Skip to main content
Log in

Orchid fleck virus: an unclassified bipartite, negative-sense RNA plant virus

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Orchid fleck virus (OFV) causes chlorotic or necrotic spots in many orchid species. Its particle morphology and cytopathic effects are similar to those of nucleorhabdoviruses. Although OFV shares clear sequence similarities with rhabdoviruses, its taxonomic status is undetermined because its negative-sense RNA genome is bipartite. This review presents a general overview of classical and contemporary findings about etiology, serology, epidemiology, pathology, molecular biology, detection and prevention methods of orchid fleck virus. Because of the characteristics of OFV and viruses of the Rhabdoviridae and Mononegavirales, it is proposed that a new genus of negative-sense RNA plant viruses outside of the Mononegavirales be established with orchid fleck virus as the type species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Ajjikuttira PA, Lim-Ho CL, Woon MH, Ryu KH, Chang CA, Loh CS, Wong SM (2002) Genetic variability in the coat protein genes of two orchid viruses: Cymbidium mosaic virus and Odontoglossum ringspot virus. Arch Virol 147:1943–1954

    Article  PubMed  CAS  Google Scholar 

  2. Anonymous (1990) Common virus diseases of orchids. Report on plant disease RPD No. 614 Available at: http://web.aces.uiuc.edu/vista/pdf_pubs/614.pdf

  3. Blanchfield AL, Mackenzie AM, Gibbs A, Kondo H, Tamada T, Wilson CR (2001) Identification of Orchid fleck virus by reverse transcriptase-polymerase chain reaction and analysis of isolate relationships. J Phytopathol 149:713–718

    Article  CAS  Google Scholar 

  4. Chagas CM, Kitajima EW, Rodrigues JC (2003) Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Exp Appl Acarol 30:203–213

    Article  PubMed  CAS  Google Scholar 

  5. Chang MU, Arai K, Doi Y, Yora K (1976) Morphology and intracellular appearance of orchid fleck virus. Ann Phytopathol Soc Jpn 42:156–167

    Article  Google Scholar 

  6. Chang MU, Chun HH, Baek DH, Chung JD (1991) Studies on the viruses in orchids in Korea. 2. Dendrobium mosaic virus, odontoglossum ringspot virus, orchid fleck virus, and unidentified potyvirus. Korean J Plant Pathol 7:118–129

    Google Scholar 

  7. Childers CC, Kitajima EW, Welbourn WC, Rivera C, Ochoa R (2001) Brevipalpus mites on citrus and their status as vectors of citrus leprosies. Manejo Integrado de Plagas (Costa Rica) 60:66–70

    Google Scholar 

  8. Childers CC, Rodrigues JC, Welbourn WC (2003) Host plants of Brevipalpus californicus, B. obovatus, and B. phoenicis (Acari: Tenuipalpidae) and their potential involvement in the spread of viral diseases vectored by these mites. Exp App Acarol 30:29–105

    Article  Google Scholar 

  9. Cleveland SB, Davies J, McClure MA (2011) A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. PloS One 6:e19275

    Article  PubMed  CAS  Google Scholar 

  10. Dacheux L, Berthet N, Dissard G, Holmes EC, Delmas O, Larrous F, Guigon G, Dickinson P, Faye O, Sall AA, Old IG, Kong K, Kennedy GC, Manuguerra JC, Cole ST, Caro V, Gessain A, Bourhy H (2010) Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses. J Virol 84:9557–9574

    Article  PubMed  Google Scholar 

  11. Doi Y, Arai K, Yora K (1969) Distribution of bacilliform virus particles in Masaki mosaic disease and Cymbidium ring spot disease (Abstract). Ann Phytopathol Soc Jpn 35:388

    Article  Google Scholar 

  12. Doi Y, Chang MU, Yora K (1977) Orchid Fleck Virus. CMI/AAB descriptions of plant viruses No. 183

  13. Faul EJ, Lyles DS, Schnell MJ (2009) Interferon response and viral evasion by members of the family Rhabdoviridae. Viruses 1:832–851

    Article  PubMed  CAS  Google Scholar 

  14. Freitas-Astúa J, Moreira-Carmona L, Rivera-Herrero C, Rodríguez-Solís CM, Kitajima EW (2002) First report of Orchid fleck virus in Costa Rica. Plant Dis 86:1402

    Article  Google Scholar 

  15. Freitas-Astúa J, Kitajima EW, Locali EC, Antonioli-Luizoni R, Bastianel M, Machado MA (2005) Further evidence to support that citrus leprosis virus-cytoplasmic and nuclear types are different viruses. Annals of the XLV Annual Meeting of the American Phytopathological Society, Caribbean Division, Costa Rica, p 93

  16. Gomes RT, Kitajima EW, Tanaka FAO, Marques JPR, Appezzato-da-Glória B (2010) Anatomy of leaf lesions caused by clerodendrum chlorotic spot virus (ClCSV) transmitted by the mite Brevipalpus phoenicis in different host species. Summa Phytopathol (Botucatu) 36:291–297

    Article  Google Scholar 

  17. Guerra-Moreno AS, Manjunath KL, Brlansky RH, Lee RF (2005) Citrus leprosis symptoms can be associated with the presence of two different viruses: cytoplasmic and nuclear, the former having a multipartite RNA genome. Proceedings of the 16th Conference of International Organization of Citrus Virologists, Huaqiao university, Xiamen, pp 230–239

  18. Hogenhout SA, el Ammar D, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  PubMed  CAS  Google Scholar 

  19. Hong J, Li DB, Zhou XP (2001) Classification Atlas of plant virus. Science Press, Beijing, pp 75–76

    Google Scholar 

  20. Hornbeck P (2001) Double-immunodiffusion assay for detecting specific antibodies. Curr Protoc Immunol Chapter 2:Unit 2.3

    Google Scholar 

  21. Inouye N, Matsumoto J, Maeda T, Mitsuhata K, Kondo H, Tahara M (1996) Orchid fleck virus, the causal agent of a yellowish fleck mosaic disease of Calanthe. Bull Res Inst Bioresour Okayama Univ 4:119–135

    Google Scholar 

  22. Ivanov I, Yabukarski F, Ruigrok RW, Jamin M (2011) Structural insights into the rhabdovirus transcription/replication complex. Virus Res 162:126–137

    Article  PubMed  CAS  Google Scholar 

  23. Jackson AO, Wagner JDO (1998) Procedures for plant rhabdovirus purification, polyribosome isolation, and replicase extraction. Methods Mol Biol 81:77–97

    PubMed  CAS  Google Scholar 

  24. Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M (2005) Biology of plant rhabdoviruses. Annu Rev Phytopathol 43:623–660

    Article  PubMed  CAS  Google Scholar 

  25. Jensen DD (1959) Virus disease of orchids. In: Withner CL (ed) The orchids: a scientific survey. Ronnald Press, New York, pp 431–458

  26. Kim SR, Yoon JY, Choi GS, Chang MU, Choi JK, Chung BN (2010) Molecular characterization and survey of the infection rate of orchid fleck virus in commercial orchids. Plant Pathol J 26:130–138

    Article  CAS  Google Scholar 

  27. Kitajima EW, Kondo H, Mackenzie A, Rezende JAM, Gioria R, Gibbs A, Tamada T (2001) Comparative cytopathology and immunocytochemistry of Japanese, Australian and Brazilian isolates of Orchid fleck virus. J Gen Plant Pathol 67:231–237

    Article  Google Scholar 

  28. Kitajima EW, Chagas CM, Rodrigues JCV (2003) Brevipalpus-transmitted plant virus and virus-like diseases: cytopathology and some recent cases. Exp Appl Acarol 30:135–160

    Article  PubMed  CAS  Google Scholar 

  29. Kitajima EW, Chagas CM, Braghini MT, Fazuoli LC, Locali-Fabris EC, Salaroli RB (2011) Natural infection of several Coffea species and hybrids and Psilanthus ebracteolatus by the Coffee ringspot virus (CoRSV). Sci Agric 68:503–507

    Article  CAS  Google Scholar 

  30. Kitajma EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite transmitted viruses. Sci Agric 67:348–371

    Google Scholar 

  31. Kondo H, Matsumoto J, Maeda T, Inouye N (1995) Host range and some properties of orchid fleck virus isolated from oriental Cymbidium in Japan. Bull Res Inst Bioresour Okayama Univ 3:151–161

    Google Scholar 

  32. Kondo H, Maeda T, Mitsuhata K, Inouye N (1996) Detection of the viruses occurring in oriental Cymbidium in Japan. Bull Res Inst Bioresour Okayama Univ 4:149–162

    Google Scholar 

  33. Kondo H, Maeda T, Tamada T, Shirako Y (1998) The genome structure of Orchid fleck virus shows it to be a unique bipartite genome virus that resembles rhabdoviruses. Abstract book of 7th International Virology Congress. British Society for Plant Pathology, Edinburgh, pp 1–11

  34. Kondo H, Maeda T, Tamada T (2003) Orchid fleck virus: Brevipalpus californicus mite transmission, biological properties and genome structure. Exp Appl Acarol 30:215–223

    Article  PubMed  Google Scholar 

  35. Kondo H, Maeda T, Shirako Y, Tamada T (2006) Orchid fleck virus is a rhabdovirus with an unusual bipartite genome. J Gen Virol 87:2413–2421

    Article  PubMed  CAS  Google Scholar 

  36. Kondo H, Maeda T, Tamada T (2009) Identification and characterization of structural proteins of orchid fleck virus. Arch Virol 154:37–45

    Article  PubMed  CAS  Google Scholar 

  37. Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL (2011) Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162:184–202

    Article  PubMed  CAS  Google Scholar 

  38. Kubo KS, Freitas-Astúa J, Machado MA, Kitajima EW (2009) Orchid fleck symptoms may be caused naturally by two different viruses transmitted by Brevipalpus. J Gen Plant Pathol 75:250–255

    Article  Google Scholar 

  39. Kubo KS, Stuart RM, Freitas-Astua J, Antonioli-Luizon R, Locali-Fabris EC, Coletta-Filho HD, Machado MA, Kitajima EW (2009) Evaluation of the genetic variability of orchid fleck virus by single-strand conformational polymorphism analysis and nucleotide sequencing of a fragment from the nucleocapsid gene. Arch Virol 154:1009–1014

    Article  PubMed  CAS  Google Scholar 

  40. Kubo KS, Novelli VM, Bastianel M, Locali-Fabris EC, Antonioli-Luizon R, Machado MA, Freitas-Astua J (2011) Detection of Brevipalpus-transmitted viruses in their mite vectors by RT-PCR. Exp Appl Acarol 54:33–39

    Article  PubMed  CAS  Google Scholar 

  41. Lamprecht RL, Pietersen G, Kasdorf GGF, Nel LH (2009) Characterisation of a proposed nucleorhabdovirus new to South Africa. Eur J Plant Pathol 123:105–110

    Article  Google Scholar 

  42. Lawson RH, Hsu HT (1993) Detection, diagnosis and control strategies of viral diseases of ornamental crops. Plant Pathol Bull 2:177–186

    Google Scholar 

  43. Lesemann D, Begtrup J (1971) Elektronenmikroskopischer Nachweis eines bazilliformen virus in Phalaenopsis. J Phytopathol 3:257–269

    Article  Google Scholar 

  44. Liao TL, Wu XH, Li BS, Zhou R, Ji JQ (2007) The quarantine requirement of main trade countries against orchids. Plant Quar 21:324–326

    Google Scholar 

  45. Liu L, Lin ZK, Guo Y (2010) Progress on molecule biology of phalaenopsis virus and the corresponding prevention measures. Anhui Agric Sci Bull 16(21–23):126

    Google Scholar 

  46. Locali-Fabris EC, Freitas-Astua J, Souza AA, Takita MA, Astua-Monge G, Antonioli-Luizon R, Rodrigues V, Targon ML, Machado MA (2006) Complete nucleotide sequence, genomic organization and phylogenetic analysis of Citrus leprosis virus cytoplasmic type. J Gen Virol 87:2721–2729

    Article  PubMed  CAS  Google Scholar 

  47. Longdon B, Obbard DJ, Jiggins FM (2010) Sigma viruses from three species of Drosophila form a major new clade in the rhabdovirus phylogeny. Proc R Soc Lond Ser B 277:35–44

    Article  CAS  Google Scholar 

  48. Maeda T, Kondo H, Mitsuhata K, Tamada T (1998) Evidence that orchid fleck virus is efficiently transmitted in a persistent manner by the mite Brevipalpus californicus. In: Proceedings of the 7th Int Cong Plant Pathol, pp 13–18

  49. Marques JP, Kitajima EW, Freitas-Astua J, Appezzato-da-Gloria B (2010) Comparative morpho-anatomical studies of the lesions caused by citrus leprosis virus on sweet orange. An Acad Bras Cienc 82:501–511

    Article  PubMed  Google Scholar 

  50. Ming YL, Zheng JL, Zheng GH, Zheng ZZ (2010) Progress on anti-virus genetic engineering of orchid. Subtrop Plant Sci 39:92–96

    Google Scholar 

  51. Miranda GJ, Azzam O, Shirako Y (2000) Comparison of nucleotide sequences between northern and southern Philippine isolates of rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology 266:26–32

    Article  PubMed  CAS  Google Scholar 

  52. Pascon RC, Kitajima JP, Breton MC, Assumpção L, Greggio C, Zanca AS, Okura VK, Alegria MC, Camargo ME, Silva GG, Cardozo JC, Vallim MA, Franco SF, Silva VH, Jordao Junior H, Oliveira F, Giachetto PF, Ferrari F, Aguilar-Vildoso CI, Franchiscini FJ, Silva JM, Arruda P, Ferro JA, Reinach F, da Silva AC (2006) The complete nucleotide sequence and genomic organization of citrus leprosis associated virus, Cytoplasmatic type (CiLV-C). Virus Genes 32:289–298

    Article  PubMed  CAS  Google Scholar 

  53. Power AG (2000) Insect transmission of plant viruses: a constraint on virus variability. Curr Opin Plant Biol 3:336–340

    Article  PubMed  CAS  Google Scholar 

  54. Power AG, Flecker AS (2003) Virus specificity in disease systems: are species redundant? In: Kareiva P, Levin SA (eds) The importance of species: perspectives on expendability and triage. Princeton University Press, Princeton, pp 330–346

    Google Scholar 

  55. Pringle CR (1991) The order Mononegavirales. Arch Virol 117:137–140

    Article  Google Scholar 

  56. Redinbaugh MG, Hogenhout SA (2005) Plant rhabdoviruses. Curr Top Microbiol Immunol 292:143–163

    Article  PubMed  CAS  Google Scholar 

  57. Rodrigues JC, Kitajima EW, Childers CC, Chagas CM (2003) Citrus leprosis virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on citrus in Brazil. Exp Appl Acarol 30:161–179

    Article  PubMed  CAS  Google Scholar 

  58. Hull R (2002) Matthews’ plant virology, 4th edn. Academic Press, London

    Google Scholar 

  59. Hull R (2009) comparative plant virology, 2nd edn. Elsevier Inc, Singapore

    Google Scholar 

  60. Sugrue RJ (2007) Viruses and glycosylation: an overview. Methods Mol Biol 379:1–13

    Article  PubMed  CAS  Google Scholar 

  61. Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR (2011) Rhabdovirus accessory genes. Virus Res 162:110–125

    Article  PubMed  CAS  Google Scholar 

  62. Wilson C, Blanchfield A (1999) Detection and characterization of Orchid fleck virus. Horticultural Research and Development Corporation, Gordon, NY 96015

  63. Zettler FW, Ko NJ, Wisler GC, Elliott MS, Wong SM (1990) Viruses of orchids and their control. Plant Dis 74:621–626

    Article  Google Scholar 

  64. Zhang A (2010) Detection and prevention of orchid virus diseases. Flowers 6:10–11

    Google Scholar 

  65. Zheng YX, Shen BN, Chen CC, Jan FJ (2010) Odontoglossum ringspot virus causing flower crinkle in Phalaenopsis hybrids. Eur J Plant Pathol 128:1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lin Ming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, D.W., Zheng, G.H., Zheng, Z.Z. et al. Orchid fleck virus: an unclassified bipartite, negative-sense RNA plant virus. Arch Virol 158, 313–323 (2013). https://doi.org/10.1007/s00705-012-1506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1506-5

Keywords

Navigation