Skip to main content
Log in

The architecture of the chloroplast psbA-trnH non-coding region in angiosperms

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The psbA-trnH intergenic region is among the most variable regions in the angiosperm chloroplast genome. It is a popular tool for plant population genetics and species level phylogenetics and has been proposed as suitable for DNA barcoding studies. This region contains two parts differing in their evolutionary conservation: 1) the psbA 3′UTR (untranslated region) and 2) the psbA-trnH intergenic non-transcribed spacer. We compared the sequence and RNA secondary structure of the psbA 3′ UTR across angiosperms and found consensus motifs corresponding to the stem portions of the RNA stem-loop structures and a consensus TTAGTGTATA box. The psbA-trnH spacer exhibited patterns that can be explained by the independent evolution of large inversions in the psbA 3′UTR and mutational hot spots in the remaining portion of the psbA-trnH spacer. We conclude that a comparison of chloroplast UTRs across angiosperms offer clues to the identity of putative regulatory elements and information about selective constraints imposed on the chloroplast non-coding regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CC and Stern DB (1990). Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucl Acids Res 18: 6003–6011

    Article  PubMed  CAS  Google Scholar 

  • Bain JF and Jansen RK (2006). A chloroplast DNA hairpin structure provides useful phylogenetic data within tribe Senecioneae (Asteraceae). Canad J Bot 84: 862–868

    Article  CAS  Google Scholar 

  • Bollenbach TJ, Tatman DA and Stern DB (2003). CSP41a, a multifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts. Pl J 36: 842–852

    Article  CAS  Google Scholar 

  • Bommer D, Haberhausen G and Zetsche K (1993). A large deletion in the plastid DNA of the holoparasitic flowering plant Cuscuta reflexa concerning two ribosomal proteins (rpl2, rpl23), one transfer RNA (trnI) and an ORF 2280 homologue. Curr Genet 24: 171–176

    Article  PubMed  CAS  Google Scholar 

  • Bzymek M and Lovett ST (2001). Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: Single-strand annealing and replication slipped mispairing. Genetics 158: 527–540

    PubMed  CAS  Google Scholar 

  • Chen Q, Adams CC, Usack L, Yang J, Monde RA and Stern DB (1995). An AU-rich element in the 3′untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation. Molec Cell Biol 15: 2010–2018

    PubMed  CAS  Google Scholar 

  • Crayn DM and Quinn CJ (2000). The evolution of the atpβ-rbcL intergenic spacer in the Epacrids (Ericales) and its systematic and evolutionary implications. Molec Phylogenet Evol 16: 238–252

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM and Brenner SE (2004). WebLogo: a sequence logo generator. Genome Res 14: 1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Cummings MP, King LM and Kellog EA (1994). Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). Molec Biol Evol 11: 1–8

    PubMed  CAS  Google Scholar 

  • Deng XW and Gruissem W (1987). Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J and Koop HU (1999). In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Pl J 19: 333–345

    Article  CAS  Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI and Hellwig FH (2005). Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Molec Biol Evol 22: 1813–1822

    Article  PubMed  CAS  Google Scholar 

  • Graham SW and Olmstead RG (2000). Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages. Curr Genet 37: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Hamilton MB (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec Ecol 8: 521–523

    CAS  Google Scholar 

  • Hamilton MB, Braverman JM and Soria-Hernanz DF (2003). Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in New World species of the Lecythidaceae. Molec Biol Evol 20: 1710–1721

    Article  PubMed  CAS  Google Scholar 

  • He JX, Wen JQ, Chong K and Liang HG (1998). Changes in transcript levels of chloroplast psbA and psbD genes during water stress in wheat leaves. Physiol Plantarum 102: 49–54

    Article  CAS  Google Scholar 

  • Ingvarsson PK, Ribstein S and Taylor DR (2003). Molecular evolution of insertions and deletions in the chloroplast genome of Silene. Molec Biol Evol 20: 1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Kelchner SA (2000). The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard. 87: 499–527

    Article  Google Scholar 

  • Kelchner SA (2002). Group II introns as phylogenetic tools: structure, function and evolutionary constraints. Amer J Bot 89: 1651–1669

    Article  CAS  Google Scholar 

  • Kelchner SA and Wendel JF (1996). Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Klaas AL and Olson MS (2006). Spatial distributions of cytoplasmic types and sex expression in Alaskan populations of Silene acaulis. Int J Pl Sci 167: 179–189

    Article  CAS  Google Scholar 

  • Kress JW, Wurdack KJ, Zimmer EA, Weigt LA and Janzen DH (2005). Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102: 8369–8374

    Article  PubMed  CAS  Google Scholar 

  • Löhne C and Borsch T (2005). Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molec Biol Evol 22: 317–332

    Article  PubMed  Google Scholar 

  • Manuell A, Beligni MV, Yamaguchi K and Mayfield SP (2004). Regulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome. Biochem Soc T 32: 601–605

    Article  CAS  Google Scholar 

  • McCauley DE (1994). Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba – implications for studies of gene flow in plants. Proc Natl Acad Sci USA 91: 8127–8131

    Article  PubMed  CAS  Google Scholar 

  • McCauley D E (1995). The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10: 198–202

    Article  Google Scholar 

  • Mes THM, Kuperus P, Kirschner J, Stepánek J, Oosterveld P, Storchova H and Den Nijs JCM (2000). Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae:Asteraceae). Genome 43: 634–641

    Article  PubMed  CAS  Google Scholar 

  • Monde RA, Greene JC and Stern DB (2000). The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Pl Molec Biol 44: 529–542

    Article  CAS  Google Scholar 

  • Olmstead RG and Palmer JD (1994). Chloroplast DNA systematics: A review of methods and data analysis. Amer J Bot 81: 1205–1204

    Article  CAS  Google Scholar 

  • Olson LE, Sargis EJ and Martin RD (2005). Intraordinal phylogenetics of treeshrews (Mammalis: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Molec Phylogenet Evol 35: 656–673

    Article  PubMed  CAS  Google Scholar 

  • Provan J, Powell W and Hollingsworth PM (2001). Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16: 142–147

    Article  PubMed  Google Scholar 

  • Quandt D, Müller K and Huttunen S (2003). Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. Pl Biol 5: 400–410

    Article  CAS  Google Scholar 

  • Rand DM, Haney RA and Fry AJ (2004). Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19: 645–653

    Article  PubMed  Google Scholar 

  • Rousset F, Pélandakis M and Solignac M (1991). Evolution of compensatory substitution through G-U intermediate state in Drosophila rRNA. Proc Natl Acad Sci USA 88: 10032–10036

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall K (2001). A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses. Molec Ecol Notes 1: 76–78

    Article  CAS  Google Scholar 

  • Sang T, Crawford DJ and Stuessy TF (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer J Bot 84: 1120–1136

    Article  CAS  Google Scholar 

  • Schneider TD and Stephens RM (1990). Sequence logos: A new way to display consensus sequences. Nucl Acids Res 18: 6097–6100

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE and Small RL (2005). The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92: 142–166

    Article  CAS  Google Scholar 

  • Soltis DE, Kuzoff RK, Mort ME, Zanis M, Fishbein M, Hufford L, Koontz J and Arroyo MK (2001). Elucidating deep-level phylogenetic relatioships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann Missouri Bot Gard 88: 669–693

    Article  Google Scholar 

  • Stern DB and Gruissem W (1987). Control of plastid gene gene expression: 3′ inverted repeats act as mRNA processing and stabilization elements, but do not terminate transcription. Cell 51: 1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Storchová H, Hrdlicková R, Chrtek Jr J, Tetera M, Fitze D and Fehrer J (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49: 79–84

    Article  Google Scholar 

  • Storchová H and Olson MS (2004). Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris. Molec Ecol 13: 2909–2910

    Article  Google Scholar 

  • Tate JA and Simpson BB (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28: 723–737

    Google Scholar 

  • Wolfe KH, Morden CW, Ems SC and Palmer JD (1992). Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Molec Evol 35: 304–317

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Schuster G and Stern DB (1996). CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Pl Cell 8: 1409–1420

    CAS  Google Scholar 

  • Yang J and Stern DB (1997). The spinach chloroplast endoribonuclease CSP41 cleaves the 3′ untranslated region of petD mRNA primarily within its terminal stem-loop structure. J Biol Chem 272: 12784–12880

    Google Scholar 

  • Zuker M (1989). On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31: 3406–15

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfeld PR and Bottomley W (1982). Nucleotide sequence of the gene for the MR 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of MR 38,950. Proc Natl Acad Sci USA 79: 7699–7703

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Štorchová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štorchová, H., Olson, M. The architecture of the chloroplast psbA-trnH non-coding region in angiosperms. Plant Syst. Evol. 268, 235–256 (2007). https://doi.org/10.1007/s00606-007-0582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0582-6

Keywords

Navigation