Skip to main content
Log in

Identification of the disulfide bonds of lysyl oxidase

  • Basic Neurosciences, Genetics and Immunology - Short Communication
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Proteolytic digestion of bovine aortic lysyl oxidase followed by tandem mass spectrometry has enabled assignment of all five disulfide bonds. The results indicate that the enzyme has a very stable central core containing three disulfide bonds, the lysyl tyrosyl quinone cross-link and the copper. This core is well isolated from solvent with the result that the oxidized (normal) form of the enzyme is remarkably resistant to proteolysis and is unusually stable at high temperatures and in the presence of denaturants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

ABC:

Ammonium bicarbonate

BNPS-Skatole:

2-(2-Nitrophenylsulfenyl)-3-methyl-3-bromoindolenine

LC/MS/MS:

Tandem mass spectrometry

LOX:

Lysyl oxidase

LOXL:

Lysyl oxidase-like protein

LTQ:

Lysyl tyrosyl quinone

TFA:

Trifluoroacetic acid

TPQ:

Topaquinone

References

  • Bark SJ, Muster N, Yates JR 3rd, Siuzdak G (2001) High-temperature protein mass mapping using a thermophilic protease. J Am Chem Soc 123(8):1774–1775

    Article  PubMed  CAS  Google Scholar 

  • Bazan JF (1989) A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and il-6 receptors, and the p75 il-2 receptor beta-chain. Biochem Biophys Res Commun 164(2):788–795

    Article  PubMed  CAS  Google Scholar 

  • Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87(18):6934–6938

    Article  PubMed  CAS  Google Scholar 

  • Bollinger JA, Brown DE, Dooley DM (2005) The formation of lysine tyrosylquinone (ltq) is a self-processing reaction. Expression and characterization of a drosophila lysyl oxidase. Biochemistry 44(35):11708–11714

    Article  PubMed  CAS  Google Scholar 

  • Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32

    Article  PubMed  CAS  Google Scholar 

  • Elkins PA, Christinger HW, Sandowski Y, Sakal E, Gertler A, de Vos AM, Kossiakoff AA (2000) Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat Struct Biol 7(9):808–815

    Article  PubMed  CAS  Google Scholar 

  • Gacheru SN, Trackman PC, Shah MA, O’Gara CY, Spacciapoli P, Greenaway FT, Kagan HM (1990) Structural and catalytic properties of copper in lysyl oxidase. J Biol Chem 265(31):19022–19027

    PubMed  CAS  Google Scholar 

  • Gervasoni P, Staudenmann W, James P, Pluckthun A (1998) Identification of the binding surface on beta-lactamase for groel by limited proteolysis and maldi-mass spectrometry. Biochemistry 37(33):11660–11669

    Article  PubMed  CAS  Google Scholar 

  • Greenaway FT, Qiu C, Ryvkin F (2000) Structural aspects of lysyl oxidase. Biochemistry and molecular biology of vitamin b6 and pqq-dependant proteins. Birkhauser Verlag, Boston

    Google Scholar 

  • Janes SM, Palcic MM, Scaman CH, Smith AJ, Brown DE, Dooley DM, Mure M, Klinman JP (1992) Identification of topaquinone and its consensus sequence in copper amine oxidases. Biochemistry 31(48):12147–12154

    Article  PubMed  CAS  Google Scholar 

  • Kagan HM, Li W (2003) Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88(4):660–672

    Article  PubMed  CAS  Google Scholar 

  • Klinman JP (2003) The multi-functional topa-quinone copper amine oxidases. Biochim Biophys Acta 1647(1–2):131–137

    PubMed  CAS  Google Scholar 

  • Li W, Liu G, Chou IN, Kagan HM (2000) Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J Cell Biochem 78(4):550–557

    Article  PubMed  CAS  Google Scholar 

  • Lopez KM, Greenaway FT (2011) Identification of the copper-binding ligands of lysyl oxidase. J Neural Transm (in press)

  • Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63(19–20):2304–2316

    Article  PubMed  CAS  Google Scholar 

  • Palamakumbura AH, Trackman PC (2002) A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal Biochem 300(2):245–251

    Article  PubMed  CAS  Google Scholar 

  • Rahali V, Gueguen J (1999) Chemical cleavage of bovine beta-lactoglobulin by bnps-skatole for preparative purposes: comparative study of hydrolytic procedures and peptide characterization. J Protein Chem 18(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Ryvkin F, Greenaway FT (2004) A peptide model of the copper-binding region of lysyl oxidase. J Inorg Biochem 98(8):1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395(6701):511–516

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Klinman JP (2001) The catalytic function of bovine lysyl oxidase in the absence of copper. J Biol Chem 276(33):30575–30578

    Article  PubMed  CAS  Google Scholar 

  • Tipping AJ, McPherson MJ (1995) Cloning and molecular analysis of the pea seedling copper amine oxidase. J Biol Chem 270(28):16939–16946

    Article  PubMed  CAS  Google Scholar 

  • Trackman PC, Zoski CG, Kagan HM (1981) Development of a peroxidase-coupled fluorometric assay for lysyl oxidase. Anal Biochem 113(2):336–342

    Article  PubMed  CAS  Google Scholar 

  • Wang SX, Mure M, Medzihradszky KF, Burlingame AL, Brown DE, Dooley DM, Smith AJ, Kagan HM, Klinman JP (1996) A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science 273(5278):1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Williams MA, Kagan HM (1985) Assessment of lysyl oxidase variants by urea gel electrophoresis: evidence against disulfide isomers as bases of the enzyme heterogeneity. Anal Biochem 149(2):430–437

    Article  PubMed  CAS  Google Scholar 

  • Williamson PR, Kittler JM, Thanassi JW, Kagan HM (1986) Reactivity of a functional carbonyl moiety in bovine aortic lysyl oxidase. Evidence against pyridoxal 5′-phosphate. Biochem J 235(2):597–605

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant R15 GM49392-01A1 from the National Institutes of Health and by a grant from Nuclea Biotechnologies. We would like to thank Edward J. Brush and Chunyan Qiu for assistance in the early stages of this work and Ming-zhong Sun and Zhiping Zhu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick T. Greenaway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Greenaway, F.T. Identification of the disulfide bonds of lysyl oxidase. J Neural Transm 118, 1111–1114 (2011). https://doi.org/10.1007/s00702-010-0560-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0560-y

Keywords

Navigation