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Deep learning for glioblastoma segmentation using preoperative
magnetic resonance imaging identifies volumetric features
associated with survival
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Abstract
Background Measurement of volumetric features is challenging in glioblastoma. We investigate whether volumetric features
derived from preoperative MRI using a convolutional neural network–assisted segmentation is correlated with survival.
Methods Preoperative MRI of 120 patients were scored using Visually Accessible Rembrandt Images (VASARI) features. We
trained and tested a multilayer, multi-scale convolutional neural network on multimodal brain tumour segmentation challenge
(BRATS) data, prior to testing on our dataset. The automated labels weremanually edited to generate ground truth segmentations.
Network performance for our data and BRATS data was compared. Multivariable Cox regression analysis corrected for multiple
testing using the false discovery rate was performed to correlate clinical and imaging variables with overall survival.
Results Median Dice coefficients in our sample were (1) whole tumour 0.94 (IQR, 0.82–0.98) compared to 0.91 (IQR, 0.83–0.94
p = 0.012), (2) FLAIR region 0.84 (IQR, 0.63–0.95) compared to 0.81 (IQR, 0.69–0.8 p = 0.170), (3) contrast-enhancing region
0.91 (IQR, 0.74–0.98) compared to 0.83 (IQR, 0.78–0.89 p = 0.003) and (4) necrosis region were 0.82 (IQR, 0.47–0.97)
compared to 0.67 (IQR, 0.42–0.81 p = 0.005). Contrast-enhancing region/tumour core ratio (HR 4.73 [95% CI, 1.67–13.40],
corrected p = 0.017) and necrotic core/tumour core ratio (HR 8.13 [95% CI, 2.06–32.12], corrected p = 0.011) were indepen-
dently associated with overall survival.
Conclusion Semi-automated segmentation of glioblastoma using a convolutional neural network trained on independent data is
robust when applied to routine clinical data. The segmented volumes have prognostic significance.
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TC Tumour core
VASARI Visually Accessible Rembrandt Images
WT Whole tumour

Introduction

The median survival for glioblastoma remains approximately
12–15 months despite surgery and chemoradiation [1]. Extent
of resection (EOR) is the only modifiable prognostic factor
[1–3]. Other prognostic variables such as age, O6-
methylguanine–DNA methyltransferase (MGMT) methyla-
tion and Karnofsky performance status (KPS) are not modifi-
able, and mutation status cannot be assessed preoperatively [1,
4]. Combining clinical variables with MRI features may be
able to better prognosticate patients and stratify them for clin-
ical trials—especially trials at the time of surgery when mo-
lecular markers are unknown [5, 6].

Radiogenomic analysis has linked MRI-based tumour sub-
regions such as fluid-attenuated inversion recovery (FLAIR)
volumes with genetic signatures of invasiveness and reduced
survival [7]. Reproducible and accurate descriptors of imaging
features are needed to identify prognostic biomarkers [8]. The
Visually Accessible Rembrandt Images (VASARI) variables
is the largest standardised dataset of imaging variables based
on preoperative MRI [8, 9]. Qualitative VASARI descriptors
when combined with manually segmented volumetric vari-
ables are independently associated with survival [9].

Manual segmentation of tumour volumes is time-
consuming and suffers from high interobserver and
intraobserver variability [10]. This limits their use in clinical
practice. Computer-assisted methods reduce segmentation
time and demonstrate good agreement with manual ground
truth segmentations [10–12].

Convolutional neural networks (CNNs) are the state-of-the
art computer-assisted method for glioblastoma segmentation
[13]. They outperform alternative methods which use inde-
pendent decision classifiers to extract texture and intensity
features [14]. A pre-annotated dataset is used to train the
CNN architecture to perform a series of mathematical convo-
lutions through interdependent multiple layers. This deter-
mines the relationship between the input images and output
images. The CNN can then be validated on different test
datasets.

DeepMedic is a 3-dimensional (3D) CNN ranked highly in
the Brain Tumour Segmentation Challenge (BRATS) [14].
DeepMedic assigns classes to each voxel independently using
intensity and local feature information across image planes
through two 11-layer convolutional pathways [14]. Each path-
way samples different resolutions to lower computational cost
[14]. DeepMedic has been shown to have robust segmentation
accuracy of tumour subregions when tested and trained on

MRI images performed at multiple institutions, with different
protocols [15].

Automated segmentation of glioblastoma subregions has
moderate agreement with their corresponding VASARI-
derived semi-quantitative measures. However, measurement
of certain tumour subregions is less accurate than other re-
gions such as necrosis compared to the contrast-enhancing
region (CER) [8]. In clinical practice, manual correction of
segmentations generated from deep learning is more accurate
than when the automated segmentations are used as full re-
placement for manual segmentations [15]. Generating curated
training data for each dataset is also labour-intensive and time-
consuming, requiring manual segmentations for images in
each data cohort. Using publicly available data such as
BRATS to train CNNs may enable these automated methods
to be applicable across different datasets and institutions. We
therefore aim to investigate whether DeepMedic trained on
BRATS can be used for transfer learning, utilising automated
segmentations as priors for manual correction. Previous stud-
ies have not examined the prognostic value of CNN-assisted
volumetric measurements in combination with known prog-
nostic variables. We test the validity of our semi-automated
segmentation approach by correlating volumetric features of
the resulting segmentations with survival.

Methods

Patient characteristics

All patients (≥ 18 years) diagnosed with histologically con-
firmed primary glioblastoma were identified from July 2016
to January 2018. Patients with previous glioma or cranial sur-
gery were excluded.

Clinical characteristics were collected from electronic pa-
tient records. Motor deficit was defined as reduced power in
any modality, and sensory deficit as reduced sensation or par-
aesthesia in any modality. Speech problems can present as
receptive or expressive dysphasia. The operative records were
used to obtain the following factors: American Association of
Anesthesiologists (ASA) grade, use of 5-aminoleuvenic acid
(5-ALA) and/or neurostimulation/awake surgery.
Postoperative neurological deficit was recorded within 1 week
from surgery.

Presence of isocitrate dehydrogenase (IDH) mutation and
MGMT promoter methylation were recorded.MGMT promot-
er methylation was determined by pyrosequencing of the dif-
ferentially methylated region 2 using a 10% cutoff value [16].

Patients were treated with either adjuvant chemoradiation
(Stupp regimen), radiotherapy for symptom stabilisation or
supportive care. The date of death was obtained from national
patient records. The date of last follow-up was the time of
query of NHS Spine (22/01/2019).
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Patient demographics and imaging were anonymised prior
to recording of research data. This study was approved by the
local research ethics committee (Study ID: PRE.2017.040).

Image preprocessing

MRI protocols are shown in Supplementary Table A1. Each
patient’s images were resampled to 1 mm3. T1-weighted, T2-
weighted and T2-FLAIR images were co-registered to T1C
image using the FSL linear image registration tool (FLIRT)
with a mutual information algorithm and 6-degrees of freedom
[17].

Brain extraction was performed using brain extraction tool
(BET) for the T1C image [18]. Masks were edited and applied
to the other sequences using voxel multiplication.

Processed images were registered to the same atlas (SRI24)
used for BRATS with a 12 degree of freedom affine registra-
tion, mutual information algorithm with FSL FLIRT [17].
Noise reduction was performed using smallest univalue seg-
ment assimilating nucleus (SUSAN) [19]. Images were
denoised and normalised to zero mean unit variance.

Tumour segmentation

The BRATS 2017 dataset contains 285 mixed-grade gliomas
with expert-annotated manual segmentations of the (1) necrot-
ic core (NC), (2) CER, (3) non-enhancing tumour (NET) and
(4) peritumoural oedema (PTE) [20]. The definitions for man-
ual segmentation are found in the Supplementary Data.
DeepMedic can detect three tumour subregions: (1) FLAIR
region, (2) CER and (3) NC region. Following the procedure
from BRATS, automated segmentations of the whole-tumour
(WT) region were created from T2-weighted sequences and
FLAIR sequences whilst the CER region and NC regions
were created from T1-weighted images. PTE and NET were
manually delineated from the FLAIR region [15].

The primary architecture of DeepMedic consists of two
main parallel pathways, each consists of four feature extrac-
tion layers with 53 kernels for feature extraction, as well as
two fully connected layers and one final classification layer.
The multi-scale processing of different input channels is han-
dled using the dual pathway to achieve a large receptive field
for the final classification, whilst the cost computation re-
mains low. The first pathway operates on the original image,
and the second one operates on a down-sampled version [14,
21].

To apply transfer learning on our dataset, DeepMedic was
firstly trained on randomly chosen scans from BRATS
dataset. The dataset was divided into 107 patients for training
(n = 66,340 images) and 50 patients for validation (n = 31,000
images). This trained model was further tested on 50 further
patients from BRATS prior to application to our test dataset.
As we are evaluating the validity of applying a CNN trained
on a different dataset to our test dataset, one author (YW)
manually segmented our test images by correcting the auto-
mated segmentation labels derived fromDeepMedic using 3D
Slicer (Harvard Medical School) (Fig. 1) [22].

DeepMedic incorporates data augmentation to increase in-
put data volumes as well as their complexity via reflection
with respect to the mid-sagittal plane. Data shuffle is per-
formed at the start of each epoch to avoid overfitting [23].
The hyper parameters remained the same as the original
DeepMedic network proposed [14]. The network is
regularised using dropout, 35 epochs and 5 batch sizes, with
5-fold cross-validation. The loss function used was negative
log-likelihood.

Training was performed using an implementation of
DeepMedic on Tensorflow, using an NVIDIA Titan Xp
graphics card [24].

The delimitation of residue contrast-enhancing tumour was
performed using T1 subtraction maps (ΔT1 map). This meth-
od improves the delineation of tumour by subtraction of

Fig. 1 Example segmentation showing tumour subregions and imaging sequences. a T1-post-contrast. b T2 fluid-attenuated inversion recovery
(FLAIR). c Whole-tumour mask. 1 = contrast-enhancing region = blue; 2 = necrotic core; 3 = peritumoural oedema. R = right. L = left
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contrast enhancement from blood products [25]. Their use has
validated residue tumour volume (RTV) as a predictor of sur-
vival [25]. ΔT1 maps were created by voxel-by-voxel sub-
traction of the pre-processed T1 image from the T1C image
(Fig. 2).

The comparative metrics used to assess the quality of the
segmentations were the Dice coefficient and volumes of the
segmentations. The Dice coefficient is a value between zero
and one which presents the degree of overlap between two
segmentations (one represents perfect overlap) [11]. For our
test dataset, the post-manually edited tumour subregion seg-
mentations were considered the ground truth for comparison
with the automated labels. Differences between the automated
and manually corrected segmentations volumes of each tu-
mour subregion were also compared. For the BRATS test data
(n = 50), we also computed the Dice coefficient between the
automated labels generated from our model and the expert-
annotated manual ground truths.

Statistical analysis

VASARI features were scored on preoperative imaging
(Supplementary Table A2). Spearman rank correlation was
used to compare the proportions of each subregion; EOR
was calculated based on volumetric segmentations; EOR =
CER − RTV/CER × 100%.

The primary outcome was overall survival (OS): difference
between the date of death and the date of surgery. Cox pro-
portional hazards models were used to identify significant
factors associated with OS. Median follow-up time was cal-
culated using the reverse KM method [26]. The Student t test
and Wilcoxon rank-sum test were used to compare baseline
characteristics between groups for continuous variables. The
chi-square test was used for comparing categorical variables.

Variables with p < 0.2 in the bivariable regression models
were included in the multivariable models. The Akaike infor-
mation criterion (AIC) was used as a measure to compare the
quality of the models. AIC scores compare the relative perfor-
mance of a model based on the number of parameters and
goodness of fit. The model with the lower AIC score explains

the greatest variation using the least number of independent
variables [27]. Multiple testing was controlled for using the
false discovery rate. A false discovery rate adjusted p value (q-
value) is the percentage of significant tests which will result in
a false positive. Given the exploratory nature of the study, a
threshold of 0.1 was chosen (sensitivity analysis showed that
lowering the threshold to 0.05 did not change the results of
significant variables). Statistical analysis used Stata version 14
(StataCorp. College Station, Texas).

Results

Patient, clinical and treatment characteristics

One hundred twenty cases were included (Table 1). Median
follow-up time was 19.9 months (95%CI, 17.4–21.9months).
The median OS was 8.8 months (95% CI, 7.3–12.0 months).
Median survival of patients undergoing resection was
8months longer than patients undergoing biopsy (12.8months
vs 4.7 months, p < 0.001).

The median age was 65.2 [57.1–70.6] years and 69
(57.5%) of patients were male. Complete resection of enhanc-
ing tumour (CRET) was achieved in 59 (49.2%) patients and
partial resection of enhancing tumour (PRET) achieved in 16
(13.3%) patients. A biopsy was performed on 45 (37.5%)
patients. The median EOR was high, 99% (IQR, 50.9–
100%) with a median RTV of 0.47 cm3 (IQR, 0.09–
0.73 cm3) for PRET tumours.

Due to differences between baseline characteristics, the re-
section and biopsy groups were analysed separately.
Resection patients had larger CER and NC volumes whilst
biopsy patients had a larger NET volume (Supplementary
Table B1).

Comparison between automated and manually
corrected segmentations

The network was able to detect WT, CER and NC in all
patients in the BRATS test data and in 118 patients (98%) of

Fig. 2 Processing pipeline for segmenting residual enhancing tumour (radiological orientation). T1C = T1 contrast; T2 FLAIR = T2 fluid-attenuated
inversion recovery; RTV = residue tumour volume
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our test dataset. Failure to localise the tumour was caused by
inaccurate labelling due to T2 hyperintensities on the FLAIR
sequence in two patients. The time taken for full manual seg-
mentation in each of these two patients was approximately
40 min. Time taken for manual correction of the automated
labels in the remaining patients was approximately 15 min.

The training and test times were approximately 41 h
(2475 min) and 36 min respectively in our data. Therefore,
considering training, testing and correction time, our semi-
automated segmentation method can reduce segmentation
time by approximately 38 h (2289 min) compared to manual
segmentation.

Comparison of segmentation outcomes between our
BRATS test data (n = 50) and our sample data (n = 120)
showed similar network performance in the two datasets.
Median Dice coefficients in our sample were (1) WT 0.94
(IQR, 0.82–0.98), (2) FLAIR region 0.84 (IQR, 0.63–0.95)
and (3) CER 0.91 (IQR, 0.74–0.98) and NC were 0.82 (IQR,
0.47–0.97). We observed significantly different Dice coeffi-
cients for WT 0.91 (IQR, 0.83–0.94 p = 0.012), CER 0.83
(IQR, 0.78–0.89 p = 0.003) and NC 0.67 (IQR, 0.42–0.81
p = 0.005) but not FLAIR region 0.81 (IQR, 0.69–0.8 p =
0.170) in the BRATS test data (Fig. 3).

The median tumour volume for post-corrected segmenta-
tions were WT 77.0 cm3 (IQR, 43.6–115.6), FLAIR region
41.5 cm3 (IQR, 26.0–68.7), CER 8.2 cm3 (IQR, 2.9–14.9) and
NC 7.2 cm3 (IQR, 2.7–16.2). There were significant differ-
ences between automated segmentation volumes for WT
83.1 cm3 (IQR, 53.1–121.9 p < 0.001), FLAIR region
61.5 cm3 (IQR, 36.8–90.9 p < 0.001) and CER 9.3 cm3

(IQR, 4.1–17.3 p < 0.001) but not NC 6.2 cm3 (IQR, 1.6–
17.7 p = 0.209) (Fig. 4).

Relationship between volumetric subregions

There was a positive correlation between the volume of tu-
mour core and individual tumour subregions (p < 0.001),
shown in Fig. 5.

PTE volume positively correlated with CER volume r =
0.42 (p < 0.001) and NC volume r = 0.37 (p < 0.001) but not
NET volume r = 0.06 (p = 0.508). There was a negative

Table 1 Baseline characteristics of all patients (n = 120)

Characteristics Value

Age (years)a 65.2 [57.1–70.6]
Male (%) 69 (57.5)
KPS (%)
< 70 2 (1.7)
70 5 (4.2)
80 20 (16.7)
90 60 (50.0)
100 33 (27.5)

Presenting symptoms (%)
Headache 44 (36.7)
Seizure 38 (31.7)
Confusion/memory 51 (42.5)
Vision 24 (20)
Language 45 (37.5)
Motor 46 (38.3)
Sensory 18 (15)

Perioperative variables (%)
Steroid use 108 (90)

ASA grade
1 8 (6.7)
2 86 (71.7)
3 25 (20.8)
4 1 (0.8)
Preoperative deficit 117 (97.5)

Postoperative deficit (n = 75)
None 54 (45.0)
New/worsened 29 (24.2)
Improved 37 (30.8)

Surgical variables (%)
Awake 15 (12.5)
Intraoperative stimulation 33 (27.7)
Biopsy 45 (37.5)
CRET 59 (49.2)
PRET 16 (13.3)
EOR (%) [range]b 99 [50.9–100]
RTV (cm3) [IQR]c 0.47 [0.09–0.73]

Tumour variables (%)
IDH mutant 4 (3.3)
MGMT methylated 52 (43.3)

Adjuvant therapy (%)
Chemoradiotherapy 76 (63.3)
Radiotherapy 27 (22.5)
None 17 (14.2)
Median OS (months) (95% CI)d 8.8 (7.3–12.0)
Alive at last follow-up (%) 25 (20.8)

ASA =American Association of Anesthesiologists; CI = confidence inter-
val; CRET = complete resection of enhancing tumour; EOR = extent of
resection; IDH = isocitrate dehydrogenase; IQR = interquartile range;
KPS = Karnofsky Performance Status; PRET = partial resection of en-
hancing tumour; RTV = residual tumour volume; MGMT = O6 -
methylguanine–DNA methyltransferase. aMedian [interquartile range].
bMedian [interquartile range]. cBased on number of patients who
underwent resection with residual contrast enhancement on postoperative
MRI. dLog-rank test of equality of survivor function

Fig. 3 Box and whisker plots (IQR) of WT, FLAIR, CER and NC re-
gions Dice coefficients between the BRATS test data (BRATS) and sam-
ple data (Test). CER = contrast-enhancing region; FLAIR = fluid-attenu-
ated inversion recovery; NC = necrotic core; WT =whole tumour
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correlation between CER volume and NET volume r = − 0.31
(p < 0.001) as well as between CER volume and NC volume
r = 0.37 (p < 0.001). NET volume was not correlated with NC
volume r = −0.107 (p = 0.247).

Subregion volumes were normalised by dividing by TC
volume. TC volume positively correlated with NET/TC r =

0.22 (p < 0.05). There was a negative correlation between TC
and CER/TC r = − 0.35 (p < 0.001) and TC with PTE/TC r =
− 0.48 (p < 0.001). NC/TC did not correlate with TC volume
r = 0.13 (p = 0.158).

PTE/NC ratio correlated with CER/TC r = 0.27 (p = 0.003)
and was independent of NET/TC r = 0.10 (p = 0.285). NER/
TC was independent of CER/TC r = − 0.16 (p = 0.080) and
negatively correlated with NET/TC r = − 0.49 (p < 0.001).

Volumetric features associated with overall survival

Cox regression models were constructed for volumetric vari-
ables which were not significantly correlated with each other
(Supplementary Table C1, C3 and C5). Analysis was per-
formed for the entire cohort and for biopsy and resection pa-
tients separately (Table 2).

For the whole cohort, clinical variables associated with OS
included the following: age (HR 1.05 [95% CI, 1.02–1.08],
p = 0.003), postoperative deficit (HR 3.42 [95% CI, 1.69–
6.90], p = 0.001), CRET (HR 0.11 [95% CI, 0.03–0.38],
p < 0.001), PRET (HR 0.23 [95% CI, 0.06–0.93], p < 0.039)
and adjuvant chemoradiotherapy (HR 0.15 [95% CI, 0.06–
0.33], p < 0.001). Occipital lobe location (HR 10.05 [95%
CI, 1.27–79.66]. p = 0.029), speech motor cortex location

Fig. 4 Box and whisker plots (IQR) comparing tumour subregion vol-
ume between corrected and automated segmentations for WT, FLAIR,
CER and NC regions. CER = contrast-enhancing region; FLAIR = fluid-
attenuated inversion recovery; NC = necrotic core; WT =whole tumour

Fig. 5 Scatterplots showing correlation between tumour subregions and
tumour core volume. The correlationwas strongest for contrast enhancing
and necrosis (r = 0.65) volume (r = 0.42) (b and d) whilst there was a

weaker correlation between oedema (r = 0.37) and non-enhancing (r =
0.36) volume (a and c)
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(HR 2.63 [95% CI, 1.02–6.75], p = 0.045) and visual cortex
location (HR 0.18 [95% CI, 0.05–0.61], p = 0.006) were as-
sociated with OS. Volumetric variables which were signifi-
cantly associated with OS were as follows: CER/TC (HR 4.73
[95% CI, 1.67–13.40], p = 0.003) and NC/TC (HR 8.13 [95%
CI, 2.06–32.12], p = 0.003. At a corrected critical value of q =
0.022, both CER/TC (q = 0.017) and NC/TC (q = 0.011) were
significantly associated with OS.

The significant variables associated with OS for resection
patients were as follows: age (HR 1.08 [95% CI, 1.03–1.14),
p = 0.002), KPS, EOR (HR 3.69 × 10−4 [95%CI, 1.51 × 10−7–
0.90], p = 0.047) and adjuvant chemoradiotherapy (HR 0.15
[95% CI, 0.03–0.85), p = 0.031). The only significant volu-
metric feature was PTE/NC (HR 1.05 [95% CI, 1.01–1.09],
p = 0.020) but this was not significant after adjustment for
multiple testing (adjusted critical q > 0.004).

For biopsy patients, the following volumetric variables
were associated with OS: NET volume (HR 0.01 [95% CI,
0.002–0.23], p = 0.005), NET/WT (HR 0.01 [95% CI, 0.002–
0.23], p = 0.005) and CER/TC (HR 13.88 [95% CI, 1.56–
123.36], p = 0.018). Only NET/WT was significantly associ-
ated with OS following correction for multiple testing (q <
0.038).

MGMT methylation and IDH mutation were not signifi-
cantly associated with OS in bivariable or multivariable
analysis.

Discussion

In this study, we integrated a deep learning network into a
clinically applicable processing pipeline for semi-automated
measurement of glioblastoma volumetric features from preop-
erative MRI. A CNN was trained on publicly available
BRATS data before testing on our routine clinical dataset.
Final segmentation labels were generated by manual correc-
tion of the automated segmentations. Performance of the net-
work was comparable between our clinical dataset and
BRATS testing dataset when measured using the Dice coeffi-
cient. We further assessed the validity of our segmentation
approach by evaluating the prognostic performance of volu-
metric features. Higher CER/TC and NC/TC were indepen-
dently associated with higher risk of death overall. NET/WT
was associated with lower risk of death in biopsy patients.

We demonstrate the possibility of transfer learning by
segmenting tumour regions on a heterogeneous clinical
dataset trained and tested on an independent dataset using
multimodal imaging. A major advantage of our method is that
it is applicable to data from different scanners and institutions.
Furthermore, curating a large sample of uniform images for
deep learning training is time- and labour-intensive [28]. Even
when training time is considered, use of our computer-assisted
segmentation method can reduce annotation time by 20 min

per patient compared to fully manual segmentation. Training
on an external dataset also increases the generalizability of the
method and means data does not need to be split into training
and validation cohorts, reducing sample sizes.

Deep learning methods can provide quantitative imaging-
based prognostic biomarkers that outperform semi-
quantitative estimates. In previous studies, tumour size has
been investigated as a potential prognostic marker [29].
Tumour dimensions can be estimated using long axis diame-
ter, cuboid, spheroid and ellipsoid formulas [30]. These
methods are subjective and difficult to reproduce, leading to
conflicting associations with survival [31, 32]. Formula-based
estimates also have poor accordance with volumetric mea-
surements [30].

We did not perform full manual segmentation as an ap-
proximate for ground truth to compare with our automated
segmentations as the goal of our study was to determine if
deep learning generated automated segmentations could be
used to aid manual segmentation rather than as a replacement.
Despite being trained on BRATS data, our network was able
to detect the tumour in nearly all our patients and showed
comparable segmentation accuracy in our dataset when eval-
uated against BRATS test data.

Our final segmentations were derived from corrections per-
formed on the automated labels so it is expected that the label
overlap for each subregion is significantly higher in our
dataset compared to the BRATS data where no bias exists
due to the manual segmentations being performed indepen-
dently. Nonetheless, the relative accuracy of the segmentation
labels across different tumour subregions was similar across
the two test datasets. For example, the necrosis subregion had
the highest proportion of misclassified voxels whilst the CER
had the least proportion of misclassified voxels. This indicates
that our manual corrections were dependent on the accuracy of
the automated labels.

Few studies have compared accuracy of automated and
manual segmentations of tumour subregions such as necrosis
[15]. It is important to measure these subregions as they may
have prognostic significance. Our data highlights the impor-
tance of choosing clinically relevant metrics to compare auto-
mated and manual segmentations. Two segmentations may
have high Dice overlap but significantly different volumes if
a smaller volume is entirely within the larger volume. There
were significant differences between the automated and
corrected segmentations for all tumour subregions apart from
necrosis. Necrosis may be particularly challenging to segment
using either automated or manual methods due to its hetero-
geneous and dispersed nature within the tumour core [15].

Necrosis was one of the earliest imaging markers found to
have prognostic value [32]. Descriptive studies classifying
tumours by estimating necrotic proportions have not been
consistently prognostic [1]. In concordance with previous
studies, we do not find a consistent association between
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necrosis volume measured by VASARI score and OS [33].
Instead, higher relative proportion of necrosis is associated
with worse prognosis. NC/TC has been previously associated
with worse survival [30, 34]. However, this study only includ-
ed patients suitable for CRET, raising the possibility of selec-
tion bias. Furthermore, they did not control for qualitative
imaging features described in the VASARI feature set in their
multivariable analysis [34]. Hypoxia may select for quiescent
stem-like cells around the NC which resist apoptosis and un-
dergo proliferation [35].

Established prognostic variables including EOR calculated
using our segmentations are associated with survival. The me-
dian OS in our cohort is only 9 months because compared to
previous cohorts, we did not exclude patients undergoing bi-
opsy [1, 30]. The median OS of 13 months in our resection
patients is comparable to previous studies [1]. By including
both resection and biopsy patients, our sample is representa-
tive of the heterogeneous cohorts of glioblastomas encoun-
tered in routine clinical practice. IDH mutation was not found
to be associated with improved survival but this finding may
be limited by the small number of IDH-mutant patients in our
cohort. Our finding that MGMT methylation was not associ-
ated with improved survival is difficult to interpret. Not all
studies demonstrate an association between MGMT methyla-
tion and improved OS, with several studies including a
randomised control trial showing no association with survival
[4, 36]. The reasons for this may be due to assay variability
and difficulties correlating promoter methylation with protein
expression [37].

The association between FLAIR proportion relative to oth-
er subregions and survival is unclear [38]. PTE/TC was not
found to be associated with OS in a previous study [34].
Multiparametric biopsies have shown high levels of viable
tumour cells within the non-enhancing region [39].
However, unlike our study, these studies did not differentiate
oedema from non-enhancing tumour. The Dice coefficient
between the automated and corrected FLAIR region segmen-
tations was not significantly higher for our sample compared
to BRATS as we were able to manually delineate NET from
the FLAIR region.

Differentiating non-enhancing tumour from peritumoural
oedema is important as each subregion may yield different
prognostic information. The non-enhancing tumour within
the FLAIR abnormality may represent lower grade disease
[40]. We show that non-enhancing tumour proportion relative
to the whole-tumour volume rather than FLAIR volume or
peritumoural oedema volume was associated with improved
survival in the biopsy group. This suggests that non-
enhancing tumour was differentiated from peritumoural oede-
ma by manual segmentation. Although our network was not
able to detect non-enhancing tumour, we have shown high
segmentation accuracy for the FLAIR region which can aid
the manual delineation of the non-enhancing tumour.

Non-enhancing tumour variables were not prognostic in
resection patients. This may be because the resection patients
had significantly smaller volumes of non-enhancing tumour
compared to the biopsy patients. The difficulty in delineating
oedema from non-enhancing tumour may result in overlap
between non-enhancing tumour and oedema in resection pa-
tients. We have shown that diffusion MRI signatures have
higher sensitivity for invasive tumour can also be segmented
using CNN [21, 41]. These biomarkers may be correlated with
the FLAIR region to improve identification of infiltrative
tumour.

CER/TC was associated with survival, independent of
RTV and other prognostic factors. In radiogenomic studies,
the CER correlates with genes involved in angiogenesis and
hypoxia [42]. The relationship between the NC and the CER
may not be linear; we show that NC/TC is independent of
CER/TC and core tumour volume. This suggests that some
tumours have relatively greater proportions of necrosis for a
given tumour volume.

CER volume was negatively associated with survival in a
cohort of resected glioblastomas but the accuracy of the vol-
umetric measurements was limited by digitised hard-copy im-
aging [43]. CER volume has also been associated with worse
survival when adjusted for other VASARI variables but in this
study adjuvant treatment received was not controlled for [9].
We found that CER/TC rather than CER volume was signif-
icantly associated with survival. CER/TC may be a more ac-
curate prognostic measure because it relates CER to the core
tumour volume rather than whole-tumour volume as the oe-
dema component may be affected by factors such as steroid
use.

Limitations to our study include its retrospective nature. It
is one of the largest studies investigating volumetric features
and prognosis incorporating quantitative measurement of
postoperative imaging and clinical variables. Future work to
evaluate our approach should quantitatively compare segmen-
tation measurements with manual segmentations from multi-
ple observers to assess inter-rater variability [28]. In addition,
an independent dataset is necessary for us to compare the
relative prognostic performance of automated segmentations
against manual segmentations and determine the reproducibil-
ity of our segmentations. Finally, volumetric features may be
combined with texture- and shape-based analysis of tumour
subregions to develop improved prognostic models for glio-
blastoma patients [44, 45].

Conclusions

Using a CNN with a transfer learning approach, we have
shown that volumetric measurements of glioblastoma tumour
subregions can be measured from preoperativeMRI with high
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accuracy. The CNN can be integrated into a radiological
workflow to significantly shorten segmentation time.

Tumours with greater proportions of necrosis and contrast
enhancement are independently associated with worse surviv-
al whilst non-enhancing tumour proportion is associated with
improved survival. With further validation, we may be able to
use volumetric features from routine clinical imaging for pa-
tient prognostication and stratification into clinical trials.
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