2.0 Hz) ppm; IR (Si, CDCl₃): $\overline{V} = 3218$, 2980, 2935, 1575, 1445, 1262, 1231, 998 $\rm cm^{-1}$.

Crossover experiment

3-[Methyl-D₃]methoxyaniline ([D₃]9d, C₇H₆D₃NO)

To a stirred mixture of 0.546 g 3-aminophenol (5 mmol) and 0.786 g t-BuOK (7 mmol) in 8 cm³ dry THF under argon at RT was added 1.136 g [D₃]methyl *p*-toluenesulfonate (6 mmol) [25] dropwise. After stirring for 18 h 5 cm³ H₂O and CH₂Cl₂ were added. The organic phase was separated and the aqueous one was extracted with CH₂Cl₂. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (CH₂Cl₂, $R_f = 0$ 42) to give 0.400 g labeled 3-methoxyaniline [D₃]**9d** (63%) as a colorless oil. ¹H NMR (250.13 MHz, CDCl₃): $\delta = 3.63$ (br. s, 2H), 6.22 (d, J = 2.2 Hz, 1H), 6.28 (ddd, J = 0.9, 2.2, 8.0 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H).

 $Di-[D_7]$ isopropyl $N-(3-[methyl-D_3]methoxyphenyl)$ phosphoramidate ([D₁₇]**13d**, C₁₃H₅D₁₇NO₄P)

3-[Methyl-D₃]methoxyaniline (0.630 g, 5 mmol) was converted to 1.28 g phosphoramidate $[D_{17}]$ **13d** (84%) as colorless crystals by the method used for the unlabled compound except that (*i*-PrO)₃P was replaced by the deuterated species [24]; m.p.: 141–143 °C (hexanes). The ¹H and ¹³C NMR spectrum of $[D_{17}]$ **13d** were identical to those of the unlabled compound except for the missing signals because of deuteration.

$Di-[D_7]$ isopropyl $N-(t-butoxycarbonyl)-N-(3-[methyl-D_3]]$ methoxyphenyl)phosphoramidate ([D₁₇]**14d**, C₁₈H₁₃D₁₇NO₆P)

Di-[D₇]isopropyl *N*-(3-[methyl-D₃]methoxyphenyl)phosphoramidate ([D₁₇]**13d**) (0.609 g, 2 mmol) was converted to 0.760 g *N*-Boc phosphoramidate [D₁₇]**14d** (94%) as a colorless oil. The ¹H and ¹³C NMR spectrum of [D₁₇]**14d** were identical to those of the unlabeled compound except for the missing signals because of deuteration. ³¹P NMR

(161.98 MHz, CDCl₃): $\delta = -1.9$ ppm; IR (Si, CDCl₃): $\bar{V} = 2980$, 1728, 1604, 1491, 1289, 1156, 1112, 990, 914 cm⁻¹.

Crossover experiment with a 1:1 mixture of deuterated and nondeuterated diisopropyl N-(t-butoxycarbonyl)-N-(3methoxyphenyl)phosphoramidate

A mixture of 0.202 g deuterated N-(t-butoxycarbonyl)-N-(3-methoxyphenyl)phosphoramidate $[D_{17}]$ **14d** (0.5 mmol) and 0.194 g nondeuterated N-(3-methoxyphenyl)-N-(t-butoxycarbonyl)phosphoramidate **14d** (0.5 mmol) was rearranged in the same way (LDA, THF, 1 h, 78 °C) as phosphoramidate 14d and gave 0.390 g 1:1 mixture of deuterated phosphonate [D₁₇]15d and nondeuterated 15d (98%) as colorless crystals. M.p.: 87–89 °C (hexanes); ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.15$ (d, J = 6.1 Hz, 6H), 1.34 (d, J = 6.1 Hz, 6H), 1.49 (s, 18H), 3.81 (s, 3H), 4.60 (dsept, J = 6.1, 8.3 Hz, 2H), 6.50 (dddd, J = 0.8, 2.8,5.3, 8.3 Hz, 2H), 7.38 (t, J = 8.6, 2H), 8.06 (dd, J = 5.8, 8.6, 2H), 11.01 (br. s, 1H) ppm; ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 17.88$ (P(O)(O*i*-Pr)₂), 17.93 (br. s, $P(O)(OCD(CD_3)_2)_2)$ ppm; IR (Si, CDCl₃): $\bar{V} = 3503$, 3172, 3085, 2980, 2933, 1729, 1603, 1586, 1534, 1469, 1439, 1413, 1387, 1368, 1309, 1268, 1241, 1204, 1161, 1127, 1109, 1066, 1046, 995 cm⁻¹. MS before rearrangement: EI-MS (70 eV, 50 °C): m/z (%) = 404 (6.3, MD_{17}^{+}), 387 (5.5, M⁺), 203 (94), 208 (100); after rearrangement: EI-MS (70 eV, 50 °C): m/z (%) = 404 $(23.7, MD_{17}^{+}), 387 (25.3, M^{+}), 203 (100), 208 (94).$ There were no signals with m/z = 401 or 390.

2-Aminophenylphosphonic acid (25)

Method A: A mixture of 0.335 g diisopropyl 2-(*t*-butoxycarbonylamino)phenylphosphonate (**15a**, 0.94 mmol) and 10 cm³ HCl (6 M) was refluxed for 7 h. The cooled solution was concentrated under reduced pressure and the residue was dried over KOH in a vacuum desiccator. Then, it was dissolved in H₂O and applied to an ion exchange column (Dowex 50 W × 8; H⁺) and eluted with H₂O. Fractions containing product (TLC: *i*-PrOH/H₂O/NH₃ = 6/3/1, $R_f = 0.38$) were pooled and concentrated to give 0.138 g phosphonic acid **24** (85%) as a brownish crystalline product containing an impurity (6%, by ¹ NMR); m.p.: 186 °C (water) [Ref. [27] 199–200 °C (water/ethanol)].

Method B: A solution of 0.530 g diisopropyl 2-(*t*-butoxycarbonylamino)phenylphosphonate (**15a**, 1.48 mmol), 0.48 cm³ allyltrimethylsilane (0.343 g, 3 mmol), and 1.73 cm³ bromotrimethylsilane (2.050 g, 13.4 mmol) [29] in 5 cm³ dry CH₂Cl₂ was refluxed under Ar for 20 h. Volatiles were removed under reduced pressure (0.5 mbar), CH₂Cl₂ (2 × 10 cm³) was added and removed again under reduced pressure. Water (15 cm³) was added and the reaction mixture was stirred for 15 min. The solvent was removed under reduced pressure and the residue was dried. Crystallization of the crude product from H_2O gave 0.240 g **24** (95%) of brownish crystals, m.p.: 198–201 °C.

¹H NMR (400.13 MHz, D₂O/NaOD): $\delta = 6.70$ (dd, J = 4.8, 7.6 Hz, 1H), 6.73 (br. t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.49 (dd, J = 7.6, 12.9 Hz, 1H) ppm; ¹³C NMR (100.63 MHz, D₂O/NaOD): $\delta = 117.3$ (d, J = 10.0 Hz), 118.6 (d, J = 12.2 Hz), 125.3 (d, J = 162.9 Hz), 130.7, 132.8 (d, J = 6.9 Hz), 147.8 (d, J = 5.4 Hz) ppm; ³¹P NMR (161.98 MHz, D₂O/NaOD): $\delta = 11.7$ ppm; IR (ATR): $\bar{V} = 2325$, 1580, 1538, 1483, 1446, 1168, 1148, 1124, 1074, 1007, 903 cm⁻¹.

1-Amino-2-naphthylphosphonic acid (26, C₁₀H₁₀NO₃P)

Diisopropyl [1-N-(t-butoxycarbonylamino)-2-naphthyl]phosphonate (20, 0.618 g, 1.52 mmol) was deblocked by method B used for the preparation of 25 for the phenyl analog, except that the final procedure was different. After removing all volatiles under reduced pressure the residue was dissolved in 90 cm³ MeOH. Slow concentration of the reddish-brown solution on the rotary evaporator at RT to about 7 cm³ gave reddish crystals, which were collected by centrifugation. They were washed with 3 cm³ MeOH and dried for 1 h (50 °C/ 0.5 mbar) to give 0.204 g analytically pure naphthylphosphonic acid 26 (60%); m.p.: 236-239 °C; from the mother liquor a second crop (0.085 g, 95% pure by ³¹P NMR) was obtained. 1-Amino-2-naphthylphosphonic acid seemed to be stable for short periods of time in refluxing MeOH. It could not be crystallized from hot H₂O, as it decomposed to phosphoric acid (by ³¹P NMR) and 1-naphthylamine (by TLC after extraction) within 30 min. ¹H NMR (400.13 MHz, D₂O/ NaOD): $\delta = 7.20$ (m, 1H), 7.37 (m, 1H), 7.56 (m, 1H), 7.69 (m, 2H), 7.86 (m, 1H) ppm; ¹³C NMR (100.61 MHz, D₂O/ NaOD): $\delta = 118.0$ (d, J = 12.2 Hz), 120.0 (d, J = 164.5 Hz), 122.2, 124.6 (d, J = 10.7 Hz), 125.7, 127.0, 128.5, 130.3 (d, J = 7.7 Hz), 134.6, 143.7 (d, J = 6.1 Hz) ppm; ³¹P NMR (161.98 MHz, D₂O/NaOD): $\delta = 12.5$ ppm; IR (ATR): $\overline{V} = 2547$, 1586, 1559, 1506, 1462, 1432, 1373, 1352, 1173, 1110, 1005, 944 cm^{-1} .

2-Aminopyridin-3-ylphosphonic acid (27, C₅H₇N₂O₃P)

Diisopropyl 2-(diisopropylphosphorylamino)pyridin-3ylphosphonate (23, 0.887 g, 2.10 mmol) was deblocked with refluxing HCl by method A used for the preparation of 25. Fractions containing product (TLC: *i*-PrOH/H₂O/ $NH_3 = 6/3/1$, $R_f = 0.43$) were pooled and concentrated to give 0.319 g 27 (87%) as nearly colorless crystals. M. p.: 256–259 °C (H₂O/EtOH); ¹H NMR (400.13 MHz, D₂O): $\delta = 6.72 \text{ (ddd, } J = 1.7, 6.3, 7.1 \text{ Hz}, 1\text{H}), 7.60 \text{ (dt, } J = 1.7,$ 6.3 Hz, 1H), 7.99 (ddd, J = 1.7, 7.1, 13.1 Hz, 1H) ppm; ^{13}C NMR (100.61 MHz, D₂O): $\delta = 130.1$ (d, J = 11.5 Hz), 123.7 (d, J = 163.7 Hz), 136.6, 146.9 (d, J = 5.4 Hz), 154.4 (d, J = 12.2 Hz) ppm; ³¹P NMR (161.98 MHz, D₂O): $\delta = 5.9$ ppm; IR (ATR): $\bar{V} = 3401$, 3297, 3079, 2627, 2325, 1650, 1615, 1593, 1554, 1456, 1401, 1334, 1244, 1169, 1144, 1011, 908 cm⁻¹.

Acknowledgements Open access funding provided by University of Vienna. We thank S. Felsinger for recording NMR spectra and J. Theiner for combustion analyses.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Pudovika AN, Zimin MG (1980) Pure Appl Chem 52:989
- 2. Pudovik AN, Konovalova IV (1962) Zh Obshch Khim 32:467
- 3. Pudovik AN, Konovalova IV (1963) Zh Obshch Khim 33:3100
- 4. Wolfe JP (2014) In: Knochel P, Molander GA (eds), Comprehensive Organic Synthesis, 2nd edn, vol 3, p 1038
- Rojas CM (2009) In: Li JJ (ed) Name Reactions for Homologations, Pt. 2. Wiley, Hoboken, p 406
- 6. Brook AG (1974) Acc Chem Res 7:77
- 7. Sturtz G, Corbel B (1973) C R Acad Sci C Sci Chim 276:1807
- 8. Philippitsch V, Hammerschmidt F (2011) Org Biomol Chem 9:5220 and references cited there
- 9. Pallitsch K, Roller A, Hammerschmidt F (2015) Chem Eur J 21:10200
- 10. Qian R, Roller A, Hammerschmidt F (2015) J Org Chem 80:1082
- 11. Taylor CM, Watson AJ (2004) Curr Org Chem 8:623
- 12. Malvin LS (1981) Tetrahedron Lett 27:3575
- 13. Casteel DA, Peri SP (1991) Synthesis, 691
- Dieng T, Fraix A, Salaün J-Y, Dez I, Klein Gebbink RJM, van Koten G, Jaffrés P-A (2008) Synlett 20:3121
- 15. Chen T, Han L-B (2015) Synlett 26:1153
- 16. Snieckus V (1990) Chem Rev 90:879
- Whisler MC, MacNeil S, Snieckus V, Beak P (2004) Angew Chem Int Ed 43:2206
- Sulfur Masson S, Saint-Clair J-F, Saquet M (1994) Tetrahedron Lett 35:3083
- 19. Mauger C, Vazeux M, Masson S (2004) Tetrahedron Lett 45:3855
- Bonini BF, Femoni C, Fochi M, Gulea M, Masson S, Ricci A (2005) Tetrahedron Asymmetry 16:3003
- 21. Jardine AM, Vather SM, Modro TA (1988) J Org Chem 53:3983
- 22. Hammerschmidt F, Hanbauer M (2000) J Org Chem 65:6121
- 23. Kuliszewska E, Hanbauer M, Hammerschmidt F (2008) Chem Eur J 14:8603
- 24. Hammerschmidt F, Schmidt S (2000) Eur J Org Chem, 2239
- Choi S, Breugst M, Houk KN, Poulter CD (2014) J Org Chem 79:3572
- 26. Heinicke J, Böhle I, Tzschach A (1986) J Organomet Chem 317:11
- 27. Freedman LD, Tauber H, Doak GO, Magnuson HJ (1953) J Am Chem Soc 75:1379
- Karmakar S, Harcourt EM, Hewings DS, Scherer F, Lovejoy AF, Kurtz DM, Ehrenschwender T, Barandun LJ, Roost C, Alizadeh AA, Kool ET (2015) Nature Chem 7:752
- 29. Hammerschmidt F (1991) Liebigs Ann Chem, 469
- 30. Mikenda W (1992) Vib Spectrosc 3:327
- Dabkowski W, Michalski J, Skrzypczynski Z (1985) Chem Ber 118:1809